Thermoelectric high-entropy alloys with low lattice thermal conductivity

Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Herein, a novel alloy design concept, i.e. , the high-entropy alloy concept, is introduced as a new strategy to reduce lattice thermal conductivity and the BiSbTe 1.5...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 6; no. 57; pp. 52164 - 5217
Main Authors Fan, Z, Wang, H, Wu, Y, Liu, X. J, Lu, Z. P
Format Journal Article
LanguageEnglish
Published 01.01.2016
Subjects
Online AccessGet full text
ISSN2046-2069
2046-2069
DOI10.1039/c5ra28088e

Cover

Abstract Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Herein, a novel alloy design concept, i.e. , the high-entropy alloy concept, is introduced as a new strategy to reduce lattice thermal conductivity and the BiSbTe 1.5 Se 1.5 high-entropy alloy was chosen as a paradigm to demonstrate the applicability of this new approach. It was found that the lattice thermal conductivity of this high-entropy alloy is quite low, i.e. , 0.47 W m 1 K 1 at 400 K, which results from its severe lattice-distortion. In addition, the minor addition of Ag could improve the absolute value of its Seebeck coefficient and further reduce its lattice thermal conductivity. Consequently, a peak ZT value of 0.63 was observed at 450 K for this alloy with the addition of 0.9 at% Ag. Our current results suggest that the revolutionary alloy design concept is a promising strategy for developing novel thermoelectric materials with desirable properties. Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials.
AbstractList Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Herein, a novel alloy design concept, i.e. , the high-entropy alloy concept, is introduced as a new strategy to reduce lattice thermal conductivity and the BiSbTe 1.5 Se 1.5 high-entropy alloy was chosen as a paradigm to demonstrate the applicability of this new approach. It was found that the lattice thermal conductivity of this high-entropy alloy is quite low, i.e. , ∼0.47 W m −1 K −1 at 400 K, which results from its severe lattice-distortion. In addition, the minor addition of Ag could improve the absolute value of its Seebeck coefficient and further reduce its lattice thermal conductivity. Consequently, a peak ZT value of 0.63 was observed at 450 K for this alloy with the addition of 0.9 at% Ag. Our current results suggest that the revolutionary alloy design concept is a promising strategy for developing novel thermoelectric materials with desirable properties.
Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Herein, a novel alloy design concept, i.e. , the high-entropy alloy concept, is introduced as a new strategy to reduce lattice thermal conductivity and the BiSbTe 1.5 Se 1.5 high-entropy alloy was chosen as a paradigm to demonstrate the applicability of this new approach. It was found that the lattice thermal conductivity of this high-entropy alloy is quite low, i.e. , 0.47 W m 1 K 1 at 400 K, which results from its severe lattice-distortion. In addition, the minor addition of Ag could improve the absolute value of its Seebeck coefficient and further reduce its lattice thermal conductivity. Consequently, a peak ZT value of 0.63 was observed at 450 K for this alloy with the addition of 0.9 at% Ag. Our current results suggest that the revolutionary alloy design concept is a promising strategy for developing novel thermoelectric materials with desirable properties. Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials.
Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Herein, a novel alloy design concept, i.e., the high-entropy alloy concept, is introduced as a new strategy to reduce lattice thermal conductivity and the BiSbTe₁.₅Se₁.₅ high-entropy alloy was chosen as a paradigm to demonstrate the applicability of this new approach. It was found that the lattice thermal conductivity of this high-entropy alloy is quite low, i.e., ∼0.47 W m⁻¹ K⁻¹ at 400 K, which results from its severe lattice-distortion. In addition, the minor addition of Ag could improve the absolute value of its Seebeck coefficient and further reduce its lattice thermal conductivity. Consequently, a peak ZT value of 0.63 was observed at 450 K for this alloy with the addition of 0.9 at% Ag. Our current results suggest that the revolutionary alloy design concept is a promising strategy for developing novel thermoelectric materials with desirable properties.
Author Wang, H
Wu, Y
Liu, X. J
Lu, Z. P
Fan, Z
AuthorAffiliation University of Science and Technology Beijing
State Key Laboratory for Advanced Metals and Materials
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory for Advanced Metals and Materials
– sequence: 0
  name: University of Science and Technology Beijing
Author_xml – sequence: 1
  givenname: Z
  surname: Fan
  fullname: Fan, Z
– sequence: 2
  givenname: H
  surname: Wang
  fullname: Wang, H
– sequence: 3
  givenname: Y
  surname: Wu
  fullname: Wu, Y
– sequence: 4
  givenname: X. J
  surname: Liu
  fullname: Liu, X. J
– sequence: 5
  givenname: Z. P
  surname: Lu
  fullname: Lu, Z. P
BookMark eNptkU1LAzEQhoNUsNZevAt7FGE1H5s0eyylWkEQpJ6X7HRqI-mmJqll_71bKyriXGYOzzMw75ySXuMbJOSc0WtGRXkDMhiuqdZ4RPqcFirnVJW9X_MJGcb4SrtSknHF-mQ2X2FYe3QIKVjIVvZllWOTgt-0mXHOtzHb2bTKnN9lzqRkAbO0d4zLwDeLLST7blN7Ro6XxkUcfvUBeb6dziez_OHx7n4yfsiBa5VyabQxnJZcaSZqlIKOaq4L4HyhsIRiaZhmcsHRqFoalLJWUBR8RJUQtIBSDMjlYe8m-LctxlStbQR0zjTot7HiXArBuCxkh9IDCsHHGHBZgU0mWd-dZ6yrGK32uVUT-TT-zG3aKVd_lE2waxPa_-GLAxwifHM_TxAfEmB5jQ
CitedBy_id crossref_primary_10_1007_s11669_023_01024_4
crossref_primary_10_1038_s41467_024_52349_8
crossref_primary_10_1016_j_seta_2021_101073
crossref_primary_10_1002_ente_201800850
crossref_primary_10_1016_j_ceramint_2021_08_158
crossref_primary_10_1063_5_0204091
crossref_primary_10_1134_S106378262202018X
crossref_primary_10_1039_D3MH02181E
crossref_primary_10_1111_jace_15779
crossref_primary_10_1021_acs_chemrev_0c00026
crossref_primary_10_1007_s11661_018_4802_1
crossref_primary_10_31857_S0235010624020014
crossref_primary_10_1016_j_matlet_2023_134568
crossref_primary_10_1016_j_actamat_2022_117975
crossref_primary_10_1103_PhysRevB_104_094515
crossref_primary_10_1016_j_actamat_2020_08_053
crossref_primary_10_1016_j_solidstatesciences_2024_107728
crossref_primary_10_1088_1757_899X_1014_1_012057
crossref_primary_10_1038_s41467_024_46799_3
crossref_primary_10_1039_C8QI00366A
crossref_primary_10_1002_adma_201903855
crossref_primary_10_1557_jmr_2018_323
crossref_primary_10_1080_21663831_2016_1244116
crossref_primary_10_3934_energy_2022042
crossref_primary_10_1016_j_jallcom_2018_11_051
crossref_primary_10_1016_j_actamat_2022_118159
crossref_primary_10_1080_21663831_2018_1436092
crossref_primary_10_1016_j_scriptamat_2021_114330
crossref_primary_10_1038_s41524_017_0037_8
crossref_primary_10_1016_j_mssp_2021_106270
crossref_primary_10_1002_ente_202400061
crossref_primary_10_1016_j_ceramint_2024_06_202
crossref_primary_10_1016_j_actamat_2021_116858
crossref_primary_10_1016_j_jssc_2022_122945
crossref_primary_10_1039_D0TA09601F
crossref_primary_10_1063_5_0137187
crossref_primary_10_1134_S0036029524701520
crossref_primary_10_1126_sciadv_adi9980
crossref_primary_10_1038_s41598_020_61666_z
crossref_primary_10_1016_j_cpc_2024_109441
crossref_primary_10_1016_j_jallcom_2024_177424
crossref_primary_10_1016_j_mtcomm_2023_105880
crossref_primary_10_1038_ncomms15634
crossref_primary_10_1016_j_jallcom_2017_09_274
crossref_primary_10_1016_j_jssc_2021_122531
crossref_primary_10_1063_5_0143678
crossref_primary_10_3390_cryst14050432
crossref_primary_10_1016_j_nantod_2024_102475
crossref_primary_10_1016_j_mtsust_2023_100639
crossref_primary_10_1016_j_jallcom_2023_171136
crossref_primary_10_1134_S2635167622030077
crossref_primary_10_1016_j_scriptamat_2020_02_011
crossref_primary_10_1016_j_actamat_2023_118678
crossref_primary_10_1016_j_jallcom_2021_159743
crossref_primary_10_1021_acsami_1c21252
crossref_primary_10_1002_adma_201805004
crossref_primary_10_1063_5_0226632
crossref_primary_10_1016_j_mtla_2021_101148
crossref_primary_10_1088_2053_1591_ab7d5a
crossref_primary_10_1016_j_apsusc_2019_144117
crossref_primary_10_1016_j_renene_2024_120443
crossref_primary_10_1103_PhysRevMaterials_5_035004
crossref_primary_10_1016_j_seta_2019_100604
crossref_primary_10_1021_acsami_0c19387
crossref_primary_10_1002_adma_202305453
crossref_primary_10_1088_1361_665X_ab1cc1
crossref_primary_10_1016_j_joule_2024_04_012
crossref_primary_10_1557_jmr_2019_57
crossref_primary_10_1021_acsami_1c00221
crossref_primary_10_1038_s41598_019_41818_6
crossref_primary_10_1021_acs_jpclett_3c02254
crossref_primary_10_1007_s40843_022_2211_8
crossref_primary_10_1016_j_actamat_2024_120032
crossref_primary_10_3390_ma15196798
crossref_primary_10_1016_j_matlet_2020_127672
crossref_primary_10_3390_ma14206059
crossref_primary_10_1088_1402_4896_ad185e
crossref_primary_10_1039_D4QI02874K
crossref_primary_10_3390_cryst10030200
crossref_primary_10_1016_j_intermet_2024_108233
crossref_primary_10_1088_1674_1056_ad34c5
crossref_primary_10_1088_1361_651X_ad2540
crossref_primary_10_1134_S0020168520120109
crossref_primary_10_1039_D3TA03613H
crossref_primary_10_1016_j_scib_2018_05_017
crossref_primary_10_1016_j_intermet_2019_106583
crossref_primary_10_1016_j_mtchem_2024_102285
crossref_primary_10_1016_j_materresbull_2025_113404
crossref_primary_10_3390_met13121953
crossref_primary_10_1039_D4NH00012A
crossref_primary_10_1103_PhysRevMaterials_5_114405
crossref_primary_10_3389_fmats_2018_00026
crossref_primary_10_1002_aenm_201802116
crossref_primary_10_3390_ma16165528
crossref_primary_10_1557_jmr_2018_222
crossref_primary_10_1002_batt_202300585
crossref_primary_10_1016_j_scriptamat_2019_02_015
crossref_primary_10_15541_jim20200417
crossref_primary_10_1007_s12598_017_0991_9
crossref_primary_10_1111_jace_18832
crossref_primary_10_1016_j_mtadv_2020_100114
crossref_primary_10_1016_j_jmrt_2025_02_008
crossref_primary_10_1038_s41598_024_70500_9
crossref_primary_10_1021_acsenergylett_4c03369
crossref_primary_10_1016_j_msea_2023_145034
crossref_primary_10_1016_j_jallcom_2021_159940
Cites_doi 10.1002/adfm.201400474
10.1126/science.1092963
10.1016/j.msea.2003.10.257
10.1038/srep23143
10.3166/acsm.31.633-648
10.1103/PhysRevB.85.205410
10.1016/j.intermet.2015.06.021
10.1021/nl101156v
10.1016/j.jallcom.2009.06.182
10.1126/science.1156446
10.1038/nmat3013
10.1038/ncomms6964
10.1063/1.3643051
10.1038/nmat2090
10.1103/PhysRevB.46.6131
10.1016/0022-3697(63)90067-2
10.1126/science.1069895
10.1038/nature13184
10.1016/j.matchemphys.2009.05.025
10.1126/science.1158899
10.1038/nature09996
10.1201/9781420049718
10.1002/adfm.201000878
10.1038/nature11439
10.1088/0508-3443/5/11/303
10.1016/j.msea.2006.11.049
10.1088/0370-1328/72/4/309
10.1002/adfm.201300146
10.1103/PhysRevLett.108.166601
10.1126/science.1159725
10.1002/adem.200300567
10.1021/nl100804a
10.1063/1.4935489
10.1002/aenm.201401391
10.1103/PhysRevB.80.125205
10.1016/j.corsci.2004.11.008
10.1126/science.aaa4166
10.1002/adfm.201201576
10.1016/j.pmatsci.2013.10.001
10.1080/21663831.2014.912690
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1039/c5ra28088e
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 5217
ExternalDocumentID 10_1039_C5RA28088E
c5ra28088e
GroupedDBID -JG
0-7
0R~
53G
AAEMU
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABASK
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADMRA
AEFDR
AENEX
AESAV
AETIL
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AUNWK
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
R7C
R7G
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SLH
AAYXX
ABIQK
ABJNI
ADBBV
AFPKN
AFRZK
AKMSF
BCNDV
CITATION
J3G
J3H
OK1
PGMZT
RPM
YAE
ZCN
7S9
L.6
ID FETCH-LOGICAL-c286t-5a8aa20926813be5307b284c22d6e9c4fa1815d2ea6b5ae55b6c4427063304c93
ISSN 2046-2069
IngestDate Sat Sep 27 22:29:25 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
Tue Jul 01 02:39:25 EDT 2025
Tue Dec 17 20:59:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 57
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-5a8aa20926813be5307b284c22d6e9c4fa1815d2ea6b5ae55b6c4427063304c93
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/c5ra28088e
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2253312545
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_2253312545
crossref_primary_10_1039_C5RA28088E
rsc_primary_c5ra28088e
crossref_citationtrail_10_1039_C5RA28088E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle RSC advances
PublicationYear 2016
References Austin (C5RA28088E-(cit42)/*[position()=1]) 1958; 72
Goldsmid (C5RA28088E-(cit11)/*[position()=1]) 1954; 5
May (C5RA28088E-(cit39)/*[position()=1]) 2009; 80
Rowe (C5RA28088E-(cit33)/*[position()=1]) 2006
Goldsmid (C5RA28088E-(cit41)/*[position()=1]) 2009
Pei (C5RA28088E-(cit5)/*[position()=1]) 2011; 473
Lu (C5RA28088E-(cit25)/*[position()=1]) 2015; 66
Xie (C5RA28088E-(cit16)/*[position()=1]) 2010; 10
Kim (C5RA28088E-(cit8)/*[position()=1]) 2015; 348
Rowe (C5RA28088E-(cit1)/*[position()=1]) 1995
Hu (C5RA28088E-(cit19)/*[position()=1]) 2014; 24
Wang (C5RA28088E-(cit31)/*[position()=1]) 2013; 23
Yeh (C5RA28088E-(cit20)/*[position()=1]) 2004; 6
Kraemer (C5RA28088E-(cit12)/*[position()=1]) 2011; 10
Dolique (C5RA28088E-(cit27)/*[position()=1]) 2009; 117
Poudel (C5RA28088E-(cit4)/*[position()=1]) 2008; 320
Zhang (C5RA28088E-(cit22)/*[position()=1]) 2014; 61
Heremans (C5RA28088E-(cit3)/*[position()=1]) 2008; 321
Cantor (C5RA28088E-(cit26)/*[position()=1]) 2004; 375
Li (C5RA28088E-(cit17)/*[position()=1]) 2013; 23
Liu (C5RA28088E-(cit18)/*[position()=1]) 2012; 108
Yan (C5RA28088E-(cit34)/*[position()=1]) 2010; 10
Lukas (C5RA28088E-(cit37)/*[position()=1]) 2012; 85
Zhao (C5RA28088E-(cit7)/*[position()=1]) 2014; 508
Sales (C5RA28088E-(cit10)/*[position()=1]) 2002; 295
Yeh (C5RA28088E-(cit21)/*[position()=1]) 2006; 31
Chen (C5RA28088E-(cit29)/*[position()=1]) 2005; 47
Biswas (C5RA28088E-(cit6)/*[position()=1]) 2012; 489
Anderson (C5RA28088E-(cit40)/*[position()=1]) 1963; 24
Zheng (C5RA28088E-(cit14)/*[position()=1]) 2014; 5
Tsai (C5RA28088E-(cit24)/*[position()=1]) 2014; 2
Tsai (C5RA28088E-(cit28)/*[position()=1]) 2009; 486
Cahill (C5RA28088E-(cit38)/*[position()=1]) 1992; 46
Snyder (C5RA28088E-(cit13)/*[position()=1]) 2008; 7
Santodonato (C5RA28088E-(cit23)/*[position()=1]) 2015; 6
Chiu (C5RA28088E-(cit36)/*[position()=1]) 2016; 6
Shen (C5RA28088E-(cit35)/*[position()=1]) 2011; 99
Hsu (C5RA28088E-(cit2)/*[position()=1]) 2004; 303
Shafeie (C5RA28088E-(cit32)/*[position()=1]) 2015; 118
Zhou (C5RA28088E-(cit30)/*[position()=1]) 2007; 454
Bell (C5RA28088E-(cit9)/*[position()=1]) 2008; 321
Pei (C5RA28088E-(cit15)/*[position()=1]) 2011; 21
References_xml – issn: 1995
  publication-title: CRC Handbook of Thermoelectrics
  doi: Rowe
– issn: 2006
  publication-title: CRC Handbook of Thermoelectric: Macro to Nano
  doi: Rowe
– issn: 2009
  publication-title: Introduction to thermoelectricity
  doi: Goldsmid
– volume: 24
  start-page: 5211
  year: 2014
  ident: C5RA28088E-(cit19)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400474
– volume: 303
  start-page: 818
  year: 2004
  ident: C5RA28088E-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1092963
– volume: 375
  start-page: 213
  year: 2004
  ident: C5RA28088E-(cit26)/*[position()=1]
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2003.10.257
– volume: 6
  start-page: 23143
  year: 2016
  ident: C5RA28088E-(cit36)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep23143
– volume: 31
  start-page: 633
  year: 2006
  ident: C5RA28088E-(cit21)/*[position()=1]
  publication-title: Ann. Chim.
  doi: 10.3166/acsm.31.633-648
– volume: 85
  start-page: 205410
  year: 2012
  ident: C5RA28088E-(cit37)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.85.205410
– volume: 66
  start-page: 67
  year: 2015
  ident: C5RA28088E-(cit25)/*[position()=1]
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2015.06.021
– volume: 10
  start-page: 3373
  year: 2010
  ident: C5RA28088E-(cit34)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl101156v
– volume: 486
  start-page: 427
  year: 2009
  ident: C5RA28088E-(cit28)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.06.182
– volume: 320
  start-page: 634
  year: 2008
  ident: C5RA28088E-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1156446
– volume: 10
  start-page: 532
  year: 2011
  ident: C5RA28088E-(cit12)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3013
– volume: 6
  start-page: 5964
  year: 2015
  ident: C5RA28088E-(cit23)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6964
– volume: 99
  start-page: 124102
  year: 2011
  ident: C5RA28088E-(cit35)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3643051
– volume: 7
  start-page: 105
  year: 2008
  ident: C5RA28088E-(cit13)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2090
– volume: 46
  start-page: 6131
  year: 1992
  ident: C5RA28088E-(cit38)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.46.6131
– volume: 24
  start-page: 909
  year: 1963
  ident: C5RA28088E-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(63)90067-2
– volume-title: CRC Handbook of Thermoelectric: Macro to Nano
  year: 2006
  ident: C5RA28088E-(cit33)/*[position()=1]
– volume: 295
  start-page: 1248
  year: 2002
  ident: C5RA28088E-(cit10)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1069895
– volume: 508
  start-page: 373
  year: 2014
  ident: C5RA28088E-(cit7)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature13184
– volume: 117
  start-page: 142
  year: 2009
  ident: C5RA28088E-(cit27)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2009.05.025
– volume: 321
  start-page: 1457
  year: 2008
  ident: C5RA28088E-(cit9)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1158899
– volume: 473
  start-page: 66
  year: 2011
  ident: C5RA28088E-(cit5)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature09996
– volume-title: CRC Handbook of Thermoelectrics
  year: 1995
  ident: C5RA28088E-(cit1)/*[position()=1]
  doi: 10.1201/9781420049718
– volume: 21
  start-page: 241
  year: 2011
  ident: C5RA28088E-(cit15)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000878
– volume: 489
  start-page: 414
  year: 2012
  ident: C5RA28088E-(cit6)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11439
– volume: 5
  start-page: 386
  year: 1954
  ident: C5RA28088E-(cit11)/*[position()=1]
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/5/11/303
– volume: 454
  start-page: 260
  year: 2007
  ident: C5RA28088E-(cit30)/*[position()=1]
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2006.11.049
– volume: 72
  start-page: 545
  year: 1958
  ident: C5RA28088E-(cit42)/*[position()=1]
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0370-1328/72/4/309
– volume: 23
  start-page: 4317
  year: 2013
  ident: C5RA28088E-(cit17)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300146
– volume: 108
  start-page: 166601
  year: 2012
  ident: C5RA28088E-(cit18)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.166601
– volume: 321
  start-page: 554
  year: 2008
  ident: C5RA28088E-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1159725
– volume: 6
  start-page: 299
  year: 2004
  ident: C5RA28088E-(cit20)/*[position()=1]
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 10
  start-page: 3283
  year: 2010
  ident: C5RA28088E-(cit16)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl100804a
– volume: 118
  start-page: 184905
  year: 2015
  ident: C5RA28088E-(cit32)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4935489
– volume: 5
  start-page: 1401391
  year: 2014
  ident: C5RA28088E-(cit14)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401391
– volume: 80
  start-page: 125205
  year: 2009
  ident: C5RA28088E-(cit39)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.80.125205
– volume: 47
  start-page: 2257
  year: 2005
  ident: C5RA28088E-(cit29)/*[position()=1]
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2004.11.008
– volume: 348
  start-page: 109
  year: 2015
  ident: C5RA28088E-(cit8)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa4166
– volume: 23
  start-page: 1586
  year: 2013
  ident: C5RA28088E-(cit31)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201576
– volume: 61
  start-page: 1
  year: 2014
  ident: C5RA28088E-(cit22)/*[position()=1]
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 2
  start-page: 107
  year: 2014
  ident: C5RA28088E-(cit24)/*[position()=1]
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2014.912690
– volume-title: Introduction to thermoelectricity
  year: 2009
  ident: C5RA28088E-(cit41)/*[position()=1]
SSID ssj0000651261
Score 2.495378
Snippet Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Herein, a novel alloy...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 52164
SubjectTerms alloys
silver
thermal conductivity
Title Thermoelectric high-entropy alloys with low lattice thermal conductivity
URI https://www.proquest.com/docview/2253312545
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection 2023
  customDbUrl: https://pubs.rsc.org
  eissn: 2046-2069
  dateEnd: 20161231
  omitProxy: true
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: AETIL
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOcAF8apYXjKCC6pSEr-aHKtV0QqpHEqr7i1yvI6EtCTVkhUqB347n2MnTqVFAi5R4iQ-zGeNv5nxzBDyjhVa8NSoxOQ1S0Re50mltE1Wq7Q22I4zn19x9lktLsWnpVzG3nx9dklXHZmfO_NK_gdVjAFXlyX7D8iOk2IA98AXVyCM699ivPnW-k42rlY1DO3EeWvb65tDF1C_Cblr6_bH4Vp37pybI5rQxa4oSONKvfa9I6YM9fzLfDgYEFNDvJd0DGJcBSfzGGa62kZV7k73fO2fl0ch6BS8CtnUq2B77cNgOEPYvo_KoCrVZEX4utJB74EE-GLkYRPF8_FOBZ1yV9_UyI1mORScjdvQeDgwvtwjdxmUtevIcfYrus7AmjIYfkOxWV58iL_cphfRZtjbDA1deuJw8ZA8CIyfnnj4HpE7tnlM7s2HRntPyOI2jHQKI_UwUgcjBYw0wEgDjHQK41Ny-fH0Yr5IQoOLxLBcdYnUudYsLZjKM15ZCX1bgS4YxlbKFkbUGvxLrpjVqpLaSlkpIwQ7Bq3kqTAFPyD7TdvYZ4SaOtfgZjBCLAxEiz9MZqTApAKstmAz8n6QS2lC9XfXhGRd9qcQeFHO5flJL8PTGXk7fnvta57s_OrNIN4SAnNxJt3Ydvu9xBbBOYizkDNyALmPk0SYnv_pxQtyPy7Hl2S_22ztK9C-rnrdL4LfnolZpQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermoelectric+high-entropy+alloys+with+low+lattice+thermal+conductivity&rft.jtitle=RSC+advances&rft.au=Fan%2C+Z&rft.au=Wang%2C+H&rft.au=Wu%2C+Y&rft.au=Liu%2C+X.+J&rft.date=2016-01-01&rft.eissn=2046-2069&rft.volume=6&rft.issue=57&rft.spage=52164&rft.epage=5217&rft_id=info:doi/10.1039%2Fc5ra28088e&rft.externalDocID=c5ra28088e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon