A stochastic ordering of multiple hypergeometric laws: Peakedness of category counts about half the population category sizes is symmetric unimodal in the sample size

Suppose X is a frequency vector that follows a central multiple hypergeometric distribution, such as arises in random sampling of an m-category attribute from a finite population without replacement. We call the event where X satisfies a prespecified set of symmetrical-but otherwise arbitrary-interv...

Full description

Saved in:
Bibliographic Details
Published inSequential analysis Vol. 43; no. 4; pp. 417 - 431
Main Author Levin, Bruce
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 01.10.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0747-4946
1532-4176
DOI10.1080/07474946.2024.2379901

Cover

Abstract Suppose X is a frequency vector that follows a central multiple hypergeometric distribution, such as arises in random sampling of an m-category attribute from a finite population without replacement. We call the event where X satisfies a prespecified set of symmetrical-but otherwise arbitrary-interval constraints in each component a symmetric core event. We show that the probability of any symmetric core event-in other words, the multivariate peakedness in the sense of Birnbaum (1948) and Tong (1988)-is symmetric unimodal as a function of the sample size. Two proofs are given. The shorter one relies on a convolution property of ultra-log-concave sequences, which implies that the sequence of peakedness values is log-concave (even for asymmetric rectangular events). The longer, though more elementary, proof does not rely on notions of log-concavity. To illustrate the use of symmetric core events, we analyze a simple yet interesting wager in a sequential card game. Finally, we indicate that the unimodality result for symmetric core events is pivotal in proving a certain variance reduction inequality involving multinomial frequencies subject to arbitrary interval censoring.
AbstractList Suppose X is a frequency vector that follows a central multiple hypergeometric distribution, such as arises in random sampling of an m-category attribute from a finite population without replacement. We call the event where X satisfies a prespecified set of symmetrical-but otherwise arbitrary-interval constraints in each component a symmetric core event. We show that the probability of any symmetric core event-in other words, the multivariate peakedness in the sense of Birnbaum (1948) and Tong (1988)-is symmetric unimodal as a function of the sample size. Two proofs are given. The shorter one relies on a convolution property of ultra-log-concave sequences, which implies that the sequence of peakedness values is log-concave (even for asymmetric rectangular events). The longer, though more elementary, proof does not rely on notions of log-concavity. To illustrate the use of symmetric core events, we analyze a simple yet interesting wager in a sequential card game. Finally, we indicate that the unimodality result for symmetric core events is pivotal in proving a certain variance reduction inequality involving multinomial frequencies subject to arbitrary interval censoring.
Author Levin, Bruce
Author_xml – sequence: 1
  givenname: Bruce
  orcidid: 0000-0002-0933-2437
  surname: Levin
  fullname: Levin, Bruce
  organization: Department of Biostatistics, Columbia University
BookMark eNp9kcFq3DAURUVJoZO0n1AQdO2pZMmW3VVCSNpAIF20a_EqSzNKZcmRZILzQfnOWp0J2WUleJx7LuieohMfvEboMyVbSjrylQgueM_bbU1qvq2Z6HtC36ENbVhdcSraE7QpTFWgD-g0pXtCaEeJ2KDnC5xyUHtI2Soc4qCj9TscDB5nl-3kNN4vk447HUad48o4eEzf8E8Nf_XgdUqFVZD1LsQFqzD7nDD8CXPGe3AG573GU5hmB9kG_0om-6QTtgmnZTyaZ2_HMIDD1v-PJRhLfyE_ovcGXNKfju8Z-n199evyR3V79_3m8uK2UnXX5qpTQnf1IARpGtG3xnDTDKJrYGBa9AOYmvEeVNcK0dcCaEP4ehUgDDPl89gZ-nLwTjE8zDpleR_m6NdKyShvWEcZbVeqOVAqhpSiNnKKdoS4SEpkmUS-TCKLVR4nWXPnh5z1JsQRHkN0g8ywuBBNBK9sqXlT8Q_RSZht
Cites_doi 10.1137/1030135
10.37236/243
10.1080/03610928308828532
10.1214/aoms/1177730293
10.1016/0167-7152(85)90029-X
10.1239/aap/1275055235
10.1214/aos/1176345593
10.1007/978-1-4612-3818-8_31
10.1006/jcta.1997.2790
10.4007/annals.2020.192.3.4
ContentType Journal Article
Copyright 2024 Taylor & Francis Group, LLC 2024
2024 Taylor & Francis Group, LLC
Copyright_xml – notice: 2024 Taylor & Francis Group, LLC 2024
– notice: 2024 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/07474946.2024.2379901
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4176
EndPage 431
ExternalDocumentID 10_1080_07474946_2024_2379901
2379901
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
123
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
07G
1TA
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ACAGQ
ACGEE
ACTCW
AEUMN
AFFNX
AFRVT
AGCQS
AGLEN
AGROQ
AHMOU
AIYEW
ALCKM
AMEWO
AMVHM
AMXXU
BCCOT
BPLKW
C06
CAG
CITATION
COF
CRFIH
DGEBU
DMQIW
DWIFK
EJD
IVXBP
NUSFT
NY~
QCRFL
TAQ
TASJS
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-8c7e82d77055796ff4f5d785ad3e79daf2349ac8677927a15049da7a7f3f20243
ISSN 0747-4946
IngestDate Mon Aug 25 14:14:45 EDT 2025
Wed Oct 01 04:34:00 EDT 2025
Wed Dec 25 09:05:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-8c7e82d77055796ff4f5d785ad3e79daf2349ac8677927a15049da7a7f3f20243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0933-2437
PQID 3145381316
PQPubID 216170
PageCount 15
ParticipantIDs informaworld_taylorfrancis_310_1080_07474946_2024_2379901
proquest_journals_3145381316
crossref_primary_10_1080_07474946_2024_2379901
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Sequential analysis
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_6_1
e_1_3_4_5_1
Levin B. (e_1_3_4_9_1) 1992; 46
e_1_3_4_12_1
e_1_3_4_13_1
e_1_3_4_11_1
e_1_3_4_14_1
e_1_3_4_15_1
Levin B. (e_1_3_4_10_1) 2014; 11
References_xml – ident: e_1_3_4_15_1
  doi: 10.1137/1030135
– ident: e_1_3_4_12_1
– ident: e_1_3_4_5_1
  doi: 10.37236/243
– ident: e_1_3_4_8_1
  doi: 10.1080/03610928308828532
– volume: 11
  start-page: 50
  issue: 4
  year: 2014
  ident: e_1_3_4_10_1
  article-title: “Punctured Poisson” and the Strong Birthday Problem
  publication-title: Significance
– ident: e_1_3_4_2_1
  doi: 10.1214/aoms/1177730293
– ident: e_1_3_4_3_1
  doi: 10.1016/0167-7152(85)90029-X
– ident: e_1_3_4_6_1
  doi: 10.1239/aap/1275055235
– ident: e_1_3_4_7_1
  doi: 10.1214/aos/1176345593
– ident: e_1_3_4_14_1
  doi: 10.1007/978-1-4612-3818-8_31
– ident: e_1_3_4_11_1
– ident: e_1_3_4_13_1
  doi: 10.1006/jcta.1997.2790
– ident: e_1_3_4_4_1
  doi: 10.4007/annals.2020.192.3.4
– volume: 46
  start-page: 76
  year: 1992
  ident: e_1_3_4_9_1
  article-title: In Re: “Siobhan’s Problem: The Coupon Collector Revisited”
  publication-title: The American Statistician
SSID ssj0018107
Score 2.3124926
Snippet Suppose X is a frequency vector that follows a central multiple hypergeometric distribution, such as arises in random sampling of an m-category attribute from...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 417
SubjectTerms Card games
Concavity
Interval censoring
log-concavity
multinomial distribution
multiple hypergeometric distribution
multivariate peakedness
Random sampling
Sequences
Stochastic models
stochastic ordering
symmetric core events
ultra-log-concavity
variance reduction due to interval censoring
Title A stochastic ordering of multiple hypergeometric laws: Peakedness of category counts about half the population category sizes is symmetric unimodal in the sample size
URI https://www.tandfonline.com/doi/abs/10.1080/07474946.2024.2379901
https://www.proquest.com/docview/3145381316
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-4176
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018107
  issn: 0747-4946
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGsoEF4ikKBXnBbpTRxPHESXcjBKqQ2g2t1F3kxDYzos1UTQZEv4Nv6Hdyr1-ZoRVQNtHI8iOZe3J9HR-fS8g7Xk-VssfPuOYJOjx4pZROMi1lrbmaFhIXiodH-cEJ_3Q6Ox2Nfm6wltZ9PWmubj1X8j9WhTKwK56SvYNlY6dQAL_BvnAFC8P1n2w8H0Po1iwkai2PrYim5zBHmuAClpmXX_TqHBNnNeMz-d1S4MARftXKejmklaNaBO6128QRnScrL-SZow9cxBxfQ81ueYVMrm7c_Tj3fa9bMLuyGh62WSdReNjW3IyAP1vudr-0GgVOEGUgBX3z2eMj4Pz3CMYjsy24LVigJLz0HxZ1cKss4anL9BL8rpNn8vjiG06Uu9Ocfj7mbpa44eo9NxJGw8EmeCsTlgnc5xvmtrCf_9uUF4mIaVBI9d1U2E3lu7lH7jOR55gXI5sexb2pInWH8MNzhnNhqNh-291sRTxberg35n8b1Bw_Jo_8aoTOHbSekJFun5KHh1HKt3tGrud0ABkNIKMrQwPI6DbIKIJsnw4Qw7oBONRBjFqIUYQYhbHoALGhpoUYXXY0QowGiNFla5s5iNmaz8nJxw_H7w8Sn9wjaViR90nRCF0wJVDNSZS5MdzMlChmUmValEoalvFSNii3WDIhYd3CoVRIYTKD_272guy0q1a_JBTiMGawN1PmvKhLiLCnjckZRMKAO13ukkkwQHXhNFyqPxp-l5SbZqp6-_HMuEw3VfaXtnvBppV3FdiEQ2CRZmn-6q738po8GN6yPbLTX671G4iD-_qtheUvqIGxUg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DMDAG1Eo4IE1pbWdOGZDCFSg7USlbpET27QCUtSkQvCD-J34nKS8hBhYE9_lYfvubH_3HULHLG4q5dLPmGYeGDw7pZT2qJYy1kw1QwkLxW4vaPfZ9cAffMqFAVglrKFNQRThbDVMbtiMriBxJ0D6zgQDhAFhDUI5HO7Mo0UfmEYgjaPZm50khK0iZdqKeCBTZfH8puaLf_rCXvrDWjsXdLmGkurlC-TJfWOax43k9Ruv4_--bh2tlhEqPiuG1Aaa0-kmWunO6F2zLfR2hm3MmAwlkDxjx95pPSAeG1zhE_HQrm8nd3r8CBW7Evwgn7NTbO3vvVZgXKEtYLEgPwa7ehUZdhhpPJQPBttn4adZabGPltnoVWd4lOHs5bHUPE3taFP2hUepE8sk8B27ltuof3lxe972yoIPXkLCIPfChOuQKA4MP1wExjDjKx76UlHNhZKGUCZkAhR8gnBpY1lmr3LJDTXws-gOWkjHqd5F2PpmYkCbEQELY2GjrmZiAmKjI58SLWqoUXVz9FTwekStii617IAIdEZlB9SQ-DwYotxtqJii-klE_5CtVyMnKk0EiDDrbFq0Fez9Q_URWmrfdjtR56p3s4-W4VYBNayjhXwy1Qc2ZMrjQzcn3gHq_gvW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdsRSwAeuKa3txjE3BFRsrTiAxC1yYptWQFrhVAg-iO_E4yRlE-LANfFMnNieGcdv3iC0x5KGUj79jGkWgMFzS0rpgGopE81UI5KwUex0w9Mbdn7bqtCEtoRVwh7aFEQR3lbD4h4qUyHi9oHznQkGAAPC6oRyONuZRNMh5JlCFkejOz5IiJpFxrQTCUCmSuL5Tc0X9_SFvPSHsfYeqL2AkqrvBfDkvj7Kk3r6-o3W8V8vt4jmy_gUHxYTaglN6GwZzXXG5K52Bb0dYhcxpj0JFM_Yc3c6_4cHBlfoRNxzu9unOz14hHpdKX6Qz_YAO-t7rxWYVmgLSCzIjsG-WoXFHiGNe_LBYPcsPBwXFvtoafuv2uK-xfblsdQ8ytxcU67D_cyLWQlsx77lKrppn1wfnQZluYcgJVGYB1HKdUQUB34fLkJjmGkpHrWkopoLJQ2hTMgUCPgE4dJFssxd5ZIbauBj0TU0lQ0yvY6w88zEgDYjQhYlwsVcjdSExMVGLUq02ED1apTjYcHqETcrstRyAGLQGZcDsIHE57kQ5_53iilqn8T0D9laNXHi0kCACHOupkmb4eY_VO-imavjdnx51r3YQrNwp8AZ1tBU_jTS2y5eypMdvyLeAbLiCoM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+ordering+of+multiple+hypergeometric+laws%3A+Peakedness+of+category+counts+about+half+the+population+category+sizes+is+symmetric+unimodal+in+the+sample+size&rft.jtitle=Sequential+analysis&rft.au=Levin%2C+Bruce&rft.date=2024-10-01&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=43&rft.issue=4&rft.spage=417&rft.epage=431&rft_id=info:doi/10.1080%2F07474946.2024.2379901&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07474946_2024_2379901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon