A stochastic ordering of multiple hypergeometric laws: Peakedness of category counts about half the population category sizes is symmetric unimodal in the sample size
Suppose X is a frequency vector that follows a central multiple hypergeometric distribution, such as arises in random sampling of an m-category attribute from a finite population without replacement. We call the event where X satisfies a prespecified set of symmetrical-but otherwise arbitrary-interv...
Saved in:
Published in | Sequential analysis Vol. 43; no. 4; pp. 417 - 431 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
01.10.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0747-4946 1532-4176 |
DOI | 10.1080/07474946.2024.2379901 |
Cover
Abstract | Suppose X is a frequency vector that follows a central multiple hypergeometric distribution, such as arises in random sampling of an m-category attribute from a finite population without replacement. We call the event where X satisfies a prespecified set of symmetrical-but otherwise arbitrary-interval constraints in each component a symmetric core event. We show that the probability of any symmetric core event-in other words, the multivariate peakedness in the sense of Birnbaum (1948) and Tong (1988)-is symmetric unimodal as a function of the sample size. Two proofs are given. The shorter one relies on a convolution property of ultra-log-concave sequences, which implies that the sequence of peakedness values is log-concave (even for asymmetric rectangular events). The longer, though more elementary, proof does not rely on notions of log-concavity. To illustrate the use of symmetric core events, we analyze a simple yet interesting wager in a sequential card game. Finally, we indicate that the unimodality result for symmetric core events is pivotal in proving a certain variance reduction inequality involving multinomial frequencies subject to arbitrary interval censoring. |
---|---|
AbstractList | Suppose X is a frequency vector that follows a central multiple hypergeometric distribution, such as arises in random sampling of an m-category attribute from a finite population without replacement. We call the event where X satisfies a prespecified set of symmetrical-but otherwise arbitrary-interval constraints in each component a symmetric core event. We show that the probability of any symmetric core event-in other words, the multivariate peakedness in the sense of Birnbaum (1948) and Tong (1988)-is symmetric unimodal as a function of the sample size. Two proofs are given. The shorter one relies on a convolution property of ultra-log-concave sequences, which implies that the sequence of peakedness values is log-concave (even for asymmetric rectangular events). The longer, though more elementary, proof does not rely on notions of log-concavity. To illustrate the use of symmetric core events, we analyze a simple yet interesting wager in a sequential card game. Finally, we indicate that the unimodality result for symmetric core events is pivotal in proving a certain variance reduction inequality involving multinomial frequencies subject to arbitrary interval censoring. |
Author | Levin, Bruce |
Author_xml | – sequence: 1 givenname: Bruce orcidid: 0000-0002-0933-2437 surname: Levin fullname: Levin, Bruce organization: Department of Biostatistics, Columbia University |
BookMark | eNp9kcFq3DAURUVJoZO0n1AQdO2pZMmW3VVCSNpAIF20a_EqSzNKZcmRZILzQfnOWp0J2WUleJx7LuieohMfvEboMyVbSjrylQgueM_bbU1qvq2Z6HtC36ENbVhdcSraE7QpTFWgD-g0pXtCaEeJ2KDnC5xyUHtI2Soc4qCj9TscDB5nl-3kNN4vk447HUad48o4eEzf8E8Nf_XgdUqFVZD1LsQFqzD7nDD8CXPGe3AG573GU5hmB9kG_0om-6QTtgmnZTyaZ2_HMIDD1v-PJRhLfyE_ovcGXNKfju8Z-n199evyR3V79_3m8uK2UnXX5qpTQnf1IARpGtG3xnDTDKJrYGBa9AOYmvEeVNcK0dcCaEP4ehUgDDPl89gZ-nLwTjE8zDpleR_m6NdKyShvWEcZbVeqOVAqhpSiNnKKdoS4SEpkmUS-TCKLVR4nWXPnh5z1JsQRHkN0g8ywuBBNBK9sqXlT8Q_RSZht |
Cites_doi | 10.1137/1030135 10.37236/243 10.1080/03610928308828532 10.1214/aoms/1177730293 10.1016/0167-7152(85)90029-X 10.1239/aap/1275055235 10.1214/aos/1176345593 10.1007/978-1-4612-3818-8_31 10.1006/jcta.1997.2790 10.4007/annals.2020.192.3.4 |
ContentType | Journal Article |
Copyright | 2024 Taylor & Francis Group, LLC 2024 2024 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2024 Taylor & Francis Group, LLC 2024 – notice: 2024 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/07474946.2024.2379901 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-4176 |
EndPage | 431 |
ExternalDocumentID | 10_1080_07474946_2024_2379901 2379901 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 123 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ 07G 1TA AAGDL AAHIA AAIKQ AAKBW AAYXX ACAGQ ACGEE ACTCW AEUMN AFFNX AFRVT AGCQS AGLEN AGROQ AHMOU AIYEW ALCKM AMEWO AMVHM AMXXU BCCOT BPLKW C06 CAG CITATION COF CRFIH DGEBU DMQIW DWIFK EJD IVXBP NUSFT NY~ QCRFL TAQ TASJS TFMCV TOXWX UB9 UU8 V3K V4Q 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c286t-8c7e82d77055796ff4f5d785ad3e79daf2349ac8677927a15049da7a7f3f20243 |
ISSN | 0747-4946 |
IngestDate | Mon Aug 25 14:14:45 EDT 2025 Wed Oct 01 04:34:00 EDT 2025 Wed Dec 25 09:05:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-8c7e82d77055796ff4f5d785ad3e79daf2349ac8677927a15049da7a7f3f20243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0933-2437 |
PQID | 3145381316 |
PQPubID | 216170 |
PageCount | 15 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_07474946_2024_2379901 proquest_journals_3145381316 crossref_primary_10_1080_07474946_2024_2379901 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Sequential analysis |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_6_1 e_1_3_4_5_1 Levin B. (e_1_3_4_9_1) 1992; 46 e_1_3_4_12_1 e_1_3_4_13_1 e_1_3_4_11_1 e_1_3_4_14_1 e_1_3_4_15_1 Levin B. (e_1_3_4_10_1) 2014; 11 |
References_xml | – ident: e_1_3_4_15_1 doi: 10.1137/1030135 – ident: e_1_3_4_12_1 – ident: e_1_3_4_5_1 doi: 10.37236/243 – ident: e_1_3_4_8_1 doi: 10.1080/03610928308828532 – volume: 11 start-page: 50 issue: 4 year: 2014 ident: e_1_3_4_10_1 article-title: “Punctured Poisson” and the Strong Birthday Problem publication-title: Significance – ident: e_1_3_4_2_1 doi: 10.1214/aoms/1177730293 – ident: e_1_3_4_3_1 doi: 10.1016/0167-7152(85)90029-X – ident: e_1_3_4_6_1 doi: 10.1239/aap/1275055235 – ident: e_1_3_4_7_1 doi: 10.1214/aos/1176345593 – ident: e_1_3_4_14_1 doi: 10.1007/978-1-4612-3818-8_31 – ident: e_1_3_4_11_1 – ident: e_1_3_4_13_1 doi: 10.1006/jcta.1997.2790 – ident: e_1_3_4_4_1 doi: 10.4007/annals.2020.192.3.4 – volume: 46 start-page: 76 year: 1992 ident: e_1_3_4_9_1 article-title: In Re: “Siobhan’s Problem: The Coupon Collector Revisited” publication-title: The American Statistician |
SSID | ssj0018107 |
Score | 2.3124926 |
Snippet | Suppose X is a frequency vector that follows a central multiple hypergeometric distribution, such as arises in random sampling of an m-category attribute from... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 417 |
SubjectTerms | Card games Concavity Interval censoring log-concavity multinomial distribution multiple hypergeometric distribution multivariate peakedness Random sampling Sequences Stochastic models stochastic ordering symmetric core events ultra-log-concavity variance reduction due to interval censoring |
Title | A stochastic ordering of multiple hypergeometric laws: Peakedness of category counts about half the population category sizes is symmetric unimodal in the sample size |
URI | https://www.tandfonline.com/doi/abs/10.1080/07474946.2024.2379901 https://www.proquest.com/docview/3145381316 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-4176 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0018107 issn: 0747-4946 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGsoEF4ikKBXnBbpTRxPHESXcjBKqQ2g2t1F3kxDYzos1UTQZEv4Nv6Hdyr1-ZoRVQNtHI8iOZe3J9HR-fS8g7Xk-VssfPuOYJOjx4pZROMi1lrbmaFhIXiodH-cEJ_3Q6Ox2Nfm6wltZ9PWmubj1X8j9WhTKwK56SvYNlY6dQAL_BvnAFC8P1n2w8H0Po1iwkai2PrYim5zBHmuAClpmXX_TqHBNnNeMz-d1S4MARftXKejmklaNaBO6128QRnScrL-SZow9cxBxfQ81ueYVMrm7c_Tj3fa9bMLuyGh62WSdReNjW3IyAP1vudr-0GgVOEGUgBX3z2eMj4Pz3CMYjsy24LVigJLz0HxZ1cKss4anL9BL8rpNn8vjiG06Uu9Ocfj7mbpa44eo9NxJGw8EmeCsTlgnc5xvmtrCf_9uUF4mIaVBI9d1U2E3lu7lH7jOR55gXI5sexb2pInWH8MNzhnNhqNh-291sRTxberg35n8b1Bw_Jo_8aoTOHbSekJFun5KHh1HKt3tGrud0ABkNIKMrQwPI6DbIKIJsnw4Qw7oBONRBjFqIUYQYhbHoALGhpoUYXXY0QowGiNFla5s5iNmaz8nJxw_H7w8Sn9wjaViR90nRCF0wJVDNSZS5MdzMlChmUmValEoalvFSNii3WDIhYd3CoVRIYTKD_272guy0q1a_JBTiMGawN1PmvKhLiLCnjckZRMKAO13ukkkwQHXhNFyqPxp-l5SbZqp6-_HMuEw3VfaXtnvBppV3FdiEQ2CRZmn-6q738po8GN6yPbLTX671G4iD-_qtheUvqIGxUg |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DMDAG1Eo4IE1pbWdOGZDCFSg7USlbpET27QCUtSkQvCD-J34nKS8hBhYE9_lYfvubH_3HULHLG4q5dLPmGYeGDw7pZT2qJYy1kw1QwkLxW4vaPfZ9cAffMqFAVglrKFNQRThbDVMbtiMriBxJ0D6zgQDhAFhDUI5HO7Mo0UfmEYgjaPZm50khK0iZdqKeCBTZfH8puaLf_rCXvrDWjsXdLmGkurlC-TJfWOax43k9Ruv4_--bh2tlhEqPiuG1Aaa0-kmWunO6F2zLfR2hm3MmAwlkDxjx95pPSAeG1zhE_HQrm8nd3r8CBW7Evwgn7NTbO3vvVZgXKEtYLEgPwa7ehUZdhhpPJQPBttn4adZabGPltnoVWd4lOHs5bHUPE3taFP2hUepE8sk8B27ltuof3lxe972yoIPXkLCIPfChOuQKA4MP1wExjDjKx76UlHNhZKGUCZkAhR8gnBpY1lmr3LJDTXws-gOWkjHqd5F2PpmYkCbEQELY2GjrmZiAmKjI58SLWqoUXVz9FTwekStii617IAIdEZlB9SQ-DwYotxtqJii-klE_5CtVyMnKk0EiDDrbFq0Fez9Q_URWmrfdjtR56p3s4-W4VYBNayjhXwy1Qc2ZMrjQzcn3gHq_gvW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdsRSwAeuKa3txjE3BFRsrTiAxC1yYptWQFrhVAg-iO_E4yRlE-LANfFMnNieGcdv3iC0x5KGUj79jGkWgMFzS0rpgGopE81UI5KwUex0w9Mbdn7bqtCEtoRVwh7aFEQR3lbD4h4qUyHi9oHznQkGAAPC6oRyONuZRNMh5JlCFkejOz5IiJpFxrQTCUCmSuL5Tc0X9_SFvPSHsfYeqL2AkqrvBfDkvj7Kk3r6-o3W8V8vt4jmy_gUHxYTaglN6GwZzXXG5K52Bb0dYhcxpj0JFM_Yc3c6_4cHBlfoRNxzu9unOz14hHpdKX6Qz_YAO-t7rxWYVmgLSCzIjsG-WoXFHiGNe_LBYPcsPBwXFvtoafuv2uK-xfblsdQ8ytxcU67D_cyLWQlsx77lKrppn1wfnQZluYcgJVGYB1HKdUQUB34fLkJjmGkpHrWkopoLJQ2hTMgUCPgE4dJFssxd5ZIbauBj0TU0lQ0yvY6w88zEgDYjQhYlwsVcjdSExMVGLUq02ED1apTjYcHqETcrstRyAGLQGZcDsIHE57kQ5_53iilqn8T0D9laNXHi0kCACHOupkmb4eY_VO-imavjdnx51r3YQrNwp8AZ1tBU_jTS2y5eypMdvyLeAbLiCoM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+ordering+of+multiple+hypergeometric+laws%3A+Peakedness+of+category+counts+about+half+the+population+category+sizes+is+symmetric+unimodal+in+the+sample+size&rft.jtitle=Sequential+analysis&rft.au=Levin%2C+Bruce&rft.date=2024-10-01&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=43&rft.issue=4&rft.spage=417&rft.epage=431&rft_id=info:doi/10.1080%2F07474946.2024.2379901&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07474946_2024_2379901 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon |