Multiobjective Design Optimization of Stator for Synchronous Generator Using Bat Algorithm and Analysis of Magnetic Flux Density Distribution
In this study, we aimed to optimize 3000 kVA synchronous generator (SG) stator design to obtain the desired magnetic flux density distribution and efficiency. We used Maxwell simulations for experiments on some design parameters of stator (slot height and teeth width). Then second-order regression m...
        Saved in:
      
    
          | Published in | Electric power components and systems Vol. 49; no. 9-10; pp. 919 - 929 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Philadelphia
          Taylor & Francis
    
        15.06.2021
     Taylor & Francis Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1532-5008 1532-5016  | 
| DOI | 10.1080/15325008.2022.2049651 | 
Cover
| Abstract | In this study, we aimed to optimize 3000 kVA synchronous generator (SG) stator design to obtain the desired magnetic flux density distribution and efficiency. We used Maxwell simulations for experiments on some design parameters of stator (slot height and teeth width). Then second-order regression models are calculated that represent the relations between the factors (design parameters) and the measured performance criteria (called as the responses: stator-teeth flux density, stator-yoke flux density, and efficiency). These regression models are used at the multiobjective optimization phase. Bat algorithm (BA) is used for performing the multiobjective optimization. By combining Maxwell with regression modeling and BA, the efficiency of the SG is increased to 96.84% from 96.5% with a more acceptable magnetic flux density (between 1.65 and 1.70 T ranges). The stator-teeth flux density and stator-yoke flux density are calculated as 1.9 T and 2.07 T for the current SG, whereas these values are reduced to 1.647 and 1,634 T, respectively, for the optimized SG. Results of this study show how the numerical simulation can be successfully combined with the BA to improve the efficiency of the SG by providing the desired magnetic flux density distribution. | 
    
|---|---|
| AbstractList | Abstract—In this study, we aimed to optimize 3000 kVA synchronous generator (SG) stator design to obtain the desired magnetic flux density distribution and efficiency. We used Maxwell simulations for experiments on some design parameters of stator (slot height and teeth width). Then second-order regression models are calculated that represent the relations between the factors (design parameters) and the measured performance criteria (called as the responses: stator-teeth flux density, stator-yoke flux density, and efficiency). These regression models are used at the multiobjective optimization phase. Bat algorithm (BA) is used for performing the multiobjective optimization. By combining Maxwell with regression modeling and BA, the efficiency of the SG is increased to 96.84% from 96.5% with a more acceptable magnetic flux density (between 1.65 and 1.70 T ranges). The stator-teeth flux density and stator-yoke flux density are calculated as 1.9 T and 2.07 T for the current SG, whereas these values are reduced to 1.647 and 1,634 T, respectively, for the optimized SG. Results of this study show how the numerical simulation can be successfully combined with the BA to improve the efficiency of the SG by providing the desired magnetic flux density distribution. In this study, we aimed to optimize 3000 kVA synchronous generator (SG) stator design to obtain the desired magnetic flux density distribution and efficiency. We used Maxwell simulations for experiments on some design parameters of stator (slot height and teeth width). Then second-order regression models are calculated that represent the relations between the factors (design parameters) and the measured performance criteria (called as the responses: stator-teeth flux density, stator-yoke flux density, and efficiency). These regression models are used at the multiobjective optimization phase. Bat algorithm (BA) is used for performing the multiobjective optimization. By combining Maxwell with regression modeling and BA, the efficiency of the SG is increased to 96.84% from 96.5% with a more acceptable magnetic flux density (between 1.65 and 1.70 T ranges). The stator-teeth flux density and stator-yoke flux density are calculated as 1.9 T and 2.07 T for the current SG, whereas these values are reduced to 1.647 and 1,634 T, respectively, for the optimized SG. Results of this study show how the numerical simulation can be successfully combined with the BA to improve the efficiency of the SG by providing the desired magnetic flux density distribution.  | 
    
| Author | Perin, Deniz Yilmaz, Kemal Karaoglan, Aslan Deniz  | 
    
| Author_xml | – sequence: 1 givenname: Aslan Deniz orcidid: 0000-0002-3292-5919 surname: Karaoglan fullname: Karaoglan, Aslan Deniz organization: Department of Industrial Engineering, Balikesir University – sequence: 2 givenname: Deniz surname: Perin fullname: Perin, Deniz organization: Department of R & D, ISBIR Electric Company – sequence: 3 givenname: Kemal surname: Yilmaz fullname: Yilmaz, Kemal organization: Department of R & D, ISBIR Electric Company  | 
    
| BookMark | eNp9kN1OwjAYhhuDiYBegkkTj8G2W0d3JoKgCYYD5LgppYOS0WLbqfMevGc7QQ9N2n7_79c8HdAy1igArjHqY8TQLaYJoQixPkGExCfNM4rPQLvJ9yjCWevPR-wCdLzfIYRJnpM2-HquyqDtaqdk0G8KjpXXGwPnh6D3-lPEkoG2gIsggnWwiHdRG7l11tjKw6kyyv1Ull6bDbwXAQ7LjXU6bPdQmDUcGlHWXvtG5FlsjApawklZfcRNxutQw7H2welV1ay6BOeFKL26OtkuWE4eXkaPvdl8-jQaznqSsCz0GKPrFcplQbBIckoSxSRmNGUJIwpTSRBKMpXnjKVrRVOcSEriQXhAZFHEuAtujroHZ18r5QPf2crFr3pOsmyQZzjDSeyixy7prPdOFfzg9F64mmPEG_L8lzxvyPMT-Th3d5zTJgLbi3fryjUPoi6tK5wwUnue_C_xDTkIjTw | 
    
| Cites_doi | 10.1002/0471458503 10.1109/TMAG.2016.2514505 10.1109/TMAG.2012.2228213 10.3390/en9070557 10.1007/978-3-642-12538-6_6 10.1109/TIA.2019.2949545 10.1109/TMAG.2013.2282473 10.1109/TMAG.2020.2986187 10.1109/TMAG.2017.2698604 10.1109/TMAG.2017.2766229 10.4028/www.scientific.net/AMR.301-303.1693 10.1109/TMAG.2008.2002001 10.1109/ICELMACH.2016.7732772 10.2339/politeknik.552273 10.1016/j.fuel.2020.117784  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Taylor & Francis Group, LLC 2021 2022 Taylor & Francis Group, LLC  | 
    
| Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2021 – notice: 2022 Taylor & Francis Group, LLC  | 
    
| DBID | AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M  | 
    
| DOI | 10.1080/15325008.2022.2049651 | 
    
| DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1532-5016 | 
    
| EndPage | 929 | 
    
| ExternalDocumentID | 10_1080_15325008_2022_2049651 2049651  | 
    
| Genre | Research Article | 
    
| GroupedDBID | .7F .QJ 0BK 0R~ 29G 2DF 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B FYQZC GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NX~ O9- PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M  | 
    
| ID | FETCH-LOGICAL-c286t-885db09cf21a39523e8c18548382e15c20036e99884de5413c52c520172cff413 | 
    
| ISSN | 1532-5008 | 
    
| IngestDate | Wed Aug 13 03:17:46 EDT 2025 Wed Oct 01 04:11:32 EDT 2025 Mon Oct 20 23:47:29 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9-10 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c286t-885db09cf21a39523e8c18548382e15c20036e99884de5413c52c520172cff413 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-3292-5919 | 
    
| PQID | 2667961613 | 
    
| PQPubID | 52905 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | crossref_primary_10_1080_15325008_2022_2049651 informaworld_taylorfrancis_310_1080_15325008_2022_2049651 proquest_journals_2667961613  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-06-15 | 
    
| PublicationDateYYYYMMDD | 2021-06-15 | 
    
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Philadelphia | 
    
| PublicationPlace_xml | – name: Philadelphia | 
    
| PublicationTitle | Electric power components and systems | 
    
| PublicationYear | 2021 | 
    
| Publisher | Taylor & Francis Taylor & Francis Ltd  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd  | 
    
| References | Dalcali A. (CIT0013) 2020; 23 CIT0010 CIT0021 CIT0020 CIT0012 CIT0011 Yang X.S. (CIT0019) 2014 Montgomery D. C. (CIT0015) 2013 CIT0003 CIT0014 CIT0002 CIT0005 CIT0016 Patsios C. H. (CIT0001) 2013; 10 CIT0007 CIT0018 CIT0006 CIT0017 Kurt U. (CIT0004) 2012; 7 CIT0009 CIT0008  | 
    
| References_xml | – ident: CIT0016 doi: 10.1002/0471458503 – ident: CIT0007 doi: 10.1109/TMAG.2016.2514505 – ident: CIT0020 – ident: CIT0005 doi: 10.1109/TMAG.2012.2228213 – ident: CIT0021 – ident: CIT0009 doi: 10.3390/en9070557 – ident: CIT0018 doi: 10.1007/978-3-642-12538-6_6 – ident: CIT0012 doi: 10.1109/TIA.2019.2949545 – volume: 10 start-page: 1218 issue: 5 year: 2013 ident: CIT0001 publication-title: J. Optoelectron. Adv. Mater. – ident: CIT0006 doi: 10.1109/TMAG.2013.2282473 – volume: 7 start-page: 3290 issue: 1 year: 2012 ident: CIT0004 publication-title: Int. Rev. Electr. Eng. I – ident: CIT0014 doi: 10.1109/TMAG.2020.2986187 – volume-title: Design and Analysis of Experiments year: 2013 ident: CIT0015 – ident: CIT0010 doi: 10.1109/TMAG.2017.2698604 – ident: CIT0011 doi: 10.1109/TMAG.2017.2766229 – volume-title: Nature-Inspired Optimization Algorithms year: 2014 ident: CIT0019 – ident: CIT0003 doi: 10.4028/www.scientific.net/AMR.301-303.1693 – ident: CIT0002 doi: 10.1109/TMAG.2008.2002001 – ident: CIT0008 doi: 10.1109/ICELMACH.2016.7732772 – volume: 23 start-page: 223 issue: 1 year: 2020 ident: CIT0013 publication-title: J. Polytechnic Politeknik Dergisi doi: 10.2339/politeknik.552273 – ident: CIT0017 doi: 10.1016/j.fuel.2020.117784  | 
    
| SSID | ssj0012992 | 
    
| Score | 2.2346177 | 
    
| Snippet | In this study, we aimed to optimize 3000 kVA synchronous generator (SG) stator design to obtain the desired magnetic flux density distribution and efficiency.... Abstract—In this study, we aimed to optimize 3000 kVA synchronous generator (SG) stator design to obtain the desired magnetic flux density distribution and...  | 
    
| SourceID | proquest crossref informaworld  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 919 | 
    
| SubjectTerms | Algorithms bat algorithm Computer simulation Density distribution Design factors Design optimization Design parameters Efficiency Flux density Magnetic flux magnetic flux density distributions Magnetism Maxwell simulation multiobjective optimization Multiple objective analysis nature inspired algorithms regression modeling Regression models stator design Stators swarm-based meta-heuristic synchronous generator  | 
    
| Title | Multiobjective Design Optimization of Stator for Synchronous Generator Using Bat Algorithm and Analysis of Magnetic Flux Density Distribution | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/15325008.2022.2049651 https://www.proquest.com/docview/2667961613  | 
    
| Volume | 49 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1532-5016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012992 issn: 1532-5008 databaseCode: AHDZW dateStart: 20010101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-5016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012992 issn: 1532-5008 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFMUCtoDt8jBdvzYPQZKFSEVDrSicLHs9boEJXYVHAnyH_hZ_C9mdtbOhlZAkSIr2SSzjufLt7PjeTD2vAQbNC3LwFMCXTcabLhCxqEXxXEZ5QmYCBo3isdvk9lp9OYsPhsMfjpRS-u2GKvNlXkl_6NVGAO9YpbsNTTbC4UBeA76hSNoGI7_pGOTPdsUX4i0gDswGmP0DlhgadMrTU5KixtrE0_4_nutsBouxr1SwWl8h8IGXubtaLo4b1bz9jP1zXALlhzn5zXmO46OFutvMFNtYjkOseyu7Zi14-M3zXXg0xfYhM3ErTe1yaUzfnqnSjpyfb7KG2wlYngKIFqj_Plmy9qrueVGZ_TjfLHMN5RatLQXynovQhNlRfmbPeHCZtj3iYO1O0Y5mB1LU2FTi0bp2VhYYl1pWZcWcEkulEtrAwVTonCcbwxng4l4WC8_2C6GXQDAb2tkH7kY2JKqnZgMxWRWzA22F8Li4g_Z3nR2-OlDfzsL1vyQCvfSj-1SyYT_4srz2TGSdkroXjIZjB10cofdthsYPiU03mUDXd9jt5yylvfZj11ccsIld3HJm4oTLjnMyh1c8h6X3OCSAy55j0sO-OEdLlFIh0uOuOQWl9zF5QN2evT65NXMs20_PBWKpPWEiMvCl6oKg3wCvDHRQoFVGYmJCHUQKwynTLSUQkSljsEIU3EID3RmqKqC1w_ZsAZQP2I8kFGqVSkKX1dRUuhcp7BFwXvdYPbrNN1n4-46ZxdU3SX7o4b3mXS1kbXGrVZRD5xs8pfvHnSqyyyJfM3APk5lAtuuyePrnssTdnP7jzpgw3a11k_BQm6LZxZ_vwD90Le1 | 
    
| linkProvider | Library Specific Holdings | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YPKgH30YUdQ9ei_Sx7faIIkEFPAgJt0273eIDWgMlUf-D_9mZPgxojAeSXppmt-3udPab7TffEHIeAAZ1gkDXJMetGwUYzneZoVmMBZZnA0RQGCh2unarb90O2GAuFwZplRhDh5lQROqr8ePGzeiCEncBXyms3DVkZhmYTIWa5xABrTIA-1jFwKx1v_8kgLs1Ms1UCLqgTZHF81c3C-vTgnrpL2-dLkHNLSKLh8-YJy_VWeJX5ccPXcfl3m6bbOYIldYzk9ohKyraJRtzuoV75DNN243958xb0kZKA6H34H7GeV4njUOKQDaeUHg3-vAeSZThjWdTmild45WUr0AvvYTWR8N48pQ8jik8Ny2UUrCTjjeMMNGSNkezN7hThCQS2kC937xU1z7pN697Vy0tr-ugSYPbicY5C_yaK0ND90wwDFNxCbDB4iY3lM4k8uVsBXEgtwLFYJWVzIADo1UZhnB-QEpRHKlDQnXXcpQMuF9ToWX7ylMOYFD8mQmWoBynTKrFbIrXTL5D6LkqajHOAsdZ5ONcJu78nIsk3TcJsyInwvynbaUwEJF7gqkAAOS4NuBq82iJrs_IWqvXaYv2TffumKwbSKzBAkqsQkrJZKZOABkl_mlq-l_g7QB3 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgO7IhCAR-4pjSLE-dYKFVZWpCgEjcrcZyytEnVJhLwD_wzM1lQC0IcKuUSRXa8jt_Yb54JOQkAgzpBoGuS49aNAgznu8zQLMYCy7MBIih0FDtdu92zrh5ZySacFLRK9KHDXCgis9U4uUdBWDLiTmGSwsJdR2KWgbFUKHkODtCSjadiGMVR734fJIC1NXLJVPC5IE0ZxPNXNjPL04x46S9jna1ArXXil2XPiSevtTTxa_Ljh6zjXJXbIGsFPqWNfEBtkgUVbZHVKdXCbfKZBe3G_ktuK2kzI4HQWzA-wyKqk8YhRRgbjylUjd6_RxJFeON0QnOda_ySsRXomZfQxqAfj5-TpyGFYtNSJwUz6Xj9CMMsaWuQvsGfIqSQ0Caq_RYXde2QXuvi4bytFbc6aNLgdqJxzgK_7srQ0D0ThoWpuATQYHGTG0pnEtlytgIvkFuBYrDGSmbAg76qDEN43yWLURypPUJ113KUDLhfV6Fl-8pTDiBQPMoEVKccp0JqZWeKUS7eIfRCE7VsZ4HtLIp2rhB3ustFku2ahPkVJ8L8J221HB-isAMTAfDHcW1A1eb-HFkfk-W7ZkvcXHavD8iKgawavD2JVcliMk7VIcCixD_KBv4Xstr_DA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+Design+Optimization+of+Stator+for+Synchronous+Generator+Using+Bat+Algorithm+and+Analysis+of+Magnetic+Flux+Density+Distribution&rft.jtitle=Electric+power+components+and+systems&rft.au=Karaoglan%2C+Aslan+Deniz&rft.au=Perin%2C+Deniz&rft.au=Yilmaz%2C+Kemal&rft.date=2021-06-15&rft.issn=1532-5008&rft.eissn=1532-5016&rft.volume=49&rft.issue=9-10&rft.spage=919&rft.epage=929&rft_id=info:doi/10.1080%2F15325008.2022.2049651&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15325008_2022_2049651 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-5008&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-5008&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-5008&client=summon |