Multiobjective Design Optimization of Stator for Synchronous Generator Using Bat Algorithm and Analysis of Magnetic Flux Density Distribution

In this study, we aimed to optimize 3000 kVA synchronous generator (SG) stator design to obtain the desired magnetic flux density distribution and efficiency. We used Maxwell simulations for experiments on some design parameters of stator (slot height and teeth width). Then second-order regression m...

Full description

Saved in:
Bibliographic Details
Published inElectric power components and systems Vol. 49; no. 9-10; pp. 919 - 929
Main Authors Karaoglan, Aslan Deniz, Perin, Deniz, Yilmaz, Kemal
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 15.06.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1532-5008
1532-5016
DOI10.1080/15325008.2022.2049651

Cover

Abstract In this study, we aimed to optimize 3000 kVA synchronous generator (SG) stator design to obtain the desired magnetic flux density distribution and efficiency. We used Maxwell simulations for experiments on some design parameters of stator (slot height and teeth width). Then second-order regression models are calculated that represent the relations between the factors (design parameters) and the measured performance criteria (called as the responses: stator-teeth flux density, stator-yoke flux density, and efficiency). These regression models are used at the multiobjective optimization phase. Bat algorithm (BA) is used for performing the multiobjective optimization. By combining Maxwell with regression modeling and BA, the efficiency of the SG is increased to 96.84% from 96.5% with a more acceptable magnetic flux density (between 1.65 and 1.70 T ranges). The stator-teeth flux density and stator-yoke flux density are calculated as 1.9 T and 2.07 T for the current SG, whereas these values are reduced to 1.647 and 1,634 T, respectively, for the optimized SG. Results of this study show how the numerical simulation can be successfully combined with the BA to improve the efficiency of the SG by providing the desired magnetic flux density distribution.
AbstractList Abstract—In this study, we aimed to optimize 3000 kVA synchronous generator (SG) stator design to obtain the desired magnetic flux density distribution and efficiency. We used Maxwell simulations for experiments on some design parameters of stator (slot height and teeth width). Then second-order regression models are calculated that represent the relations between the factors (design parameters) and the measured performance criteria (called as the responses: stator-teeth flux density, stator-yoke flux density, and efficiency). These regression models are used at the multiobjective optimization phase. Bat algorithm (BA) is used for performing the multiobjective optimization. By combining Maxwell with regression modeling and BA, the efficiency of the SG is increased to 96.84% from 96.5% with a more acceptable magnetic flux density (between 1.65 and 1.70 T ranges). The stator-teeth flux density and stator-yoke flux density are calculated as 1.9 T and 2.07 T for the current SG, whereas these values are reduced to 1.647 and 1,634 T, respectively, for the optimized SG. Results of this study show how the numerical simulation can be successfully combined with the BA to improve the efficiency of the SG by providing the desired magnetic flux density distribution.
In this study, we aimed to optimize 3000 kVA synchronous generator (SG) stator design to obtain the desired magnetic flux density distribution and efficiency. We used Maxwell simulations for experiments on some design parameters of stator (slot height and teeth width). Then second-order regression models are calculated that represent the relations between the factors (design parameters) and the measured performance criteria (called as the responses: stator-teeth flux density, stator-yoke flux density, and efficiency). These regression models are used at the multiobjective optimization phase. Bat algorithm (BA) is used for performing the multiobjective optimization. By combining Maxwell with regression modeling and BA, the efficiency of the SG is increased to 96.84% from 96.5% with a more acceptable magnetic flux density (between 1.65 and 1.70 T ranges). The stator-teeth flux density and stator-yoke flux density are calculated as 1.9 T and 2.07 T for the current SG, whereas these values are reduced to 1.647 and 1,634 T, respectively, for the optimized SG. Results of this study show how the numerical simulation can be successfully combined with the BA to improve the efficiency of the SG by providing the desired magnetic flux density distribution.
Author Perin, Deniz
Yilmaz, Kemal
Karaoglan, Aslan Deniz
Author_xml – sequence: 1
  givenname: Aslan Deniz
  orcidid: 0000-0002-3292-5919
  surname: Karaoglan
  fullname: Karaoglan, Aslan Deniz
  organization: Department of Industrial Engineering, Balikesir University
– sequence: 2
  givenname: Deniz
  surname: Perin
  fullname: Perin, Deniz
  organization: Department of R & D, ISBIR Electric Company
– sequence: 3
  givenname: Kemal
  surname: Yilmaz
  fullname: Yilmaz, Kemal
  organization: Department of R & D, ISBIR Electric Company
BookMark eNp9kN1OwjAYhhuDiYBegkkTj8G2W0d3JoKgCYYD5LgppYOS0WLbqfMevGc7QQ9N2n7_79c8HdAy1igArjHqY8TQLaYJoQixPkGExCfNM4rPQLvJ9yjCWevPR-wCdLzfIYRJnpM2-HquyqDtaqdk0G8KjpXXGwPnh6D3-lPEkoG2gIsggnWwiHdRG7l11tjKw6kyyv1Ull6bDbwXAQ7LjXU6bPdQmDUcGlHWXvtG5FlsjApawklZfcRNxutQw7H2welV1ay6BOeFKL26OtkuWE4eXkaPvdl8-jQaznqSsCz0GKPrFcplQbBIckoSxSRmNGUJIwpTSRBKMpXnjKVrRVOcSEriQXhAZFHEuAtujroHZ18r5QPf2crFr3pOsmyQZzjDSeyixy7prPdOFfzg9F64mmPEG_L8lzxvyPMT-Th3d5zTJgLbi3fryjUPoi6tK5wwUnue_C_xDTkIjTw
Cites_doi 10.1002/0471458503
10.1109/TMAG.2016.2514505
10.1109/TMAG.2012.2228213
10.3390/en9070557
10.1007/978-3-642-12538-6_6
10.1109/TIA.2019.2949545
10.1109/TMAG.2013.2282473
10.1109/TMAG.2020.2986187
10.1109/TMAG.2017.2698604
10.1109/TMAG.2017.2766229
10.4028/www.scientific.net/AMR.301-303.1693
10.1109/TMAG.2008.2002001
10.1109/ICELMACH.2016.7732772
10.2339/politeknik.552273
10.1016/j.fuel.2020.117784
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2021
2022 Taylor & Francis Group, LLC
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2021
– notice: 2022 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1080/15325008.2022.2049651
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1532-5016
EndPage 929
ExternalDocumentID 10_1080_15325008_2022_2049651
2049651
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
FYQZC
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NX~
O9-
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c286t-885db09cf21a39523e8c18548382e15c20036e99884de5413c52c520172cff413
ISSN 1532-5008
IngestDate Wed Aug 13 03:17:46 EDT 2025
Wed Oct 01 04:11:32 EDT 2025
Mon Oct 20 23:47:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9-10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-885db09cf21a39523e8c18548382e15c20036e99884de5413c52c520172cff413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3292-5919
PQID 2667961613
PQPubID 52905
PageCount 11
ParticipantIDs crossref_primary_10_1080_15325008_2022_2049651
informaworld_taylorfrancis_310_1080_15325008_2022_2049651
proquest_journals_2667961613
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-15
PublicationDateYYYYMMDD 2021-06-15
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Electric power components and systems
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Dalcali A. (CIT0013) 2020; 23
CIT0010
CIT0021
CIT0020
CIT0012
CIT0011
Yang X.S. (CIT0019) 2014
Montgomery D. C. (CIT0015) 2013
CIT0003
CIT0014
CIT0002
CIT0005
CIT0016
Patsios C. H. (CIT0001) 2013; 10
CIT0007
CIT0018
CIT0006
CIT0017
Kurt U. (CIT0004) 2012; 7
CIT0009
CIT0008
References_xml – ident: CIT0016
  doi: 10.1002/0471458503
– ident: CIT0007
  doi: 10.1109/TMAG.2016.2514505
– ident: CIT0020
– ident: CIT0005
  doi: 10.1109/TMAG.2012.2228213
– ident: CIT0021
– ident: CIT0009
  doi: 10.3390/en9070557
– ident: CIT0018
  doi: 10.1007/978-3-642-12538-6_6
– ident: CIT0012
  doi: 10.1109/TIA.2019.2949545
– volume: 10
  start-page: 1218
  issue: 5
  year: 2013
  ident: CIT0001
  publication-title: J. Optoelectron. Adv. Mater.
– ident: CIT0006
  doi: 10.1109/TMAG.2013.2282473
– volume: 7
  start-page: 3290
  issue: 1
  year: 2012
  ident: CIT0004
  publication-title: Int. Rev. Electr. Eng. I
– ident: CIT0014
  doi: 10.1109/TMAG.2020.2986187
– volume-title: Design and Analysis of Experiments
  year: 2013
  ident: CIT0015
– ident: CIT0010
  doi: 10.1109/TMAG.2017.2698604
– ident: CIT0011
  doi: 10.1109/TMAG.2017.2766229
– volume-title: Nature-Inspired Optimization Algorithms
  year: 2014
  ident: CIT0019
– ident: CIT0003
  doi: 10.4028/www.scientific.net/AMR.301-303.1693
– ident: CIT0002
  doi: 10.1109/TMAG.2008.2002001
– ident: CIT0008
  doi: 10.1109/ICELMACH.2016.7732772
– volume: 23
  start-page: 223
  issue: 1
  year: 2020
  ident: CIT0013
  publication-title: J. Polytechnic Politeknik Dergisi
  doi: 10.2339/politeknik.552273
– ident: CIT0017
  doi: 10.1016/j.fuel.2020.117784
SSID ssj0012992
Score 2.2346177
Snippet In this study, we aimed to optimize 3000 kVA synchronous generator (SG) stator design to obtain the desired magnetic flux density distribution and efficiency....
Abstract—In this study, we aimed to optimize 3000 kVA synchronous generator (SG) stator design to obtain the desired magnetic flux density distribution and...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 919
SubjectTerms Algorithms
bat algorithm
Computer simulation
Density distribution
Design factors
Design optimization
Design parameters
Efficiency
Flux density
Magnetic flux
magnetic flux density distributions
Magnetism
Maxwell simulation
multiobjective optimization
Multiple objective analysis
nature inspired algorithms
regression modeling
Regression models
stator design
Stators
swarm-based meta-heuristic
synchronous generator
Title Multiobjective Design Optimization of Stator for Synchronous Generator Using Bat Algorithm and Analysis of Magnetic Flux Density Distribution
URI https://www.tandfonline.com/doi/abs/10.1080/15325008.2022.2049651
https://www.proquest.com/docview/2667961613
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1532-5016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012992
  issn: 1532-5008
  databaseCode: AHDZW
  dateStart: 20010101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-5016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012992
  issn: 1532-5008
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFMUCtoDt8jBdvzYPQZKFSEVDrSicLHs9boEJXYVHAnyH_hZ_C9mdtbOhlZAkSIr2SSzjufLt7PjeTD2vAQbNC3LwFMCXTcabLhCxqEXxXEZ5QmYCBo3isdvk9lp9OYsPhsMfjpRS-u2GKvNlXkl_6NVGAO9YpbsNTTbC4UBeA76hSNoGI7_pGOTPdsUX4i0gDswGmP0DlhgadMrTU5KixtrE0_4_nutsBouxr1SwWl8h8IGXubtaLo4b1bz9jP1zXALlhzn5zXmO46OFutvMFNtYjkOseyu7Zi14-M3zXXg0xfYhM3ErTe1yaUzfnqnSjpyfb7KG2wlYngKIFqj_Plmy9qrueVGZ_TjfLHMN5RatLQXynovQhNlRfmbPeHCZtj3iYO1O0Y5mB1LU2FTi0bp2VhYYl1pWZcWcEkulEtrAwVTonCcbwxng4l4WC8_2C6GXQDAb2tkH7kY2JKqnZgMxWRWzA22F8Li4g_Z3nR2-OlDfzsL1vyQCvfSj-1SyYT_4srz2TGSdkroXjIZjB10cofdthsYPiU03mUDXd9jt5yylvfZj11ccsIld3HJm4oTLjnMyh1c8h6X3OCSAy55j0sO-OEdLlFIh0uOuOQWl9zF5QN2evT65NXMs20_PBWKpPWEiMvCl6oKg3wCvDHRQoFVGYmJCHUQKwynTLSUQkSljsEIU3EID3RmqKqC1w_ZsAZQP2I8kFGqVSkKX1dRUuhcp7BFwXvdYPbrNN1n4-46ZxdU3SX7o4b3mXS1kbXGrVZRD5xs8pfvHnSqyyyJfM3APk5lAtuuyePrnssTdnP7jzpgw3a11k_BQm6LZxZ_vwD90Le1
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YPKgH30YUdQ9ei_Sx7faIIkEFPAgJt0273eIDWgMlUf-D_9mZPgxojAeSXppmt-3udPab7TffEHIeAAZ1gkDXJMetGwUYzneZoVmMBZZnA0RQGCh2unarb90O2GAuFwZplRhDh5lQROqr8ePGzeiCEncBXyms3DVkZhmYTIWa5xABrTIA-1jFwKx1v_8kgLs1Ms1UCLqgTZHF81c3C-vTgnrpL2-dLkHNLSKLh8-YJy_VWeJX5ccPXcfl3m6bbOYIldYzk9ohKyraJRtzuoV75DNN243958xb0kZKA6H34H7GeV4njUOKQDaeUHg3-vAeSZThjWdTmild45WUr0AvvYTWR8N48pQ8jik8Ny2UUrCTjjeMMNGSNkezN7hThCQS2kC937xU1z7pN697Vy0tr-ugSYPbicY5C_yaK0ND90wwDFNxCbDB4iY3lM4k8uVsBXEgtwLFYJWVzIADo1UZhnB-QEpRHKlDQnXXcpQMuF9ToWX7ylMOYFD8mQmWoBynTKrFbIrXTL5D6LkqajHOAsdZ5ONcJu78nIsk3TcJsyInwvynbaUwEJF7gqkAAOS4NuBq82iJrs_IWqvXaYv2TffumKwbSKzBAkqsQkrJZKZOABkl_mlq-l_g7QB3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgO7IhCAR-4pjSLE-dYKFVZWpCgEjcrcZyytEnVJhLwD_wzM1lQC0IcKuUSRXa8jt_Yb54JOQkAgzpBoGuS49aNAgznu8zQLMYCy7MBIih0FDtdu92zrh5ZySacFLRK9KHDXCgis9U4uUdBWDLiTmGSwsJdR2KWgbFUKHkODtCSjadiGMVR734fJIC1NXLJVPC5IE0ZxPNXNjPL04x46S9jna1ArXXil2XPiSevtTTxa_Ljh6zjXJXbIGsFPqWNfEBtkgUVbZHVKdXCbfKZBe3G_ktuK2kzI4HQWzA-wyKqk8YhRRgbjylUjd6_RxJFeON0QnOda_ySsRXomZfQxqAfj5-TpyGFYtNSJwUz6Xj9CMMsaWuQvsGfIqSQ0Caq_RYXde2QXuvi4bytFbc6aNLgdqJxzgK_7srQ0D0ThoWpuATQYHGTG0pnEtlytgIvkFuBYrDGSmbAg76qDEN43yWLURypPUJ113KUDLhfV6Fl-8pTDiBQPMoEVKccp0JqZWeKUS7eIfRCE7VsZ4HtLIp2rhB3ustFku2ahPkVJ8L8J221HB-isAMTAfDHcW1A1eb-HFkfk-W7ZkvcXHavD8iKgawavD2JVcliMk7VIcCixD_KBv4Xstr_DA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+Design+Optimization+of+Stator+for+Synchronous+Generator+Using+Bat+Algorithm+and+Analysis+of+Magnetic+Flux+Density+Distribution&rft.jtitle=Electric+power+components+and+systems&rft.au=Karaoglan%2C+Aslan+Deniz&rft.au=Perin%2C+Deniz&rft.au=Yilmaz%2C+Kemal&rft.date=2021-06-15&rft.issn=1532-5008&rft.eissn=1532-5016&rft.volume=49&rft.issue=9-10&rft.spage=919&rft.epage=929&rft_id=info:doi/10.1080%2F15325008.2022.2049651&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15325008_2022_2049651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-5008&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-5008&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-5008&client=summon