Optimal design of step-stress accelerated degradation tests based on genetic algorithm and neural network
In this study, the optimal design of step-stress accelerated degradation tests is focused. An optimization model is proposed where an improved accelerated degradation model is involved to comprehensively consider the influence of accelerated stress and the measurement error. Then, a novel optimal de...
        Saved in:
      
    
          | Published in | Quality engineering Vol. 36; no. 1; pp. 66 - 79 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Milwaukee
          Taylor & Francis
    
        02.01.2024
     Taylor & Francis Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0898-2112 1532-4222  | 
| DOI | 10.1080/08982112.2023.2225583 | 
Cover
| Abstract | In this study, the optimal design of step-stress accelerated degradation tests is focused. An optimization model is proposed where an improved accelerated degradation model is involved to comprehensively consider the influence of accelerated stress and the measurement error. Then, a novel optimal design method is constructed, where multiple decision variables can be simultaneously optimized based on neural network and genetic algorithm. An effective sensitivity analysis method is further established to quantitively illustrate the influence of the predetermined model parameters on the optimal results. Finally, a case study is implemented, and a series of comparisons are implemented to demonstrate the effectiveness and rationality of the proposed method. | 
    
|---|---|
| AbstractList | In this study, the optimal design of step-stress accelerated degradation tests is focused. An optimization model is proposed where an improved accelerated degradation model is involved to comprehensively consider the influence of accelerated stress and the measurement error. Then, a novel optimal design method is constructed, where multiple decision variables can be simultaneously optimized based on neural network and genetic algorithm. An effective sensitivity analysis method is further established to quantitively illustrate the influence of the predetermined model parameters on the optimal results. Finally, a case study is implemented, and a series of comparisons are implemented to demonstrate the effectiveness and rationality of the proposed method. | 
    
| Author | Wang, Zhihua Bao, Rui Mao, Zelong Ren, Kunpeng Liu, Gen  | 
    
| Author_xml | – sequence: 1 givenname: Gen surname: Liu fullname: Liu, Gen organization: School of Aeronautic Science and Engineering, Beihang University – sequence: 2 givenname: Zhihua surname: Wang fullname: Wang, Zhihua organization: School of Aeronautic Science and Engineering, Beihang University – sequence: 3 givenname: Rui surname: Bao fullname: Bao, Rui organization: School of Aeronautic Science and Engineering, Beihang University – sequence: 4 givenname: Zelong surname: Mao fullname: Mao, Zelong organization: Navigation Instrument Research Institute – sequence: 5 givenname: Kunpeng surname: Ren fullname: Ren, Kunpeng organization: Navigation Instrument Research Institute  | 
    
| BookMark | eNp9kE1LAzEQhoNUsK3-BCHgeWs-9iN7U8QvKPSi5zC7mdSt26QmKdJ_b0r16ilM5pk3mWdGJs47JOSaswVnit0y1SrBuVgIJuRCCFFVSp6RKa-kKMpcT8j0yBRH6ILMYtwwxpVq5ZQMq10atjBSg3FYO-otjQl3RUwBY6TQ9zhigIQmE-sABtLgHU0YU6QdxHyfyzU6TENPYVz7MKSPLQVnqMN9yMm59e3D5yU5tzBGvPo95-T96fHt4aVYrp5fH-6XRS9UnQpulawU7wyUrC7LTlmjpDJlC6zFroNGNGXd17ZhnQTVcVMrVGi7tkFAUXM5Jzen3F3wX_v8T73x--Dyk1q0vCrLRlUiU9WJ6oOPMaDVu5A9hIPmTB-t6j-r-mhV_1rNc3enucFZH7aQNxuNTnAYfbABXD9ELf-P-AEruIHI | 
    
| Cites_doi | 10.1016/j.fss.2011.08.011 10.1080/07408170490507701 10.21629/JSEE.2017.05.21 10.1109/72.97934 10.1109/TR.2005.863811 10.1109/RAMS.2011.5754481 10.1109/JSEE.2015.00058 10.1080/08982112.2017.1307391 10.1007/s10898-018-0629-y 10.4028/www.scientific.net/AMM.157-158.1595 10.1080/02664760903406488 10.1080/08982112.2018.1545238 10.1109/ACCESS.2017.2683533 10.1002/asmb.2332 10.1002/qre.1489 10.1080/08982112.2020.1755686 10.1080/07408170802322697 10.1016/j.microrel.2021.114334 10.1126/science.aaa8415 10.1109/ICRMS.2009.5270017 10.1109/RAMS.2004.1285469 10.1016/j.enconman.2007.06.002 10.7232/iems.2017.16.2.155  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Taylor & Francis Group, LLC 2023 2023 Taylor & Francis Group, LLC  | 
    
| Copyright_xml | – notice: 2023 Taylor & Francis Group, LLC 2023 – notice: 2023 Taylor & Francis Group, LLC  | 
    
| DBID | AAYXX CITATION U9A  | 
    
| DOI | 10.1080/08982112.2023.2225583 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef Career and Technical Education (Alumni Edition)  | 
    
| DatabaseTitleList | Career and Technical Education (Alumni Edition)  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1532-4222 | 
    
| EndPage | 79 | 
    
| ExternalDocumentID | 10_1080_08982112_2023_2225583 2225583  | 
    
| Genre | Research Article | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11872085  | 
    
| GroupedDBID | .7F .QJ 0BK 0R~ 123 29P 2DF 30N 4.4 5VS 8V8 A8Z AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACIWK ACMJI ACTIO ADCVX ADGTB ADMLS ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBO EBR EBS EBU EJD EMK EPL ESTFP E~A E~B GTTXZ H13 HFX HF~ HZ~ H~P I-F IHF IPNFZ IRD ITF ITG ITH J.P K1G KYCEM LJTGL M4Z MK~ NA5 NX~ O9- P2P PQQKQ PUD RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TNC TTHFI TUROJ TWF UNMZH UT5 UU3 WH7 ZGOLN ~S~ ~ZZ AAYXX CITATION U9A  | 
    
| ID | FETCH-LOGICAL-c286t-1f83581bda40644b8fd838d49a09ebba72746c6f70b3a8b1d68e8efb97eae2613 | 
    
| ISSN | 0898-2112 | 
    
| IngestDate | Tue Aug 12 21:46:51 EDT 2025 Wed Oct 01 05:13:09 EDT 2025 Mon Oct 20 23:44:48 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c286t-1f83581bda40644b8fd838d49a09ebba72746c6f70b3a8b1d68e8efb97eae2613 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2915447852 | 
    
| PQPubID | 35987 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_journals_2915447852 informaworld_taylorfrancis_310_1080_08982112_2023_2225583 crossref_primary_10_1080_08982112_2023_2225583  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-01-02 | 
    
| PublicationDateYYYYMMDD | 2024-01-02 | 
    
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-02 day: 02  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Milwaukee | 
    
| PublicationPlace_xml | – name: Milwaukee | 
    
| PublicationTitle | Quality engineering | 
    
| PublicationYear | 2024 | 
    
| Publisher | Taylor & Francis Taylor & Francis Ltd  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd  | 
    
| References | e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 Huang G. (e_1_3_2_8_1) 2012; 2012 He L. (e_1_3_2_7_1) 2018; 2 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_18_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_10_1 e_1_3_2_11_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1  | 
    
| References_xml | – ident: e_1_3_2_17_1 doi: 10.1016/j.fss.2011.08.011 – ident: e_1_3_2_20_1 doi: 10.1080/07408170490507701 – ident: e_1_3_2_4_1 doi: 10.21629/JSEE.2017.05.21 – ident: e_1_3_2_18_1 doi: 10.1109/72.97934 – ident: e_1_3_2_12_1 doi: 10.1109/TR.2005.863811 – ident: e_1_3_2_6_1 doi: 10.1109/RAMS.2011.5754481 – ident: e_1_3_2_10_1 doi: 10.1109/JSEE.2015.00058 – ident: e_1_3_2_16_1 doi: 10.1080/08982112.2017.1307391 – ident: e_1_3_2_3_1 doi: 10.1007/s10898-018-0629-y – ident: e_1_3_2_5_1 doi: 10.4028/www.scientific.net/AMM.157-158.1595 – ident: e_1_3_2_13_1 doi: 10.1080/02664760903406488 – ident: e_1_3_2_24_1 doi: 10.1080/08982112.2018.1545238 – ident: e_1_3_2_11_1 doi: 10.1109/ACCESS.2017.2683533 – ident: e_1_3_2_26_1 doi: 10.1002/asmb.2332 – ident: e_1_3_2_21_1 doi: 10.1002/qre.1489 – ident: e_1_3_2_14_1 doi: 10.1080/08982112.2020.1755686 – ident: e_1_3_2_15_1 doi: 10.1080/07408170802322697 – ident: e_1_3_2_23_1 doi: 10.1016/j.microrel.2021.114334 – volume: 2 start-page: 1 issue: 5 year: 2018 ident: e_1_3_2_7_1 article-title: Step-stress accelerated degradation test planning based on wiener process with correlation publication-title: Statistical Theory & Related Fields – volume: 2012 start-page: 962 year: 2012 ident: e_1_3_2_8_1 article-title: Optimization of step stress accelerated degradation test plans based on MSE for mean life of product publication-title: Digital Technology & Application – ident: e_1_3_2_9_1 doi: 10.1126/science.aaa8415 – ident: e_1_3_2_22_1 doi: 10.1109/ICRMS.2009.5270017 – ident: e_1_3_2_25_1 doi: 10.1109/RAMS.2004.1285469 – ident: e_1_3_2_2_1 doi: 10.1016/j.enconman.2007.06.002 – ident: e_1_3_2_19_1 doi: 10.7232/iems.2017.16.2.155  | 
    
| SSID | ssj0018893 | 
    
| Score | 2.3323 | 
    
| Snippet | In this study, the optimal design of step-stress accelerated degradation tests is focused. An optimization model is proposed where an improved accelerated... | 
    
| SourceID | proquest crossref informaworld  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 66 | 
    
| SubjectTerms | Accelerated tests Degradation Design optimization Error analysis genetic algorithm Genetic algorithms multiple decision variables Neural networks optimal design Optimization models proxy model Sensitivity analysis step-stress accelerated degradation test  | 
    
| Title | Optimal design of step-stress accelerated degradation tests based on genetic algorithm and neural network | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/08982112.2023.2225583 https://www.proquest.com/docview/2915447852  | 
    
| Volume | 36 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1532-4222 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0018893 issn: 0898-2112 databaseCode: A8Z dateStart: 20010301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-4222 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0018893 issn: 0898-2112 databaseCode: ADMLS dateStart: 20010301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1532-4222 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0018893 issn: 0898-2112 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-4222 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0018893 issn: 0898-2112 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxsxFBauc2kPoStNmxYdmpMZM_tIx9DEmJImUMbE-CI0Gk08kNiuM3NI_0n_bZ-WWYxDt8tgy7aE9T7pLXr6HkKf4igqlNflhMKLnZBT4VDhZU5OVR1u7heRvsX_9TKezsIv82g-GPzsZS3VVTYWPx69V_I_UoU2kKu6JfsPkm07hQZ4DfKFJ0gYnn8l4ytY73fqlEWnYSi7D2S2cez9Dy4E6BRFBZHDN2623JRPGoFxWd2PlPrK1VEB9C41a-vtzXpbVktTM0PxXELPK5Ml3jdhDevGw0h2TIZtVk9Zmzh7i7hrG45eLMtl3fn-XAdov9VlFxDXLQt5u7bd2UiEH-pIROe3pntFQXqZSXo_oyA-z2ZNy2a_9R0VhepvyIYRZQd4ZneN456eNjVo9jSATZmEsdRQY1Udfqx82sjUy9ll3L68YpPZxQVLz-fpSTDZfHdUOTJ1bH8SnBm8PEEHPigMd4gOTqdni-v2iIoQw-jc_Kvmepgibn9s9B3DZ4cWd88M0LZN-hwdWqcEnxqEvUADuXqJnvWoKl-h0mING6zhdYF7WMM9rOEe1rDGGtZYw_DWYg23WMOANWywhi3WXqPZ5Dz9PHVsmQ5H-CSuHK8gikQvyzkYh2GYkSInAclDyl0qs4yDhRzGIi4SNws4ybw8JpLIIqOJ5BIc-OANGq7WK_kW4TxwqfBd6ns8CSMieULCKJeBKKSkIo-O0LiZQ7YxbCzMa0hu7aQzNenMTvoRov2ZZpXGaGHgyYI__Pa4EQuzi_6e-VTRVyUk8t_9_uP36Gm3Ro7RsNrW8gPYr1X20SLpF45cmq4 | 
    
| linkProvider | Library Specific Holdings | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHFoOpS8EhRYfevU2ie3EPlYVaMtjewGJm-UnRcAuWsKFX89MnKAFVHHgGMVjOfZ4Xpn5hpAftZQJvS4mfFkzYbVn2peOBY19uG2VZFfFfzSpxydi_1SeLtTCYFol-tApA0V0shovNwajh5S4n4XSChwXrKOq-Ag9Fqn4G7IiwdjHLga8mDz8SVAqA-8CCUOaoYrnf9M80k-P0EufSetOBe2tET8sPmeeXIxuWzfyd09wHV_3dR_I-95Cpb8yS30kS3H6iawu4BZ-Jud_QdBcwaDQ5X_QWaLALNcsF55Q6z0oM8SgCDDibG5z3yYKVm17Q1FvBgqPwLpYQUnt5dlsft7-u6KwZooAmzDzNKenfyEne7vHv8es79nAfKXqlpVJIaKaCxYsBSGcSkFxFYS2hY7OWTCXRO3r1BSOW-XKUKuoYnK6iTaCN8fXyfJ0No0bhAZeaF8VuiptI6SKtlFChsh9ilH7IDfJaDgpc52hOUw5IJ72e2hwD02_h5tEL56nabuYSMoNTAx_gXZ7OHzT3_IbU2nEMmqUrL6-Yuod8nZ8fHRoDv9MDrbIO3gluhhPtU2W2_lt_AZWT-u-d2x9D2de9WM | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZKKlX0UMpLhJbiQ69e9mHv2seqEPVF4NBIvVl-thFkEyXbS3894_UuSkCIQ44r2yOvZ-yZsWe-Qei0ZMwHr4tQk5WEKmGIMJkmVoQ63Cr3rM3i_zouLyb06o710YSrLqwy-NA-AkW0Z3XY3Avr-4i4TykXHPyWkEaVF0lwWBgvnqHdMryKhSyOdPz7IYHziLsLQ0gY0yfx_IvMhnraAC_967BuNdDoBdL93GPgyY_ksdGJefoD1nGrnztEB519is-iQL1EO65-hfbXUAtfo-k3OGZm0Mm20R947jGIyoLEtBOsjAFVFhAoLPS4X6pYtQmDTduscNCaFsMnCG7In8Tq5_18OW0eZhimjAO8JlCuY3D6GzQZfbk9vyBdxQZicl42JPM84Klpq8BOoFRzb3nBLRUqFU5rBcYSLU3pq1QXiuvMltxx57WonHLgyxVv0aCe1-4dwrZIhclTkWeqoow7VXHKrCuMd04Yy4Yo6RklFxGYQ2Y93mm3hjKsoezWcIjEOjtl096I-Fi-RBb_GXvc8152e3wlcxGQjCrO8vdbkP6I9r5_Hsmby_H1EXoOLbS94MmP0aBZProPYPI0-qQV6l9oK_QH | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+step-stress+accelerated+degradation+tests+based+on+genetic+algorithm+and+neural+network&rft.jtitle=Quality+engineering&rft.au=Liu%2C+Gen&rft.au=Wang%2C+Zhihua&rft.au=Bao%2C+Rui&rft.au=Mao%2C+Zelong&rft.date=2024-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0898-2112&rft.eissn=1532-4222&rft.volume=36&rft.issue=1&rft.spage=66&rft.epage=79&rft_id=info:doi/10.1080%2F08982112.2023.2225583&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-2112&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-2112&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-2112&client=summon |