AUTO: supervised learning with full model search and global optimisation

The AUTO algorithm is presented to incrementally build models and solve supervised learning problems. AUTO uses traditional derivative-free optimisation, like genetic algorithms, to search the problem space of arbitrary functions. With reinforcement learning, AUTO learns actions to guide its search...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental & theoretical artificial intelligence Vol. 36; no. 8; pp. 1619 - 1630
Main Authors Lovinger, Justin, Valova, Iren
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 16.11.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0952-813X
1362-3079
DOI10.1080/0952813X.2023.2165717

Cover

Abstract The AUTO algorithm is presented to incrementally build models and solve supervised learning problems. AUTO uses traditional derivative-free optimisation, like genetic algorithms, to search the problem space of arbitrary functions. With reinforcement learning, AUTO learns actions to guide its search process and gradually improve performance. A comparative analysis is presented exploring supervised learning performance and interpretability of AUTO models. Results indicate AUTO outperforms genetic programming and rivals multilayer perceptrons. AUTO automatically builds models to closely match datasets without the limited search space of traditional supervised learning. With enough time and computational resources, AUTO can generate any function.
AbstractList The AUTO algorithm is presented to incrementally build models and solve supervised learning problems. AUTO uses traditional derivative-free optimisation, like genetic algorithms, to search the problem space of arbitrary functions. With reinforcement learning, AUTO learns actions to guide its search process and gradually improve performance. A comparative analysis is presented exploring supervised learning performance and interpretability of AUTO models. Results indicate AUTO outperforms genetic programming and rivals multilayer perceptrons. AUTO automatically builds models to closely match datasets without the limited search space of traditional supervised learning. With enough time and computational resources, AUTO can generate any function.
Author Valova, Iren
Lovinger, Justin
Author_xml – sequence: 1
  givenname: Justin
  surname: Lovinger
  fullname: Lovinger, Justin
  email: auto@justinlovinger.com
  organization: University of Massachusetts Dartmouth
– sequence: 2
  givenname: Iren
  surname: Valova
  fullname: Valova, Iren
  organization: University of Massachusetts Dartmouth
BookMark eNp9kNFKwzAUhoNMcJs-ghDwuvMksU3rlWOoEwa72cC7kLbJlpEmNekce3tbprdeHTjn-_8D3wSNnHcKoXsCMwI5PEKR0pywzxkFymaUZCkn_AqNCctowoAXIzQemGSAbtAkxgMAkJSQMVrOt5v1M47HVoVvE1WNrZLBGbfDJ9PtsT5aixtfK4tjf6j2WLoa76wvpcW-7UxjouyMd7foWksb1d3vnKLt2-tmsUxW6_ePxXyVVDTPuiTlWaZpkVeg4IkrRWQNlZbAJC81KTJaAK_yLNcsL6lkrAAqq5Qp2i9TmZVsih4uvW3wX0cVO3Hwx-D6l4IRCoxTAqyn0gtVBR9jUFq0wTQynAUBMUgTf9LEIE38SutzL5eccdqHRp58sLXo5Nn6oIN0lRne_FvxA1-fdKk
Cites_doi 10.1016/j.swevo.2017.09.008
10.1109/TSMCC.2009.2033566
10.1109/5254.671091
10.1016/j.chb.2014.09.034
10.1109/TNN.2006.875977
10.1007/BF00175354
10.1090/S0025-5718-1970-0274029-X
10.2307/1909768
10.1109/34.291440
10.1007/s00500-018-03729-y
10.1007/BF01589116
10.1090/S0025-5718-1970-0258249-6
10.1093/imamat/6.3.222
10.1016/S0167-7152(96)00140-X
10.1016/j.cam.2018.09.012
10.1016/j.procs.2014.09.033
10.1016/j.knosys.2011.04.014
10.1109/TNN.2004.836241
10.1109/TCYB.2020.3032945
10.1007/978-0-387-30164-8_630
10.1093/imamat/6.1.76
10.1016/j.ymssp.2004.03.002
10.1016/j.ijepes.2021.106988
10.1137/S1052623401383455
10.1109/4235.996017
10.1016/j.esr.2021.100760
10.1093/comjnl/13.3.317
10.1016/j.jsv.2005.09.004
10.1016/j.energy.2020.118306
10.1016/j.amc.2019.124777
10.1109/ICASSP.2013.6639016
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
JQ2
DOI 10.1080/0952813X.2023.2165717
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1362-3079
EndPage 1630
ExternalDocumentID 10_1080_0952813X_2023_2165717
2165717
Genre Research Article
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
29K
2DF
30N
4.4
5GY
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D-I
DGEBU
DKSSO
EAP
EBR
EBS
EBU
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
ACUHS
ADYSH
JQ2
ID FETCH-LOGICAL-c286t-5766f298c0e047ee1ad0cfa03a7bf1962907c868f38b2a33902ac53e2c865a6b3
ISSN 0952-813X
IngestDate Sat Jul 26 00:36:12 EDT 2025
Wed Oct 01 03:54:39 EDT 2025
Mon Oct 20 23:45:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-5766f298c0e047ee1ad0cfa03a7bf1962907c868f38b2a33902ac53e2c865a6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3120372103
PQPubID 53008
PageCount 12
ParticipantIDs informaworld_taylorfrancis_310_1080_0952813X_2023_2165717
proquest_journals_3120372103
crossref_primary_10_1080_0952813X_2023_2165717
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-16
PublicationDateYYYYMMDD 2024-11-16
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-16
  day: 16
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of experimental & theoretical artificial intelligence
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_29_1
Poli R. (e_1_3_2_34_1) 2008
Bollapragada R. (e_1_3_2_3_1) 2018
e_1_3_2_42_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_46_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_26_1
Maas A. L. (e_1_3_2_27_1) 2013; 30
Lichman M. (e_1_3_2_23_1) 2013
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_17_1
Mitchell M. (e_1_3_2_28_1) 1993; 6
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
Glorot X. (e_1_3_2_12_1) 2011
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
Sutton R. S. (e_1_3_2_36_1) 2018
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_37_1
Xiao W. (e_1_3_2_40_1) 2004; 3
Hrnjica B. (e_1_3_2_16_1) 2018
Goodfellow I. (e_1_3_2_15_1) 2016
Nocedal J. (e_1_3_2_30_1) 2006
References_xml – ident: e_1_3_2_22_1
  doi: 10.1016/j.swevo.2017.09.008
– ident: e_1_3_2_10_1
  doi: 10.1109/TSMCC.2009.2033566
– ident: e_1_3_2_43_1
  doi: 10.1109/5254.671091
– volume: 6
  start-page: 51
  year: 1993
  ident: e_1_3_2_28_1
  article-title: When will a genetic algorithm outperform hill climbing
  publication-title: Advances in Neural Information Processing Systems
– volume-title: Numerical optimization
  year: 2006
  ident: e_1_3_2_30_1
– start-page: 315
  volume-title: International Conference on Artificial Intelligence and Statistics
  year: 2011
  ident: e_1_3_2_12_1
– ident: e_1_3_2_41_1
  doi: 10.1016/j.chb.2014.09.034
– ident: e_1_3_2_17_1
  doi: 10.1109/TNN.2006.875977
– ident: e_1_3_2_39_1
  doi: 10.1007/BF00175354
– ident: e_1_3_2_35_1
  doi: 10.1090/S0025-5718-1970-0274029-X
– ident: e_1_3_2_14_1
  doi: 10.2307/1909768
– ident: e_1_3_2_19_1
  doi: 10.1109/34.291440
– ident: e_1_3_2_8_1
  doi: 10.1007/s00500-018-03729-y
– ident: e_1_3_2_24_1
  doi: 10.1007/BF01589116
– ident: e_1_3_2_13_1
  doi: 10.1090/S0025-5718-1970-0258249-6
– ident: e_1_3_2_5_1
  doi: 10.1093/imamat/6.3.222
– ident: e_1_3_2_32_1
  doi: 10.1016/S0167-7152(96)00140-X
– ident: e_1_3_2_2_1
– volume-title: Optimized genetic programming applications: Emerging research and opportunities: Emerging research and opportunities
  year: 2018
  ident: e_1_3_2_16_1
– volume-title: UCI machine learning repository
  year: 2013
  ident: e_1_3_2_23_1
– ident: e_1_3_2_20_1
  doi: 10.1016/j.cam.2018.09.012
– ident: e_1_3_2_26_1
  doi: 10.1016/j.procs.2014.09.033
– ident: e_1_3_2_38_1
  doi: 10.1016/j.knosys.2011.04.014
– ident: e_1_3_2_18_1
  doi: 10.1109/TNN.2004.836241
– ident: e_1_3_2_33_1
  doi: 10.1109/TCYB.2020.3032945
– ident: e_1_3_2_21_1
  doi: 10.1007/978-0-387-30164-8_630
– start-page: 620
  volume-title: International Conference on Machine Learning
  year: 2018
  ident: e_1_3_2_3_1
– ident: e_1_3_2_4_1
  doi: 10.1093/imamat/6.1.76
– ident: e_1_3_2_45_1
  doi: 10.1016/j.ymssp.2004.03.002
– year: 2008
  ident: e_1_3_2_34_1
  article-title: A field guide to genetic programming
  publication-title: Lulu com
– ident: e_1_3_2_46_1
  doi: 10.1016/j.ijepes.2021.106988
– volume: 30
  start-page: 3
  issue: 1
  year: 2013
  ident: e_1_3_2_27_1
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proceeding ICMLProceeding ICML
– ident: e_1_3_2_7_1
  doi: 10.1137/S1052623401383455
– ident: e_1_3_2_31_1
– ident: e_1_3_2_9_1
  doi: 10.1109/4235.996017
– ident: e_1_3_2_6_1
  doi: 10.1016/j.esr.2021.100760
– ident: e_1_3_2_11_1
  doi: 10.1093/comjnl/13.3.317
– ident: e_1_3_2_42_1
  doi: 10.1016/j.jsv.2005.09.004
– volume-title: Reinforcement learning: An introduction
  year: 2018
  ident: e_1_3_2_36_1
– ident: e_1_3_2_29_1
  doi: 10.1016/j.energy.2020.118306
– ident: e_1_3_2_44_1
  doi: 10.1016/j.amc.2019.124777
– ident: e_1_3_2_37_1
  doi: 10.1109/ICASSP.2013.6639016
– volume: 3
  start-page: 1957
  volume-title: Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual
  year: 2004
  ident: e_1_3_2_40_1
– volume-title: Deep learning
  year: 2016
  ident: e_1_3_2_15_1
SSID ssj0001511
Score 2.3531363
Snippet The AUTO algorithm is presented to incrementally build models and solve supervised learning problems. AUTO uses traditional derivative-free optimisation, like...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 1619
SubjectTerms Genetic algorithms
genetic programming
Global optimization
Machine learning
machine programming
Mathematical optimization
Multilayer perceptrons
Performance enhancement
Search process
Supervised learning
Title AUTO: supervised learning with full model search and global optimisation
URI https://www.tandfonline.com/doi/abs/10.1080/0952813X.2023.2165717
https://www.proquest.com/docview/3120372103
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1362-3079
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511
  issn: 0952-813X
  databaseCode: AHDZW
  dateStart: 19960101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1362-3079
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511
  issn: 0952-813X
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLZGuewCYzBRfsmH3VAqx07jeDfEQAVp26UwtEtkp7aEBC2CwIG_fu_ZTptC0QZcoshREsvv8_PnJ7_vEfI1Q8GRDNM-jOBJJkdpopQcJdJx4SxQDmNwo_jjZz44y04v-hezY0U-u6Q2vepxYV7JW6wKbWBXzJJ9hWWnH4UGuAf7whUsDNf_sjF04xdu6e_ub3DK3wF5vGpCHT7AisH1UOxmP4Y3ME4eRUAm4C2u42meFzjqnP4_gqSd94gdivoTly1hz-kRHx-rCIjwNcOmMDzXV5MHT1pPmky0GHfgGSbghbRIj5ThsxIgc7FFcLOpL_QLi0zwrJieBQ5FtV1v0D6JECtafhR4qGqtyUAa2UJ_Hw9Iwv_wdz2sBd_jad6XISH0iZR2fLJEljmsAaxDlg8G3__8nq7cwH7SoM0Yut9kfKEW-6JfzHGZOaXbZyu7pyvDT2Ql2pAeBNCskQ92_JmsNjU8aHTp62SAGPpGZwiiDYIoIogigqhHEA0IooAgGhBE2wjaIGfHR8PDQRKrayQVL_I6gY1m7rgqKmZZJq1N9YhVTjOhpXHgl7lisirywonCcC2EYlxXfWE5NPZ1bsQX0hlPxnaTUHieukJqXWkOZAemvZGFk1YZ4YDB6i7pNeNU3gQRlTJttGnjwJY4sGUc2C5R7dEsaw82F3BWin-8u9MMfRnnKr7CmZA8ZWLrHZ_eJh9nM2GHdOrbe7sLnLQ2exFKfwF0j4en
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDLBQnqJQwANrQmInscOGEFWAtiyt1C2yHZsB0VY0Xfj1nBMHURBi6BrLTmLf07r7PoSuIgs4Etm2D0mJF7Ei9NKUFR4zhBoNIYeUNlEcDJNsHD1O4sm3XhhbVmlzaFMDRVS22iq3vYxuSuKuISwgPKQT33J_-yRMYkhKNtFWDMG-ZTGgwfDLGoNHC2u8PdB8mNN08fy1zIp_WkEv_WWtKxfUayPVfHxdefLqL0vpq48fuI7r_d0e2nURKr6tRWofbejpAWo37A_YGYNDlIFoP9_gxXJuzc1CF9gxULxge7mL7dtwRbSDa3XC8Em4BiDBM7BUb66S6AiNe_eju8xzvAyeIjwpPUhREkNSrgIdREzrUBSBMiKggkkDGk0g4VY84YZySQSlaUCEiqkm8DAWiaTHqDWdTfUJwjAeGs6EUIKAmwSBkYwbplNJDcQ-ooP85jTyeQ2_kYcNqqnbp9zuU-72qYPS72eWl9W9h6lJSnL6z9xuc8C502Q7hQQU0uSAnq6x9CXazkaDft5_GD6doR0YimxDY5h0Uat8X-pziGxKeVGJ7ic73-pc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSIiF8hSFAh5YE_xI7IQNAVV5FQYqdYvsxGZAtBVNF34958RBFIQYWGPZcnxv--47hE4iBzgSubIPzVkQyYIGaSqLQFrGrQGXQ2sXKN4PRH8Y3YziJptw5tMqXQxta6CISlc74Z4WtsmIOwWvgCWUj0LX-jtkVMQQkyyjFeFexVwVBxl8KmMwaLSG2wPBhzlNEc9vyyyYpwXw0h_KurJAvTbSzd7rxJOXcF7qMH__Buv4r5_bQOveP8XnNUNtoiUz3kLtpvcD9qpgG_WBsR_O8Gw-dcpmZgrs-088Y3e1i921Pq7a7OBamDDsCNfwI3gCeurV5xHtoGHv6umiH_iuDEHOElEGEKAIy9IkJ4ZE0hiqCpJbRbiS2oI8Mwi380QklieaKc5TwlQec8PgY6yE5ruoNZ6MzR7CME5tIpXKFQMjCeyiZWKlSTW34PmoDgobYmTTGnwjow2mqT-nzJ1T5s-pg9KvJMvK6tbD1i1KMv7H3G5D38zLsZvCCIcgmfD9fyx9jFYfL3vZ3fXg9gCtwUjkqhmp6KJW-TY3h-DWlPqoYtwPY8fpAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AUTO%3A+supervised+learning+with+full+model+search+and+global+optimisation&rft.jtitle=Journal+of+experimental+%26+theoretical+artificial+intelligence&rft.au=Lovinger%2C+Justin&rft.au=Valova%2C+Iren&rft.date=2024-11-16&rft.pub=Taylor+%26+Francis&rft.issn=0952-813X&rft.eissn=1362-3079&rft.volume=36&rft.issue=8&rft.spage=1619&rft.epage=1630&rft_id=info:doi/10.1080%2F0952813X.2023.2165717&rft.externalDocID=2165717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-813X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-813X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-813X&client=summon