Optimal design of step-stress accelerated degradation tests based on genetic algorithm and neural network

In this study, the optimal design of step-stress accelerated degradation tests is focused. An optimization model is proposed where an improved accelerated degradation model is involved to comprehensively consider the influence of accelerated stress and the measurement error. Then, a novel optimal de...

Full description

Saved in:
Bibliographic Details
Published inQuality engineering Vol. 36; no. 1; pp. 66 - 79
Main Authors Liu, Gen, Wang, Zhihua, Bao, Rui, Mao, Zelong, Ren, Kunpeng
Format Journal Article
LanguageEnglish
Published Milwaukee Taylor & Francis 02.01.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0898-2112
1532-4222
DOI10.1080/08982112.2023.2225583

Cover

Abstract In this study, the optimal design of step-stress accelerated degradation tests is focused. An optimization model is proposed where an improved accelerated degradation model is involved to comprehensively consider the influence of accelerated stress and the measurement error. Then, a novel optimal design method is constructed, where multiple decision variables can be simultaneously optimized based on neural network and genetic algorithm. An effective sensitivity analysis method is further established to quantitively illustrate the influence of the predetermined model parameters on the optimal results. Finally, a case study is implemented, and a series of comparisons are implemented to demonstrate the effectiveness and rationality of the proposed method.
AbstractList In this study, the optimal design of step-stress accelerated degradation tests is focused. An optimization model is proposed where an improved accelerated degradation model is involved to comprehensively consider the influence of accelerated stress and the measurement error. Then, a novel optimal design method is constructed, where multiple decision variables can be simultaneously optimized based on neural network and genetic algorithm. An effective sensitivity analysis method is further established to quantitively illustrate the influence of the predetermined model parameters on the optimal results. Finally, a case study is implemented, and a series of comparisons are implemented to demonstrate the effectiveness and rationality of the proposed method.
Author Wang, Zhihua
Bao, Rui
Mao, Zelong
Ren, Kunpeng
Liu, Gen
Author_xml – sequence: 1
  givenname: Gen
  surname: Liu
  fullname: Liu, Gen
  organization: School of Aeronautic Science and Engineering, Beihang University
– sequence: 2
  givenname: Zhihua
  surname: Wang
  fullname: Wang, Zhihua
  organization: School of Aeronautic Science and Engineering, Beihang University
– sequence: 3
  givenname: Rui
  surname: Bao
  fullname: Bao, Rui
  organization: School of Aeronautic Science and Engineering, Beihang University
– sequence: 4
  givenname: Zelong
  surname: Mao
  fullname: Mao, Zelong
  organization: Navigation Instrument Research Institute
– sequence: 5
  givenname: Kunpeng
  surname: Ren
  fullname: Ren, Kunpeng
  organization: Navigation Instrument Research Institute
BookMark eNp9kE1LAzEQhoNUsK3-BCHgeWs-9iN7U8QvKPSi5zC7mdSt26QmKdJ_b0r16ilM5pk3mWdGJs47JOSaswVnit0y1SrBuVgIJuRCCFFVSp6RKa-kKMpcT8j0yBRH6ILMYtwwxpVq5ZQMq10atjBSg3FYO-otjQl3RUwBY6TQ9zhigIQmE-sABtLgHU0YU6QdxHyfyzU6TENPYVz7MKSPLQVnqMN9yMm59e3D5yU5tzBGvPo95-T96fHt4aVYrp5fH-6XRS9UnQpulawU7wyUrC7LTlmjpDJlC6zFroNGNGXd17ZhnQTVcVMrVGi7tkFAUXM5Jzen3F3wX_v8T73x--Dyk1q0vCrLRlUiU9WJ6oOPMaDVu5A9hIPmTB-t6j-r-mhV_1rNc3enucFZH7aQNxuNTnAYfbABXD9ELf-P-AEruIHI
Cites_doi 10.1016/j.fss.2011.08.011
10.1080/07408170490507701
10.21629/JSEE.2017.05.21
10.1109/72.97934
10.1109/TR.2005.863811
10.1109/RAMS.2011.5754481
10.1109/JSEE.2015.00058
10.1080/08982112.2017.1307391
10.1007/s10898-018-0629-y
10.4028/www.scientific.net/AMM.157-158.1595
10.1080/02664760903406488
10.1080/08982112.2018.1545238
10.1109/ACCESS.2017.2683533
10.1002/asmb.2332
10.1002/qre.1489
10.1080/08982112.2020.1755686
10.1080/07408170802322697
10.1016/j.microrel.2021.114334
10.1126/science.aaa8415
10.1109/ICRMS.2009.5270017
10.1109/RAMS.2004.1285469
10.1016/j.enconman.2007.06.002
10.7232/iems.2017.16.2.155
ContentType Journal Article
Copyright 2023 Taylor & Francis Group, LLC 2023
2023 Taylor & Francis Group, LLC
Copyright_xml – notice: 2023 Taylor & Francis Group, LLC 2023
– notice: 2023 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
U9A
DOI 10.1080/08982112.2023.2225583
DatabaseName CrossRef
DatabaseTitle CrossRef
Career and Technical Education (Alumni Edition)
DatabaseTitleList
Career and Technical Education (Alumni Edition)
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1532-4222
EndPage 79
ExternalDocumentID 10_1080_08982112_2023_2225583
2225583
Genre Research Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11872085
GroupedDBID .7F
.QJ
0BK
0R~
123
29P
2DF
30N
4.4
5VS
8V8
A8Z
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACIWK
ACMJI
ACTIO
ADCVX
ADGTB
ADMLS
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBO
EBR
EBS
EBU
EJD
EMK
EPL
ESTFP
E~A
E~B
GTTXZ
H13
HFX
HF~
HZ~
H~P
I-F
IHF
IPNFZ
IRD
ITF
ITG
ITH
J.P
K1G
KYCEM
LJTGL
M4Z
MK~
NA5
NX~
O9-
P2P
PQQKQ
PUD
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TTHFI
TUROJ
TWF
UNMZH
UT5
UU3
WH7
ZGOLN
~S~
~ZZ
AAYXX
CITATION
U9A
ID FETCH-LOGICAL-c286t-1f83581bda40644b8fd838d49a09ebba72746c6f70b3a8b1d68e8efb97eae2613
ISSN 0898-2112
IngestDate Tue Aug 12 21:46:51 EDT 2025
Wed Oct 01 05:13:09 EDT 2025
Mon Oct 20 23:44:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-1f83581bda40644b8fd838d49a09ebba72746c6f70b3a8b1d68e8efb97eae2613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2915447852
PQPubID 35987
PageCount 14
ParticipantIDs proquest_journals_2915447852
informaworld_taylorfrancis_310_1080_08982112_2023_2225583
crossref_primary_10_1080_08982112_2023_2225583
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-02
PublicationDateYYYYMMDD 2024-01-02
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Milwaukee
PublicationPlace_xml – name: Milwaukee
PublicationTitle Quality engineering
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
Huang G. (e_1_3_2_8_1) 2012; 2012
He L. (e_1_3_2_7_1) 2018; 2
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_18_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
References_xml – ident: e_1_3_2_17_1
  doi: 10.1016/j.fss.2011.08.011
– ident: e_1_3_2_20_1
  doi: 10.1080/07408170490507701
– ident: e_1_3_2_4_1
  doi: 10.21629/JSEE.2017.05.21
– ident: e_1_3_2_18_1
  doi: 10.1109/72.97934
– ident: e_1_3_2_12_1
  doi: 10.1109/TR.2005.863811
– ident: e_1_3_2_6_1
  doi: 10.1109/RAMS.2011.5754481
– ident: e_1_3_2_10_1
  doi: 10.1109/JSEE.2015.00058
– ident: e_1_3_2_16_1
  doi: 10.1080/08982112.2017.1307391
– ident: e_1_3_2_3_1
  doi: 10.1007/s10898-018-0629-y
– ident: e_1_3_2_5_1
  doi: 10.4028/www.scientific.net/AMM.157-158.1595
– ident: e_1_3_2_13_1
  doi: 10.1080/02664760903406488
– ident: e_1_3_2_24_1
  doi: 10.1080/08982112.2018.1545238
– ident: e_1_3_2_11_1
  doi: 10.1109/ACCESS.2017.2683533
– ident: e_1_3_2_26_1
  doi: 10.1002/asmb.2332
– ident: e_1_3_2_21_1
  doi: 10.1002/qre.1489
– ident: e_1_3_2_14_1
  doi: 10.1080/08982112.2020.1755686
– ident: e_1_3_2_15_1
  doi: 10.1080/07408170802322697
– ident: e_1_3_2_23_1
  doi: 10.1016/j.microrel.2021.114334
– volume: 2
  start-page: 1
  issue: 5
  year: 2018
  ident: e_1_3_2_7_1
  article-title: Step-stress accelerated degradation test planning based on wiener process with correlation
  publication-title: Statistical Theory & Related Fields
– volume: 2012
  start-page: 962
  year: 2012
  ident: e_1_3_2_8_1
  article-title: Optimization of step stress accelerated degradation test plans based on MSE for mean life of product
  publication-title: Digital Technology & Application
– ident: e_1_3_2_9_1
  doi: 10.1126/science.aaa8415
– ident: e_1_3_2_22_1
  doi: 10.1109/ICRMS.2009.5270017
– ident: e_1_3_2_25_1
  doi: 10.1109/RAMS.2004.1285469
– ident: e_1_3_2_2_1
  doi: 10.1016/j.enconman.2007.06.002
– ident: e_1_3_2_19_1
  doi: 10.7232/iems.2017.16.2.155
SSID ssj0018893
Score 2.3323
Snippet In this study, the optimal design of step-stress accelerated degradation tests is focused. An optimization model is proposed where an improved accelerated...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 66
SubjectTerms Accelerated tests
Degradation
Design optimization
Error analysis
genetic algorithm
Genetic algorithms
multiple decision variables
Neural networks
optimal design
Optimization models
proxy model
Sensitivity analysis
step-stress accelerated degradation test
Title Optimal design of step-stress accelerated degradation tests based on genetic algorithm and neural network
URI https://www.tandfonline.com/doi/abs/10.1080/08982112.2023.2225583
https://www.proquest.com/docview/2915447852
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1532-4222
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0018893
  issn: 0898-2112
  databaseCode: A8Z
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-4222
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0018893
  issn: 0898-2112
  databaseCode: ADMLS
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1532-4222
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018893
  issn: 0898-2112
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-4222
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018893
  issn: 0898-2112
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxsxFBauc2kPoStNmxYdmpMZM_tIx9DEmJImUMbE-CI0Gk08kNiuM3NI_0n_bZ-WWYxDt8tgy7aE9T7pLXr6HkKf4igqlNflhMKLnZBT4VDhZU5OVR1u7heRvsX_9TKezsIv82g-GPzsZS3VVTYWPx69V_I_UoU2kKu6JfsPkm07hQZ4DfKFJ0gYnn8l4ytY73fqlEWnYSi7D2S2cez9Dy4E6BRFBZHDN2623JRPGoFxWd2PlPrK1VEB9C41a-vtzXpbVktTM0PxXELPK5Ml3jdhDevGw0h2TIZtVk9Zmzh7i7hrG45eLMtl3fn-XAdov9VlFxDXLQt5u7bd2UiEH-pIROe3pntFQXqZSXo_oyA-z2ZNy2a_9R0VhepvyIYRZQd4ZneN456eNjVo9jSATZmEsdRQY1Udfqx82sjUy9ll3L68YpPZxQVLz-fpSTDZfHdUOTJ1bH8SnBm8PEEHPigMd4gOTqdni-v2iIoQw-jc_Kvmepgibn9s9B3DZ4cWd88M0LZN-hwdWqcEnxqEvUADuXqJnvWoKl-h0mING6zhdYF7WMM9rOEe1rDGGtZYw_DWYg23WMOANWywhi3WXqPZ5Dz9PHVsmQ5H-CSuHK8gikQvyzkYh2GYkSInAclDyl0qs4yDhRzGIi4SNws4ybw8JpLIIqOJ5BIc-OANGq7WK_kW4TxwqfBd6ns8CSMieULCKJeBKKSkIo-O0LiZQ7YxbCzMa0hu7aQzNenMTvoRov2ZZpXGaGHgyYI__Pa4EQuzi_6e-VTRVyUk8t_9_uP36Gm3Ro7RsNrW8gPYr1X20SLpF45cmq4
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHFoOpS8EhRYfevU2ie3EPlYVaMtjewGJm-UnRcAuWsKFX89MnKAFVHHgGMVjOfZ4Xpn5hpAftZQJvS4mfFkzYbVn2peOBY19uG2VZFfFfzSpxydi_1SeLtTCYFol-tApA0V0shovNwajh5S4n4XSChwXrKOq-Ag9Fqn4G7IiwdjHLga8mDz8SVAqA-8CCUOaoYrnf9M80k-P0EufSetOBe2tET8sPmeeXIxuWzfyd09wHV_3dR_I-95Cpb8yS30kS3H6iawu4BZ-Jud_QdBcwaDQ5X_QWaLALNcsF55Q6z0oM8SgCDDibG5z3yYKVm17Q1FvBgqPwLpYQUnt5dlsft7-u6KwZooAmzDzNKenfyEne7vHv8es79nAfKXqlpVJIaKaCxYsBSGcSkFxFYS2hY7OWTCXRO3r1BSOW-XKUKuoYnK6iTaCN8fXyfJ0No0bhAZeaF8VuiptI6SKtlFChsh9ilH7IDfJaDgpc52hOUw5IJ72e2hwD02_h5tEL56nabuYSMoNTAx_gXZ7OHzT3_IbU2nEMmqUrL6-Yuod8nZ8fHRoDv9MDrbIO3gluhhPtU2W2_lt_AZWT-u-d2x9D2de9WM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZKKlX0UMpLhJbiQ69e9mHv2seqEPVF4NBIvVl-thFkEyXbS3894_UuSkCIQ44r2yOvZ-yZsWe-Qei0ZMwHr4tQk5WEKmGIMJkmVoQ63Cr3rM3i_zouLyb06o710YSrLqwy-NA-AkW0Z3XY3Avr-4i4TykXHPyWkEaVF0lwWBgvnqHdMryKhSyOdPz7IYHziLsLQ0gY0yfx_IvMhnraAC_967BuNdDoBdL93GPgyY_ksdGJefoD1nGrnztEB519is-iQL1EO65-hfbXUAtfo-k3OGZm0Mm20R947jGIyoLEtBOsjAFVFhAoLPS4X6pYtQmDTduscNCaFsMnCG7In8Tq5_18OW0eZhimjAO8JlCuY3D6GzQZfbk9vyBdxQZicl42JPM84Klpq8BOoFRzb3nBLRUqFU5rBcYSLU3pq1QXiuvMltxx57WonHLgyxVv0aCe1-4dwrZIhclTkWeqoow7VXHKrCuMd04Yy4Yo6RklFxGYQ2Y93mm3hjKsoezWcIjEOjtl096I-Fi-RBb_GXvc8152e3wlcxGQjCrO8vdbkP6I9r5_Hsmby_H1EXoOLbS94MmP0aBZProPYPI0-qQV6l9oK_QH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+step-stress+accelerated+degradation+tests+based+on+genetic+algorithm+and+neural+network&rft.jtitle=Quality+engineering&rft.au=Liu%2C+Gen&rft.au=Wang%2C+Zhihua&rft.au=Bao%2C+Rui&rft.au=Mao%2C+Zelong&rft.date=2024-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0898-2112&rft.eissn=1532-4222&rft.volume=36&rft.issue=1&rft.spage=66&rft.epage=79&rft_id=info:doi/10.1080%2F08982112.2023.2225583&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-2112&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-2112&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-2112&client=summon