Particle swarm exchange algorithms with applications in generating optimal model-discrimination designs

Exchange-type algorithms have been commonly used to construct optimal designs. As these algorithms may converge to a local optimum, the typical procedure requires the use of several randomly chosen initial designs. Thus, the search for the optimal design can be conducted by performing several indepe...

Full description

Saved in:
Bibliographic Details
Published inQuality engineering Vol. 34; no. 3; pp. 305 - 321
Main Authors Chen, Ping-Yang, Chen, Ray-Bing, Li, Jui-Pin, Li, William
Format Journal Article
LanguageEnglish
Published Milwaukee Taylor & Francis 03.07.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0898-2112
1532-4222
DOI10.1080/08982112.2022.2072226

Cover

Abstract Exchange-type algorithms have been commonly used to construct optimal designs. As these algorithms may converge to a local optimum, the typical procedure requires the use of several randomly chosen initial designs. Thus, the search for the optimal design can be conducted by performing several independent optimizations. We propose a general framework that combines exchange algorithms with particle swarm intelligence techniques. The main strategy is to represent each initial design as a particle and make the algorithm share information from various converging paths from those initial designs. This amounts to conducting one coordinated optimization instead of several independent optimizations. The proposed general algorithm is called the particle swarm exchange (PSE) algorithm. We compare the performance of PSE with those of two commonly used exchange algorithms - the columnwise-pairwise (CP) exchange algorithm of Li and Wu ( 1997 ) for designs with structural requirements and the coordinate exchange algorithm of Meyer and Nachtsheim ( 1995 ) for designs without such requirements. In the context of model-robust discriminating designs, we demonstrate that PSE typically performs as well as or, very often, better than the corresponding pure exchange algorithms.
AbstractList Exchange-type algorithms have been commonly used to construct optimal designs. As these algorithms may converge to a local optimum, the typical procedure requires the use of several randomly chosen initial designs. Thus, the search for the optimal design can be conducted by performing several independent optimizations. We propose a general framework that combines exchange algorithms with particle swarm intelligence techniques. The main strategy is to represent each initial design as a particle and make the algorithm share information from various converging paths from those initial designs. This amounts to conducting one coordinated optimization instead of several independent optimizations. The proposed general algorithm is called the particle swarm exchange (PSE) algorithm. We compare the performance of PSE with those of two commonly used exchange algorithms - the columnwise-pairwise (CP) exchange algorithm of Li and Wu ( 1997 ) for designs with structural requirements and the coordinate exchange algorithm of Meyer and Nachtsheim ( 1995 ) for designs without such requirements. In the context of model-robust discriminating designs, we demonstrate that PSE typically performs as well as or, very often, better than the corresponding pure exchange algorithms.
Exchange-type algorithms have been commonly used to construct optimal designs. As these algorithms may converge to a local optimum, the typical procedure requires the use of several randomly chosen initial designs. Thus, the search for the optimal design can be conducted by performing several independent optimizations. We propose a general framework that combines exchange algorithms with particle swarm intelligence techniques. The main strategy is to represent each initial design as a particle and make the algorithm share information from various converging paths from those initial designs. This amounts to conducting one coordinated optimization instead of several independent optimizations. The proposed general algorithm is called the particle swarm exchange (PSE) algorithm. We compare the performance of PSE with those of two commonly used exchange algorithms – the columnwise-pairwise (CP) exchange algorithm of Li and Wu (1997) for designs with structural requirements and the coordinate exchange algorithm of Meyer and Nachtsheim (1995) for designs without such requirements. In the context of model-robust discriminating designs, we demonstrate that PSE typically performs as well as or, very often, better than the corresponding pure exchange algorithms.
Author Chen, Ray-Bing
Li, Jui-Pin
Chen, Ping-Yang
Li, William
Author_xml – sequence: 1
  givenname: Ping-Yang
  surname: Chen
  fullname: Chen, Ping-Yang
  organization: Department of Statistics, National Cheng Kung University
– sequence: 2
  givenname: Ray-Bing
  orcidid: 0000-0001-7226-509X
  surname: Chen
  fullname: Chen, Ray-Bing
  organization: Institute of Data Science, National Cheng Kung University
– sequence: 3
  givenname: Jui-Pin
  surname: Li
  fullname: Li, Jui-Pin
  organization: Department of Statistics, National Cheng Kung University
– sequence: 4
  givenname: William
  surname: Li
  fullname: Li, William
  organization: Shanghai Advanced Institute of Finance, Shanghai Jiao Tong University
BookMark eNp9kE1LxDAQhoOs4Lr6E4SA52o-bJq9KYtfsKAHPYfZdFojbVKTyuq_N3XXq5cZXnjmnZn3mMx88EjIGWcXnGl2yfRSC87FhWBiKpUQQh2QOS-lKK6ymJH5xBQTdESOU3pnjGu9lHPSPkMcne2Qpi3EnuKXfQPfIoWuDdGNb32i29woDEPnLIwu-ESdpy16jFn6loZhdD10tA81dkXtko2ud_6XpTUm1_p0Qg4b6BKe7vuCvN7dvqweivXT_ePqZl1YodVYcK1UIzd8s6waKEWNDVhdIYKqAKVChXZpKyZkWSIIZZmsOWrglcrfqE0jF-R85zvE8PGJaTTv4TP6vNKIzFzJSssyU-WOsjGkFLExQz4Z4rfhzEyZmr9MzZSp2Wea5653c843IfawDbGrzQjfXYhNBG9dMvJ_ix81E4IG
Cites_doi 10.1080/00401706.1995.10485889
10.1080/00401706.2018.1513381
10.1080/00401706.1994.10485399
10.1080/10618600.2018.1482760
10.1016/j.jspi.2009.09.005
10.1080/00401706.2000.10485978
10.1016/j.jspi.2006.09.006
10.1080/00401706.2019.1595153
10.1093/biomet/76.3.515
10.1016/j.csda.2013.10.015
10.1016/j.csda.2010.01.032
10.1080/00401706.2012.694774
10.1007/s11047-016-9555-4
10.1016/S0378-3758(00)00105-1
10.1198/004017007000000100
10.18637/jss.v040.i08
10.1080/00401706.2018.1473798
10.1016/j.jspi.2007.05.021
10.1016/S0305-0548(97)00031-2
10.1198/004017002188618554
10.1080/00224065.2009.11917790
10.1111/j.2517-6161.1972.tb00896.x
10.1007/s11222-012-9363-3
10.1016/j.jspi.2008.05.014
10.1109/99.660313
10.1080/00401706.2000.10485707
10.1007/978-3-030-53956-6_4
10.1016/j.csda.2017.08.012
10.1080/00224065.2015.11918129
10.1080/00401706.1997.10485082
10.1080/00401706.2014.958198
10.1080/00401706.2014.897262
10.1198/TECH.2009.0009
10.1080/00401706.2016.1186562
10.1111/j.1467-9876.2007.00581.x
10.1080/00401706.2014.981346
10.1201/b19616
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
2022 Taylor & Francis Group, LLC
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
– notice: 2022 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
U9A
DOI 10.1080/08982112.2022.2072226
DatabaseName CrossRef
DatabaseTitle CrossRef
Career and Technical Education (Alumni Edition)
DatabaseTitleList
Career and Technical Education (Alumni Edition)
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1532-4222
EndPage 321
ExternalDocumentID 10_1080_08982112_2022_2072226
2072226
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
123
29P
2DF
30N
4.4
5VS
8V8
A8Z
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACIWK
ACMJI
ACTIO
ADCVX
ADGTB
ADMLS
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBO
EBR
EBS
EBU
EJD
EMK
EPL
ESTFP
E~A
E~B
GTTXZ
H13
HFX
HF~
HZ~
H~P
I-F
IHF
IPNFZ
IRD
ITF
ITG
ITH
J.P
K1G
KYCEM
LJTGL
M4Z
MK~
NA5
NX~
O9-
P2P
PQQKQ
PUD
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TTHFI
TUROJ
TWF
UNMZH
UT5
UU3
WH7
ZGOLN
~S~
~ZZ
AAYXX
CITATION
U9A
ID FETCH-LOGICAL-c286t-1866f3b1b97fa52defac87eea67ae36e6ec9c702355ea26c03d1e8a1768936bf3
ISSN 0898-2112
IngestDate Wed Aug 13 07:42:05 EDT 2025
Wed Oct 01 05:13:08 EDT 2025
Mon Oct 20 23:48:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-1866f3b1b97fa52defac87eea67ae36e6ec9c702355ea26c03d1e8a1768936bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7226-509X
PQID 2689437835
PQPubID 35987
PageCount 17
ParticipantIDs informaworld_taylorfrancis_310_1080_08982112_2022_2072226
proquest_journals_2689437835
crossref_primary_10_1080_08982112_2022_2072226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-03
PublicationDateYYYYMMDD 2022-07-03
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Milwaukee
PublicationPlace_xml – name: Milwaukee
PublicationTitle Quality engineering
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Garcia F. J. M. (CIT0013) 2008; 3
CIT0010
CIT0032
CIT0031
CIT0034
CIT0011
CIT0033
Joseph V. R. (CIT0021) 2008
Johnson M. E. (CIT0016) 1983; 25
CIT0014
CIT0036
CIT0035
CIT0038
CIT0015
CIT0037
Atkinson A. C. (CIT0003) 1975; 62
CIT0018
CIT0017
CIT0039
CIT0019
CIT0041
CIT0040
CIT0043
CIT0020
CIT0042
CIT0001
CIT0023
CIT0022
CIT0044
Fedorov V. V. (CIT0012) 1972
Montgomery D. C. (CIT0030) 2017
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – start-page: 171
  year: 2008
  ident: CIT0021
  publication-title: Statistica Sinica
– ident: CIT0027
  doi: 10.1080/00401706.1995.10485889
– ident: CIT0038
– volume: 62
  start-page: 289
  issue: 2
  year: 1975
  ident: CIT0003
  publication-title: Biometrika
– ident: CIT0041
  doi: 10.1080/00401706.2018.1513381
– volume: 3
  year: 2008
  ident: CIT0013
  publication-title: Documentos de Trabajo Del DEIOC
– ident: CIT0010
  doi: 10.1080/00401706.1994.10485399
– ident: CIT0008
  doi: 10.1080/10618600.2018.1482760
– ident: CIT0001
  doi: 10.1016/j.jspi.2009.09.005
– volume-title: Theory of optimal experiments
  year: 1972
  ident: CIT0012
– ident: CIT0028
  doi: 10.1080/00401706.2000.10485978
– ident: CIT0018
  doi: 10.1016/j.jspi.2006.09.006
– ident: CIT0031
  doi: 10.1080/00401706.2019.1595153
– ident: CIT0002
  doi: 10.1093/biomet/76.3.515
– ident: CIT0007
  doi: 10.1016/j.csda.2013.10.015
– ident: CIT0023
  doi: 10.1016/j.csda.2010.01.032
– ident: CIT0036
  doi: 10.1080/00401706.2012.694774
– ident: CIT0032
  doi: 10.1007/s11047-016-9555-4
– ident: CIT0044
  doi: 10.1016/S0378-3758(00)00105-1
– ident: CIT0025
  doi: 10.1198/004017007000000100
– ident: CIT0011
  doi: 10.18637/jss.v040.i08
– volume: 25
  start-page: 271
  issue: 3
  year: 1983
  ident: CIT0016
  publication-title: Technometrics
– ident: CIT0040
  doi: 10.1080/00401706.2018.1473798
– ident: CIT0019
  doi: 10.1016/j.jspi.2007.05.021
– ident: CIT0029
  doi: 10.1016/S0305-0548(97)00031-2
– ident: CIT0043
  doi: 10.1198/004017002188618554
– ident: CIT0020
  doi: 10.1080/00224065.2009.11917790
– ident: CIT0042
  doi: 10.1111/j.2517-6161.1972.tb00896.x
– ident: CIT0006
  doi: 10.1007/s11222-012-9363-3
– ident: CIT0014
  doi: 10.1016/j.jspi.2008.05.014
– ident: CIT0009
  doi: 10.1109/99.660313
– ident: CIT0022
  doi: 10.1080/00401706.2000.10485707
– ident: CIT0034
  doi: 10.1007/978-3-030-53956-6_4
– ident: CIT0005
  doi: 10.1016/j.csda.2017.08.012
– ident: CIT0039
  doi: 10.1080/00224065.2015.11918129
– volume-title: Design and analysis of experiments
  year: 2017
  ident: CIT0030
– ident: CIT0024
  doi: 10.1080/00401706.1997.10485082
– ident: CIT0035
  doi: 10.1080/00401706.2014.958198
– ident: CIT0037
  doi: 10.1080/00401706.2014.897262
– ident: CIT0015
  doi: 10.1198/TECH.2009.0009
– ident: CIT0026
  doi: 10.1080/00401706.2016.1186562
– ident: CIT0017
  doi: 10.1111/j.1467-9876.2007.00581.x
– ident: CIT0033
  doi: 10.1080/00401706.2014.981346
– ident: CIT0004
  doi: 10.1201/b19616
SSID ssj0018893
Score 2.2661552
Snippet Exchange-type algorithms have been commonly used to construct optimal designs. As these algorithms may converge to a local optimum, the typical procedure...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 305
SubjectTerms Algorithms
Columnwise-pairwise exchange algorithm
Convergence
coordinate exchange algorithm
exchange algorithm
Exchanging
model-discrimination design
Optimization
Swarm intelligence
Title Particle swarm exchange algorithms with applications in generating optimal model-discrimination designs
URI https://www.tandfonline.com/doi/abs/10.1080/08982112.2022.2072226
https://www.proquest.com/docview/2689437835
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1532-4222
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0018893
  issn: 0898-2112
  databaseCode: A8Z
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-4222
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0018893
  issn: 0898-2112
  databaseCode: ADMLS
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1532-4222
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018893
  issn: 0898-2112
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-4222
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018893
  issn: 0898-2112
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVK9wIP0_gSGwP5gbfKVR23TvI4BqhCgCrUicFL5DhOiUSzac0E4wfwu7k3thuXVuLrxaocJY58T66v3XvOJeQZBN0KYjbBeDIq2JibksHOVjEtuU4VmKUQSE5--05Oz8avzyfnvd6PIGvpusmH-vtOXsm_WBX6wK7Ikv0Ly64fCh3wG-wLLVgY2j-y8cz1DVZf1dVyYL5ZGu9AfVlcwKb_89Jz1y4308YXrda0TXgGl7FEBglWxGHI0bV1vlpYFG16xyoMYK3mxs3AdDqGXYaAdWEz6GMf1faF9-qGPQ9ueFNZXkjFZlW92emOgcIzicjmr4o1iuZb5UFCr5aCEbnLnTbe60YMz6JCt-zOOKtw1976WDGaBMu1sATrrZXApU7CaDjYEN8SmhgG-UV5u13L3ZVbZC-C1WHUJ3sn0xefPqz_j0oSK9_sX95zwVClfdcQG1HOhgbu1prfBjLzA7LvdiD0xELnLumZ-h65E-hS3icLDyzaAot6YNEOWBSBRUNg0aqmHbCoAxbdBSzqgPWAnL16OT-dMleRg-kokQ1DdcRS5DxP41JNosKUSiexMUrGyghppNGpjlFCaWJUJPVIFNwkisOeNhUyL8VD0q8vavOIUIVCclwnhUKqZcLVOB3zAkuhJ6kSRXlIhn4Gs0srvJJxr2frpjzDKc_clB-SNJznrGlBWFr8ZeI39x57o2Tu-15lkcTaBHgyevQfj35MbndfyDHpN1fX5gnEsU3-1IHsJ-nEmyo
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1Eo4IHVpY4bxxkRoirQVgyt1M1yHKdU0BQ1qUD8enx5oBaEGLpkSc5JfH7cne_7DqEra3Qra7MxQkUjJE1qImI9W0U0p9pXVi0hA3Byt8fbg-bD0B0uYGEgrRJ86CgnisjWapjcEIwuU-KuG8IX1nEBHJUDF89ucnwdbbjW2IcqBqzR-z5JECIn3rUiBGRKFM9fzSztT0vspb9W62wLau0iXX58nnnyUp-nQV1__uB1XO3v9tBOYaHim3xI7aM1Ex-g7QXewkM0eioGHE7e1WyCzUeOH8bqdTSdjdPnSYIhwIsXj8fxOMajjOQaMq3x1K5VE_uerBQPAXBwXmAMnsVhlleSHKFB665_2yZFxQaiHcFTAux5EQto4HuRcp3QREoLzxjFPWUYN9xoX3tAseMa5XDdYCE1QlHr8_iMBxE7RpV4GpsThBUQjVEtQgVQPEFV02_SEEplC1-xMKqieqkn-ZYTc0ha8p0WPSihB2XRg1XkL2pTpllEJMrLl0j2j2ytVL0s5ngiHQ7c9RA5O12h6Uu02e53O7Jz33s8Q1twK8sGZjVUSWdzc25tnjS4yAb1F1C69Oo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSAgO7IhCAR-4utRx6zhHBFRlqziAxM1yvJQKuqhJBeLr8WRBLQhx4JJLYifxeJmx33uD0Il3upX32RihomFIk1pHfGSriOZUR8qbxTAgJ991eeexef3UKtGESQGrhBja5UIR2VwNg3tsXImIO22ISPi4BWhUAVxCv8bxRbTE4VQMWByN7tdBghC57q4vQqBMSeL5rZq55WlOvPTHZJ2tQO11FJffngNPXurTNK7rj2-yjv_6uQ20Vvin-CzvUJtowQ630OqMauE26t0X3Q0nb2oywPY9Zw9j9dobTfrp8yDBsL2LZw_HcX-Ie5nENeCs8cjPVAP_niwRDwFqcJ5eDJ7FJkOVJDvosX35cN4hRb4GogPBUwLaeY7FNI5Cp1qBsU5pEVqreKgs45ZbHekQBHZaVgVcN5ihVijqI56I8dixXVQZjoZ2D2EFMmNUC6OAiCeoakZNaiBRtogUM66K6qWZ5DiX5ZC0VDstWlBCC8qiBasomjWmTLP9EJcnL5Hsj7K10vKyGOGJDDgo18O-2f4_qj5Gy_cXbXl71b05QCtwJ4MCsxqqpJOpPfQOTxofZV36E1PX844
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+swarm+exchange+algorithms+with+applications+in+generating+optimal+model-discrimination+designs&rft.jtitle=Quality+engineering&rft.au=Chen%2C+Ping-Yang&rft.au=Chen%2C+Ray-Bing&rft.au=Li%2C+Jui-Pin&rft.au=Li%2C+William&rft.date=2022-07-03&rft.pub=Taylor+%26+Francis&rft.issn=0898-2112&rft.eissn=1532-4222&rft.volume=34&rft.issue=3&rft.spage=305&rft.epage=321&rft_id=info:doi/10.1080%2F08982112.2022.2072226&rft.externalDocID=2072226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-2112&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-2112&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-2112&client=summon