Thermoelectric high-entropy alloys with low lattice thermal conductivity
Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Herein, a novel alloy design concept, i.e. , the high-entropy alloy concept, is introduced as a new strategy to reduce lattice thermal conductivity and the BiSbTe 1.5...
Saved in:
| Published in | RSC advances Vol. 6; no. 57; pp. 52164 - 5217 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.01.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2046-2069 2046-2069 |
| DOI | 10.1039/c5ra28088e |
Cover
| Abstract | Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Herein, a novel alloy design concept,
i.e.
, the high-entropy alloy concept, is introduced as a new strategy to reduce lattice thermal conductivity and the BiSbTe
1.5
Se
1.5
high-entropy alloy was chosen as a paradigm to demonstrate the applicability of this new approach. It was found that the lattice thermal conductivity of this high-entropy alloy is quite low,
i.e.
, 0.47 W m
1
K
1
at 400 K, which results from its severe lattice-distortion. In addition, the minor addition of Ag could improve the absolute value of its Seebeck coefficient and further reduce its lattice thermal conductivity. Consequently, a peak ZT value of 0.63 was observed at 450 K for this alloy with the addition of 0.9 at% Ag. Our current results suggest that the revolutionary alloy design concept is a promising strategy for developing novel thermoelectric materials with desirable properties.
Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. |
|---|---|
| AbstractList | Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Herein, a novel alloy design concept,
i.e.
, the high-entropy alloy concept, is introduced as a new strategy to reduce lattice thermal conductivity and the BiSbTe
1.5
Se
1.5
high-entropy alloy was chosen as a paradigm to demonstrate the applicability of this new approach. It was found that the lattice thermal conductivity of this high-entropy alloy is quite low,
i.e.
, ∼0.47 W m
−1
K
−1
at 400 K, which results from its severe lattice-distortion. In addition, the minor addition of Ag could improve the absolute value of its Seebeck coefficient and further reduce its lattice thermal conductivity. Consequently, a peak ZT value of 0.63 was observed at 450 K for this alloy with the addition of 0.9 at% Ag. Our current results suggest that the revolutionary alloy design concept is a promising strategy for developing novel thermoelectric materials with desirable properties. Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Herein, a novel alloy design concept, i.e. , the high-entropy alloy concept, is introduced as a new strategy to reduce lattice thermal conductivity and the BiSbTe 1.5 Se 1.5 high-entropy alloy was chosen as a paradigm to demonstrate the applicability of this new approach. It was found that the lattice thermal conductivity of this high-entropy alloy is quite low, i.e. , 0.47 W m 1 K 1 at 400 K, which results from its severe lattice-distortion. In addition, the minor addition of Ag could improve the absolute value of its Seebeck coefficient and further reduce its lattice thermal conductivity. Consequently, a peak ZT value of 0.63 was observed at 450 K for this alloy with the addition of 0.9 at% Ag. Our current results suggest that the revolutionary alloy design concept is a promising strategy for developing novel thermoelectric materials with desirable properties. Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Herein, a novel alloy design concept, i.e., the high-entropy alloy concept, is introduced as a new strategy to reduce lattice thermal conductivity and the BiSbTe₁.₅Se₁.₅ high-entropy alloy was chosen as a paradigm to demonstrate the applicability of this new approach. It was found that the lattice thermal conductivity of this high-entropy alloy is quite low, i.e., ∼0.47 W m⁻¹ K⁻¹ at 400 K, which results from its severe lattice-distortion. In addition, the minor addition of Ag could improve the absolute value of its Seebeck coefficient and further reduce its lattice thermal conductivity. Consequently, a peak ZT value of 0.63 was observed at 450 K for this alloy with the addition of 0.9 at% Ag. Our current results suggest that the revolutionary alloy design concept is a promising strategy for developing novel thermoelectric materials with desirable properties. |
| Author | Wang, H Wu, Y Liu, X. J Lu, Z. P Fan, Z |
| AuthorAffiliation | University of Science and Technology Beijing State Key Laboratory for Advanced Metals and Materials |
| AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory for Advanced Metals and Materials – sequence: 0 name: University of Science and Technology Beijing |
| Author_xml | – sequence: 1 givenname: Z surname: Fan fullname: Fan, Z – sequence: 2 givenname: H surname: Wang fullname: Wang, H – sequence: 3 givenname: Y surname: Wu fullname: Wu, Y – sequence: 4 givenname: X. J surname: Liu fullname: Liu, X. J – sequence: 5 givenname: Z. P surname: Lu fullname: Lu, Z. P |
| BookMark | eNptkU1LAzEQhoNUsNZevAt7FGE1H5s0eyylWkEQpJ6X7HRqI-mmJqll_71bKyriXGYOzzMw75ySXuMbJOSc0WtGRXkDMhiuqdZ4RPqcFirnVJW9X_MJGcb4SrtSknHF-mQ2X2FYe3QIKVjIVvZllWOTgt-0mXHOtzHb2bTKnN9lzqRkAbO0d4zLwDeLLST7blN7Ro6XxkUcfvUBeb6dziez_OHx7n4yfsiBa5VyabQxnJZcaSZqlIKOaq4L4HyhsIRiaZhmcsHRqFoalLJWUBR8RJUQtIBSDMjlYe8m-LctxlStbQR0zjTot7HiXArBuCxkh9IDCsHHGHBZgU0mWd-dZ6yrGK32uVUT-TT-zG3aKVd_lE2waxPa_-GLAxwifHM_TxAfEmB5jQ |
| CitedBy_id | crossref_primary_10_1007_s11669_023_01024_4 crossref_primary_10_1038_s41467_024_52349_8 crossref_primary_10_1016_j_seta_2021_101073 crossref_primary_10_1002_ente_201800850 crossref_primary_10_1016_j_ceramint_2021_08_158 crossref_primary_10_1063_5_0204091 crossref_primary_10_1134_S106378262202018X crossref_primary_10_1039_D3MH02181E crossref_primary_10_1111_jace_15779 crossref_primary_10_1021_acs_chemrev_0c00026 crossref_primary_10_1007_s11661_018_4802_1 crossref_primary_10_31857_S0235010624020014 crossref_primary_10_1016_j_matlet_2023_134568 crossref_primary_10_1016_j_actamat_2022_117975 crossref_primary_10_1103_PhysRevB_104_094515 crossref_primary_10_1016_j_actamat_2020_08_053 crossref_primary_10_1016_j_solidstatesciences_2024_107728 crossref_primary_10_1088_1757_899X_1014_1_012057 crossref_primary_10_1038_s41467_024_46799_3 crossref_primary_10_1039_C8QI00366A crossref_primary_10_1002_adma_201903855 crossref_primary_10_1557_jmr_2018_323 crossref_primary_10_1080_21663831_2016_1244116 crossref_primary_10_3934_energy_2022042 crossref_primary_10_1016_j_jallcom_2018_11_051 crossref_primary_10_1016_j_actamat_2022_118159 crossref_primary_10_1080_21663831_2018_1436092 crossref_primary_10_1016_j_scriptamat_2021_114330 crossref_primary_10_1038_s41524_017_0037_8 crossref_primary_10_1016_j_mssp_2021_106270 crossref_primary_10_1002_ente_202400061 crossref_primary_10_1016_j_ceramint_2024_06_202 crossref_primary_10_1016_j_actamat_2021_116858 crossref_primary_10_1016_j_jssc_2022_122945 crossref_primary_10_1039_D0TA09601F crossref_primary_10_1063_5_0137187 crossref_primary_10_1134_S0036029524701520 crossref_primary_10_1126_sciadv_adi9980 crossref_primary_10_1038_s41598_020_61666_z crossref_primary_10_1016_j_cpc_2024_109441 crossref_primary_10_1016_j_jallcom_2024_177424 crossref_primary_10_1016_j_mtcomm_2023_105880 crossref_primary_10_1038_ncomms15634 crossref_primary_10_1016_j_jallcom_2017_09_274 crossref_primary_10_1016_j_jssc_2021_122531 crossref_primary_10_1063_5_0143678 crossref_primary_10_3390_cryst14050432 crossref_primary_10_1016_j_nantod_2024_102475 crossref_primary_10_1016_j_mtsust_2023_100639 crossref_primary_10_1016_j_jallcom_2023_171136 crossref_primary_10_1134_S2635167622030077 crossref_primary_10_1016_j_scriptamat_2020_02_011 crossref_primary_10_1016_j_actamat_2023_118678 crossref_primary_10_1016_j_jallcom_2021_159743 crossref_primary_10_1021_acsami_1c21252 crossref_primary_10_1002_adma_201805004 crossref_primary_10_1063_5_0226632 crossref_primary_10_1016_j_mtla_2021_101148 crossref_primary_10_1088_2053_1591_ab7d5a crossref_primary_10_1016_j_apsusc_2019_144117 crossref_primary_10_1016_j_renene_2024_120443 crossref_primary_10_1103_PhysRevMaterials_5_035004 crossref_primary_10_1016_j_seta_2019_100604 crossref_primary_10_1021_acsami_0c19387 crossref_primary_10_1002_adma_202305453 crossref_primary_10_1088_1361_665X_ab1cc1 crossref_primary_10_1016_j_joule_2024_04_012 crossref_primary_10_1557_jmr_2019_57 crossref_primary_10_1021_acsami_1c00221 crossref_primary_10_1038_s41598_019_41818_6 crossref_primary_10_1021_acs_jpclett_3c02254 crossref_primary_10_1007_s40843_022_2211_8 crossref_primary_10_1016_j_actamat_2024_120032 crossref_primary_10_3390_ma15196798 crossref_primary_10_1016_j_matlet_2020_127672 crossref_primary_10_3390_ma14206059 crossref_primary_10_1088_1402_4896_ad185e crossref_primary_10_1039_D4QI02874K crossref_primary_10_3390_cryst10030200 crossref_primary_10_1016_j_intermet_2024_108233 crossref_primary_10_1088_1674_1056_ad34c5 crossref_primary_10_1088_1361_651X_ad2540 crossref_primary_10_1134_S0020168520120109 crossref_primary_10_1039_D3TA03613H crossref_primary_10_1016_j_scib_2018_05_017 crossref_primary_10_1016_j_intermet_2019_106583 crossref_primary_10_1016_j_mtchem_2024_102285 crossref_primary_10_1016_j_materresbull_2025_113404 crossref_primary_10_3390_met13121953 crossref_primary_10_1039_D4NH00012A crossref_primary_10_1103_PhysRevMaterials_5_114405 crossref_primary_10_3389_fmats_2018_00026 crossref_primary_10_1002_aenm_201802116 crossref_primary_10_3390_ma16165528 crossref_primary_10_1557_jmr_2018_222 crossref_primary_10_1002_batt_202300585 crossref_primary_10_1016_j_scriptamat_2019_02_015 crossref_primary_10_15541_jim20200417 crossref_primary_10_1007_s12598_017_0991_9 crossref_primary_10_1111_jace_18832 crossref_primary_10_1016_j_mtadv_2020_100114 crossref_primary_10_1016_j_jmrt_2025_02_008 crossref_primary_10_1038_s41598_024_70500_9 crossref_primary_10_1021_acsenergylett_4c03369 crossref_primary_10_1016_j_msea_2023_145034 crossref_primary_10_1016_j_jallcom_2021_159940 |
| Cites_doi | 10.1002/adfm.201400474 10.1126/science.1092963 10.1016/j.msea.2003.10.257 10.1038/srep23143 10.3166/acsm.31.633-648 10.1103/PhysRevB.85.205410 10.1016/j.intermet.2015.06.021 10.1021/nl101156v 10.1016/j.jallcom.2009.06.182 10.1126/science.1156446 10.1038/nmat3013 10.1038/ncomms6964 10.1063/1.3643051 10.1038/nmat2090 10.1103/PhysRevB.46.6131 10.1016/0022-3697(63)90067-2 10.1126/science.1069895 10.1038/nature13184 10.1016/j.matchemphys.2009.05.025 10.1126/science.1158899 10.1038/nature09996 10.1201/9781420049718 10.1002/adfm.201000878 10.1038/nature11439 10.1088/0508-3443/5/11/303 10.1016/j.msea.2006.11.049 10.1088/0370-1328/72/4/309 10.1002/adfm.201300146 10.1103/PhysRevLett.108.166601 10.1126/science.1159725 10.1002/adem.200300567 10.1021/nl100804a 10.1063/1.4935489 10.1002/aenm.201401391 10.1103/PhysRevB.80.125205 10.1016/j.corsci.2004.11.008 10.1126/science.aaa4166 10.1002/adfm.201201576 10.1016/j.pmatsci.2013.10.001 10.1080/21663831.2014.912690 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1039/c5ra28088e |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2046-2069 |
| EndPage | 5217 |
| ExternalDocumentID | 10_1039_C5RA28088E c5ra28088e |
| GroupedDBID | -JG 0-7 0R~ 53G AAEMU AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV ABASK ABEMK ABGFH ABPDG ABXOH ACGFS ADMRA AEFDR AENEX AESAV AETIL AFLYV AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AUNWK BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GROUPED_DOAJ H13 HZ~ H~N J3I M~E O9- R7C R7G RAOCF RCNCU RPMJG RRC RSCEA RVUXY SLH AAYXX ABIQK ABJNI ADBBV AFPKN AFRZK AKMSF BCNDV CITATION J3G J3H OK1 PGMZT RPM YAE ZCN 7S9 L.6 |
| ID | FETCH-LOGICAL-c286t-5a8aa20926813be5307b284c22d6e9c4fa1815d2ea6b5ae55b6c4427063304c93 |
| ISSN | 2046-2069 |
| IngestDate | Sat Sep 27 22:29:25 EDT 2025 Thu Apr 24 23:00:19 EDT 2025 Tue Jul 01 02:39:25 EDT 2025 Tue Dec 17 20:59:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 57 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c286t-5a8aa20926813be5307b284c22d6e9c4fa1815d2ea6b5ae55b6c4427063304c93 |
| Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/c5ra28088e ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2253312545 |
| PQPubID | 24069 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2253312545 crossref_primary_10_1039_C5RA28088E rsc_primary_c5ra28088e crossref_citationtrail_10_1039_C5RA28088E |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-01 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | RSC advances |
| PublicationYear | 2016 |
| References | Austin (C5RA28088E-(cit42)/*[position()=1]) 1958; 72 Goldsmid (C5RA28088E-(cit11)/*[position()=1]) 1954; 5 May (C5RA28088E-(cit39)/*[position()=1]) 2009; 80 Rowe (C5RA28088E-(cit33)/*[position()=1]) 2006 Goldsmid (C5RA28088E-(cit41)/*[position()=1]) 2009 Pei (C5RA28088E-(cit5)/*[position()=1]) 2011; 473 Lu (C5RA28088E-(cit25)/*[position()=1]) 2015; 66 Xie (C5RA28088E-(cit16)/*[position()=1]) 2010; 10 Kim (C5RA28088E-(cit8)/*[position()=1]) 2015; 348 Rowe (C5RA28088E-(cit1)/*[position()=1]) 1995 Hu (C5RA28088E-(cit19)/*[position()=1]) 2014; 24 Wang (C5RA28088E-(cit31)/*[position()=1]) 2013; 23 Yeh (C5RA28088E-(cit20)/*[position()=1]) 2004; 6 Kraemer (C5RA28088E-(cit12)/*[position()=1]) 2011; 10 Dolique (C5RA28088E-(cit27)/*[position()=1]) 2009; 117 Poudel (C5RA28088E-(cit4)/*[position()=1]) 2008; 320 Zhang (C5RA28088E-(cit22)/*[position()=1]) 2014; 61 Heremans (C5RA28088E-(cit3)/*[position()=1]) 2008; 321 Cantor (C5RA28088E-(cit26)/*[position()=1]) 2004; 375 Li (C5RA28088E-(cit17)/*[position()=1]) 2013; 23 Liu (C5RA28088E-(cit18)/*[position()=1]) 2012; 108 Yan (C5RA28088E-(cit34)/*[position()=1]) 2010; 10 Lukas (C5RA28088E-(cit37)/*[position()=1]) 2012; 85 Zhao (C5RA28088E-(cit7)/*[position()=1]) 2014; 508 Sales (C5RA28088E-(cit10)/*[position()=1]) 2002; 295 Yeh (C5RA28088E-(cit21)/*[position()=1]) 2006; 31 Chen (C5RA28088E-(cit29)/*[position()=1]) 2005; 47 Biswas (C5RA28088E-(cit6)/*[position()=1]) 2012; 489 Anderson (C5RA28088E-(cit40)/*[position()=1]) 1963; 24 Zheng (C5RA28088E-(cit14)/*[position()=1]) 2014; 5 Tsai (C5RA28088E-(cit24)/*[position()=1]) 2014; 2 Tsai (C5RA28088E-(cit28)/*[position()=1]) 2009; 486 Cahill (C5RA28088E-(cit38)/*[position()=1]) 1992; 46 Snyder (C5RA28088E-(cit13)/*[position()=1]) 2008; 7 Santodonato (C5RA28088E-(cit23)/*[position()=1]) 2015; 6 Chiu (C5RA28088E-(cit36)/*[position()=1]) 2016; 6 Shen (C5RA28088E-(cit35)/*[position()=1]) 2011; 99 Hsu (C5RA28088E-(cit2)/*[position()=1]) 2004; 303 Shafeie (C5RA28088E-(cit32)/*[position()=1]) 2015; 118 Zhou (C5RA28088E-(cit30)/*[position()=1]) 2007; 454 Bell (C5RA28088E-(cit9)/*[position()=1]) 2008; 321 Pei (C5RA28088E-(cit15)/*[position()=1]) 2011; 21 |
| References_xml | – issn: 1995 publication-title: CRC Handbook of Thermoelectrics doi: Rowe – issn: 2006 publication-title: CRC Handbook of Thermoelectric: Macro to Nano doi: Rowe – issn: 2009 publication-title: Introduction to thermoelectricity doi: Goldsmid – volume: 24 start-page: 5211 year: 2014 ident: C5RA28088E-(cit19)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400474 – volume: 303 start-page: 818 year: 2004 ident: C5RA28088E-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.1092963 – volume: 375 start-page: 213 year: 2004 ident: C5RA28088E-(cit26)/*[position()=1] publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2003.10.257 – volume: 6 start-page: 23143 year: 2016 ident: C5RA28088E-(cit36)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep23143 – volume: 31 start-page: 633 year: 2006 ident: C5RA28088E-(cit21)/*[position()=1] publication-title: Ann. Chim. doi: 10.3166/acsm.31.633-648 – volume: 85 start-page: 205410 year: 2012 ident: C5RA28088E-(cit37)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.85.205410 – volume: 66 start-page: 67 year: 2015 ident: C5RA28088E-(cit25)/*[position()=1] publication-title: Intermetallics doi: 10.1016/j.intermet.2015.06.021 – volume: 10 start-page: 3373 year: 2010 ident: C5RA28088E-(cit34)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl101156v – volume: 486 start-page: 427 year: 2009 ident: C5RA28088E-(cit28)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.06.182 – volume: 320 start-page: 634 year: 2008 ident: C5RA28088E-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1156446 – volume: 10 start-page: 532 year: 2011 ident: C5RA28088E-(cit12)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3013 – volume: 6 start-page: 5964 year: 2015 ident: C5RA28088E-(cit23)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms6964 – volume: 99 start-page: 124102 year: 2011 ident: C5RA28088E-(cit35)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3643051 – volume: 7 start-page: 105 year: 2008 ident: C5RA28088E-(cit13)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2090 – volume: 46 start-page: 6131 year: 1992 ident: C5RA28088E-(cit38)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.46.6131 – volume: 24 start-page: 909 year: 1963 ident: C5RA28088E-(cit40)/*[position()=1] publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(63)90067-2 – volume-title: CRC Handbook of Thermoelectric: Macro to Nano year: 2006 ident: C5RA28088E-(cit33)/*[position()=1] – volume: 295 start-page: 1248 year: 2002 ident: C5RA28088E-(cit10)/*[position()=1] publication-title: Science doi: 10.1126/science.1069895 – volume: 508 start-page: 373 year: 2014 ident: C5RA28088E-(cit7)/*[position()=1] publication-title: Nature doi: 10.1038/nature13184 – volume: 117 start-page: 142 year: 2009 ident: C5RA28088E-(cit27)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2009.05.025 – volume: 321 start-page: 1457 year: 2008 ident: C5RA28088E-(cit9)/*[position()=1] publication-title: Science doi: 10.1126/science.1158899 – volume: 473 start-page: 66 year: 2011 ident: C5RA28088E-(cit5)/*[position()=1] publication-title: Nature doi: 10.1038/nature09996 – volume-title: CRC Handbook of Thermoelectrics year: 1995 ident: C5RA28088E-(cit1)/*[position()=1] doi: 10.1201/9781420049718 – volume: 21 start-page: 241 year: 2011 ident: C5RA28088E-(cit15)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000878 – volume: 489 start-page: 414 year: 2012 ident: C5RA28088E-(cit6)/*[position()=1] publication-title: Nature doi: 10.1038/nature11439 – volume: 5 start-page: 386 year: 1954 ident: C5RA28088E-(cit11)/*[position()=1] publication-title: Br. J. Appl. Phys. doi: 10.1088/0508-3443/5/11/303 – volume: 454 start-page: 260 year: 2007 ident: C5RA28088E-(cit30)/*[position()=1] publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2006.11.049 – volume: 72 start-page: 545 year: 1958 ident: C5RA28088E-(cit42)/*[position()=1] publication-title: Proc. Phys. Soc. doi: 10.1088/0370-1328/72/4/309 – volume: 23 start-page: 4317 year: 2013 ident: C5RA28088E-(cit17)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300146 – volume: 108 start-page: 166601 year: 2012 ident: C5RA28088E-(cit18)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.166601 – volume: 321 start-page: 554 year: 2008 ident: C5RA28088E-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.1159725 – volume: 6 start-page: 299 year: 2004 ident: C5RA28088E-(cit20)/*[position()=1] publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 10 start-page: 3283 year: 2010 ident: C5RA28088E-(cit16)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl100804a – volume: 118 start-page: 184905 year: 2015 ident: C5RA28088E-(cit32)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.4935489 – volume: 5 start-page: 1401391 year: 2014 ident: C5RA28088E-(cit14)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401391 – volume: 80 start-page: 125205 year: 2009 ident: C5RA28088E-(cit39)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.80.125205 – volume: 47 start-page: 2257 year: 2005 ident: C5RA28088E-(cit29)/*[position()=1] publication-title: Corros. Sci. doi: 10.1016/j.corsci.2004.11.008 – volume: 348 start-page: 109 year: 2015 ident: C5RA28088E-(cit8)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa4166 – volume: 23 start-page: 1586 year: 2013 ident: C5RA28088E-(cit31)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201576 – volume: 61 start-page: 1 year: 2014 ident: C5RA28088E-(cit22)/*[position()=1] publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 2 start-page: 107 year: 2014 ident: C5RA28088E-(cit24)/*[position()=1] publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2014.912690 – volume-title: Introduction to thermoelectricity year: 2009 ident: C5RA28088E-(cit41)/*[position()=1] |
| SSID | ssj0000651261 |
| Score | 2.495378 |
| Snippet | Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Herein, a novel alloy... |
| SourceID | proquest crossref rsc |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 52164 |
| SubjectTerms | alloys silver thermal conductivity |
| Title | Thermoelectric high-entropy alloys with low lattice thermal conductivity |
| URI | https://www.proquest.com/docview/2253312545 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2046-2069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection 2023 customDbUrl: https://pubs.rsc.org eissn: 2046-2069 dateEnd: 20161231 omitProxy: true ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: AETIL dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOcAF8apYXjKCC6pSEr-aHKtV0QqpHEqr7i1yvI6EtCTVkhUqB347n2MnTqVFAi5R4iQ-zGeNv5nxzBDyjhVa8NSoxOQ1S0Re50mltE1Wq7Q22I4zn19x9lktLsWnpVzG3nx9dklXHZmfO_NK_gdVjAFXlyX7D8iOk2IA98AXVyCM699ivPnW-k42rlY1DO3EeWvb65tDF1C_Cblr6_bH4Vp37pybI5rQxa4oSONKvfa9I6YM9fzLfDgYEFNDvJd0DGJcBSfzGGa62kZV7k73fO2fl0ch6BS8CtnUq2B77cNgOEPYvo_KoCrVZEX4utJB74EE-GLkYRPF8_FOBZ1yV9_UyI1mORScjdvQeDgwvtwjdxmUtevIcfYrus7AmjIYfkOxWV58iL_cphfRZtjbDA1deuJw8ZA8CIyfnnj4HpE7tnlM7s2HRntPyOI2jHQKI_UwUgcjBYw0wEgDjHQK41Ny-fH0Yr5IQoOLxLBcdYnUudYsLZjKM15ZCX1bgS4YxlbKFkbUGvxLrpjVqpLaSlkpIwQ7Bq3kqTAFPyD7TdvYZ4SaOtfgZjBCLAxEiz9MZqTApAKstmAz8n6QS2lC9XfXhGRd9qcQeFHO5flJL8PTGXk7fnvta57s_OrNIN4SAnNxJt3Ydvu9xBbBOYizkDNyALmPk0SYnv_pxQtyPy7Hl2S_22ztK9C-rnrdL4LfnolZpQ |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermoelectric+high-entropy+alloys+with+low+lattice+thermal+conductivity&rft.jtitle=RSC+advances&rft.au=Fan%2C+Z&rft.au=Wang%2C+H&rft.au=Wu%2C+Y&rft.au=Liu%2C+X.+J&rft.date=2016-01-01&rft.eissn=2046-2069&rft.volume=6&rft.issue=57&rft.spage=52164&rft.epage=5217&rft_id=info:doi/10.1039%2Fc5ra28088e&rft.externalDocID=c5ra28088e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |