Particle swarm exchange algorithms with applications in generating optimal model-discrimination designs
Exchange-type algorithms have been commonly used to construct optimal designs. As these algorithms may converge to a local optimum, the typical procedure requires the use of several randomly chosen initial designs. Thus, the search for the optimal design can be conducted by performing several indepe...
Saved in:
| Published in | Quality engineering Vol. 34; no. 3; pp. 305 - 321 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Milwaukee
Taylor & Francis
03.07.2022
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0898-2112 1532-4222 |
| DOI | 10.1080/08982112.2022.2072226 |
Cover
| Abstract | Exchange-type algorithms have been commonly used to construct optimal designs. As these algorithms may converge to a local optimum, the typical procedure requires the use of several randomly chosen initial designs. Thus, the search for the optimal design can be conducted by performing several independent optimizations. We propose a general framework that combines exchange algorithms with particle swarm intelligence techniques. The main strategy is to represent each initial design as a particle and make the algorithm share information from various converging paths from those initial designs. This amounts to conducting one coordinated optimization instead of several independent optimizations. The proposed general algorithm is called the particle swarm exchange (PSE) algorithm. We compare the performance of PSE with those of two commonly used exchange algorithms - the columnwise-pairwise (CP) exchange algorithm of Li and Wu (
1997
) for designs with structural requirements and the coordinate exchange algorithm of Meyer and Nachtsheim (
1995
) for designs without such requirements. In the context of model-robust discriminating designs, we demonstrate that PSE typically performs as well as or, very often, better than the corresponding pure exchange algorithms. |
|---|---|
| AbstractList | Exchange-type algorithms have been commonly used to construct optimal designs. As these algorithms may converge to a local optimum, the typical procedure requires the use of several randomly chosen initial designs. Thus, the search for the optimal design can be conducted by performing several independent optimizations. We propose a general framework that combines exchange algorithms with particle swarm intelligence techniques. The main strategy is to represent each initial design as a particle and make the algorithm share information from various converging paths from those initial designs. This amounts to conducting one coordinated optimization instead of several independent optimizations. The proposed general algorithm is called the particle swarm exchange (PSE) algorithm. We compare the performance of PSE with those of two commonly used exchange algorithms - the columnwise-pairwise (CP) exchange algorithm of Li and Wu (
1997
) for designs with structural requirements and the coordinate exchange algorithm of Meyer and Nachtsheim (
1995
) for designs without such requirements. In the context of model-robust discriminating designs, we demonstrate that PSE typically performs as well as or, very often, better than the corresponding pure exchange algorithms. Exchange-type algorithms have been commonly used to construct optimal designs. As these algorithms may converge to a local optimum, the typical procedure requires the use of several randomly chosen initial designs. Thus, the search for the optimal design can be conducted by performing several independent optimizations. We propose a general framework that combines exchange algorithms with particle swarm intelligence techniques. The main strategy is to represent each initial design as a particle and make the algorithm share information from various converging paths from those initial designs. This amounts to conducting one coordinated optimization instead of several independent optimizations. The proposed general algorithm is called the particle swarm exchange (PSE) algorithm. We compare the performance of PSE with those of two commonly used exchange algorithms – the columnwise-pairwise (CP) exchange algorithm of Li and Wu (1997) for designs with structural requirements and the coordinate exchange algorithm of Meyer and Nachtsheim (1995) for designs without such requirements. In the context of model-robust discriminating designs, we demonstrate that PSE typically performs as well as or, very often, better than the corresponding pure exchange algorithms. |
| Author | Chen, Ray-Bing Li, Jui-Pin Chen, Ping-Yang Li, William |
| Author_xml | – sequence: 1 givenname: Ping-Yang surname: Chen fullname: Chen, Ping-Yang organization: Department of Statistics, National Cheng Kung University – sequence: 2 givenname: Ray-Bing orcidid: 0000-0001-7226-509X surname: Chen fullname: Chen, Ray-Bing organization: Institute of Data Science, National Cheng Kung University – sequence: 3 givenname: Jui-Pin surname: Li fullname: Li, Jui-Pin organization: Department of Statistics, National Cheng Kung University – sequence: 4 givenname: William surname: Li fullname: Li, William organization: Shanghai Advanced Institute of Finance, Shanghai Jiao Tong University |
| BookMark | eNp9kE1LxDAQhoOs4Lr6E4SA52o-bJq9KYtfsKAHPYfZdFojbVKTyuq_N3XXq5cZXnjmnZn3mMx88EjIGWcXnGl2yfRSC87FhWBiKpUQQh2QOS-lKK6ymJH5xBQTdESOU3pnjGu9lHPSPkMcne2Qpi3EnuKXfQPfIoWuDdGNb32i29woDEPnLIwu-ESdpy16jFn6loZhdD10tA81dkXtko2ud_6XpTUm1_p0Qg4b6BKe7vuCvN7dvqweivXT_ePqZl1YodVYcK1UIzd8s6waKEWNDVhdIYKqAKVChXZpKyZkWSIIZZmsOWrglcrfqE0jF-R85zvE8PGJaTTv4TP6vNKIzFzJSssyU-WOsjGkFLExQz4Z4rfhzEyZmr9MzZSp2Wea5653c843IfawDbGrzQjfXYhNBG9dMvJ_ix81E4IG |
| Cites_doi | 10.1080/00401706.1995.10485889 10.1080/00401706.2018.1513381 10.1080/00401706.1994.10485399 10.1080/10618600.2018.1482760 10.1016/j.jspi.2009.09.005 10.1080/00401706.2000.10485978 10.1016/j.jspi.2006.09.006 10.1080/00401706.2019.1595153 10.1093/biomet/76.3.515 10.1016/j.csda.2013.10.015 10.1016/j.csda.2010.01.032 10.1080/00401706.2012.694774 10.1007/s11047-016-9555-4 10.1016/S0378-3758(00)00105-1 10.1198/004017007000000100 10.18637/jss.v040.i08 10.1080/00401706.2018.1473798 10.1016/j.jspi.2007.05.021 10.1016/S0305-0548(97)00031-2 10.1198/004017002188618554 10.1080/00224065.2009.11917790 10.1111/j.2517-6161.1972.tb00896.x 10.1007/s11222-012-9363-3 10.1016/j.jspi.2008.05.014 10.1109/99.660313 10.1080/00401706.2000.10485707 10.1007/978-3-030-53956-6_4 10.1016/j.csda.2017.08.012 10.1080/00224065.2015.11918129 10.1080/00401706.1997.10485082 10.1080/00401706.2014.958198 10.1080/00401706.2014.897262 10.1198/TECH.2009.0009 10.1080/00401706.2016.1186562 10.1111/j.1467-9876.2007.00581.x 10.1080/00401706.2014.981346 10.1201/b19616 |
| ContentType | Journal Article |
| Copyright | 2022 Taylor & Francis Group, LLC 2022 2022 Taylor & Francis Group, LLC |
| Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 – notice: 2022 Taylor & Francis Group, LLC |
| DBID | AAYXX CITATION U9A |
| DOI | 10.1080/08982112.2022.2072226 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef Career and Technical Education (Alumni Edition) |
| DatabaseTitleList | Career and Technical Education (Alumni Edition) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1532-4222 |
| EndPage | 321 |
| ExternalDocumentID | 10_1080_08982112_2022_2072226 2072226 |
| Genre | Research Article |
| GroupedDBID | .7F .QJ 0BK 0R~ 123 29P 2DF 30N 4.4 5VS 8V8 A8Z AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACIWK ACMJI ACTIO ADCVX ADGTB ADMLS ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBO EBR EBS EBU EJD EMK EPL ESTFP E~A E~B GTTXZ H13 HFX HF~ HZ~ H~P I-F IHF IPNFZ IRD ITF ITG ITH J.P K1G KYCEM LJTGL M4Z MK~ NA5 NX~ O9- P2P PQQKQ PUD RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TNC TTHFI TUROJ TWF UNMZH UT5 UU3 WH7 ZGOLN ~S~ ~ZZ AAYXX CITATION U9A |
| ID | FETCH-LOGICAL-c286t-1866f3b1b97fa52defac87eea67ae36e6ec9c702355ea26c03d1e8a1768936bf3 |
| ISSN | 0898-2112 |
| IngestDate | Wed Aug 13 07:42:05 EDT 2025 Wed Oct 01 05:13:08 EDT 2025 Mon Oct 20 23:48:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c286t-1866f3b1b97fa52defac87eea67ae36e6ec9c702355ea26c03d1e8a1768936bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7226-509X |
| PQID | 2689437835 |
| PQPubID | 35987 |
| PageCount | 17 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_08982112_2022_2072226 proquest_journals_2689437835 crossref_primary_10_1080_08982112_2022_2072226 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-03 |
| PublicationDateYYYYMMDD | 2022-07-03 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | Milwaukee |
| PublicationPlace_xml | – name: Milwaukee |
| PublicationTitle | Quality engineering |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | Garcia F. J. M. (CIT0013) 2008; 3 CIT0010 CIT0032 CIT0031 CIT0034 CIT0011 CIT0033 Joseph V. R. (CIT0021) 2008 Johnson M. E. (CIT0016) 1983; 25 CIT0014 CIT0036 CIT0035 CIT0038 CIT0015 CIT0037 Atkinson A. C. (CIT0003) 1975; 62 CIT0018 CIT0017 CIT0039 CIT0019 CIT0041 CIT0040 CIT0043 CIT0020 CIT0042 CIT0001 CIT0023 CIT0022 CIT0044 Fedorov V. V. (CIT0012) 1972 Montgomery D. C. (CIT0030) 2017 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – start-page: 171 year: 2008 ident: CIT0021 publication-title: Statistica Sinica – ident: CIT0027 doi: 10.1080/00401706.1995.10485889 – ident: CIT0038 – volume: 62 start-page: 289 issue: 2 year: 1975 ident: CIT0003 publication-title: Biometrika – ident: CIT0041 doi: 10.1080/00401706.2018.1513381 – volume: 3 year: 2008 ident: CIT0013 publication-title: Documentos de Trabajo Del DEIOC – ident: CIT0010 doi: 10.1080/00401706.1994.10485399 – ident: CIT0008 doi: 10.1080/10618600.2018.1482760 – ident: CIT0001 doi: 10.1016/j.jspi.2009.09.005 – volume-title: Theory of optimal experiments year: 1972 ident: CIT0012 – ident: CIT0028 doi: 10.1080/00401706.2000.10485978 – ident: CIT0018 doi: 10.1016/j.jspi.2006.09.006 – ident: CIT0031 doi: 10.1080/00401706.2019.1595153 – ident: CIT0002 doi: 10.1093/biomet/76.3.515 – ident: CIT0007 doi: 10.1016/j.csda.2013.10.015 – ident: CIT0023 doi: 10.1016/j.csda.2010.01.032 – ident: CIT0036 doi: 10.1080/00401706.2012.694774 – ident: CIT0032 doi: 10.1007/s11047-016-9555-4 – ident: CIT0044 doi: 10.1016/S0378-3758(00)00105-1 – ident: CIT0025 doi: 10.1198/004017007000000100 – ident: CIT0011 doi: 10.18637/jss.v040.i08 – volume: 25 start-page: 271 issue: 3 year: 1983 ident: CIT0016 publication-title: Technometrics – ident: CIT0040 doi: 10.1080/00401706.2018.1473798 – ident: CIT0019 doi: 10.1016/j.jspi.2007.05.021 – ident: CIT0029 doi: 10.1016/S0305-0548(97)00031-2 – ident: CIT0043 doi: 10.1198/004017002188618554 – ident: CIT0020 doi: 10.1080/00224065.2009.11917790 – ident: CIT0042 doi: 10.1111/j.2517-6161.1972.tb00896.x – ident: CIT0006 doi: 10.1007/s11222-012-9363-3 – ident: CIT0014 doi: 10.1016/j.jspi.2008.05.014 – ident: CIT0009 doi: 10.1109/99.660313 – ident: CIT0022 doi: 10.1080/00401706.2000.10485707 – ident: CIT0034 doi: 10.1007/978-3-030-53956-6_4 – ident: CIT0005 doi: 10.1016/j.csda.2017.08.012 – ident: CIT0039 doi: 10.1080/00224065.2015.11918129 – volume-title: Design and analysis of experiments year: 2017 ident: CIT0030 – ident: CIT0024 doi: 10.1080/00401706.1997.10485082 – ident: CIT0035 doi: 10.1080/00401706.2014.958198 – ident: CIT0037 doi: 10.1080/00401706.2014.897262 – ident: CIT0015 doi: 10.1198/TECH.2009.0009 – ident: CIT0026 doi: 10.1080/00401706.2016.1186562 – ident: CIT0017 doi: 10.1111/j.1467-9876.2007.00581.x – ident: CIT0033 doi: 10.1080/00401706.2014.981346 – ident: CIT0004 doi: 10.1201/b19616 |
| SSID | ssj0018893 |
| Score | 2.2661552 |
| Snippet | Exchange-type algorithms have been commonly used to construct optimal designs. As these algorithms may converge to a local optimum, the typical procedure... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 305 |
| SubjectTerms | Algorithms Columnwise-pairwise exchange algorithm Convergence coordinate exchange algorithm exchange algorithm Exchanging model-discrimination design Optimization Swarm intelligence |
| Title | Particle swarm exchange algorithms with applications in generating optimal model-discrimination designs |
| URI | https://www.tandfonline.com/doi/abs/10.1080/08982112.2022.2072226 https://www.proquest.com/docview/2689437835 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1532-4222 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0018893 issn: 0898-2112 databaseCode: A8Z dateStart: 20010301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-4222 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0018893 issn: 0898-2112 databaseCode: ADMLS dateStart: 20010301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1532-4222 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0018893 issn: 0898-2112 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-4222 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0018893 issn: 0898-2112 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVK9wIP0_gSGwP5gbfKVR23TvI4BqhCgCrUicFL5DhOiUSzac0E4wfwu7k3thuXVuLrxaocJY58T66v3XvOJeQZBN0KYjbBeDIq2JibksHOVjEtuU4VmKUQSE5--05Oz8avzyfnvd6PIGvpusmH-vtOXsm_WBX6wK7Ikv0Ly64fCh3wG-wLLVgY2j-y8cz1DVZf1dVyYL5ZGu9AfVlcwKb_89Jz1y4308YXrda0TXgGl7FEBglWxGHI0bV1vlpYFG16xyoMYK3mxs3AdDqGXYaAdWEz6GMf1faF9-qGPQ9ueFNZXkjFZlW92emOgcIzicjmr4o1iuZb5UFCr5aCEbnLnTbe60YMz6JCt-zOOKtw1976WDGaBMu1sATrrZXApU7CaDjYEN8SmhgG-UV5u13L3ZVbZC-C1WHUJ3sn0xefPqz_j0oSK9_sX95zwVClfdcQG1HOhgbu1prfBjLzA7LvdiD0xELnLumZ-h65E-hS3icLDyzaAot6YNEOWBSBRUNg0aqmHbCoAxbdBSzqgPWAnL16OT-dMleRg-kokQ1DdcRS5DxP41JNosKUSiexMUrGyghppNGpjlFCaWJUJPVIFNwkisOeNhUyL8VD0q8vavOIUIVCclwnhUKqZcLVOB3zAkuhJ6kSRXlIhn4Gs0srvJJxr2frpjzDKc_clB-SNJznrGlBWFr8ZeI39x57o2Tu-15lkcTaBHgyevQfj35MbndfyDHpN1fX5gnEsU3-1IHsJ-nEmyo |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1Eo4IHVpY4bxxkRoirQVgyt1M1yHKdU0BQ1qUD8enx5oBaEGLpkSc5JfH7cne_7DqEra3Qra7MxQkUjJE1qImI9W0U0p9pXVi0hA3Byt8fbg-bD0B0uYGEgrRJ86CgnisjWapjcEIwuU-KuG8IX1nEBHJUDF89ucnwdbbjW2IcqBqzR-z5JECIn3rUiBGRKFM9fzSztT0vspb9W62wLau0iXX58nnnyUp-nQV1__uB1XO3v9tBOYaHim3xI7aM1Ex-g7QXewkM0eioGHE7e1WyCzUeOH8bqdTSdjdPnSYIhwIsXj8fxOMajjOQaMq3x1K5VE_uerBQPAXBwXmAMnsVhlleSHKFB665_2yZFxQaiHcFTAux5EQto4HuRcp3QREoLzxjFPWUYN9xoX3tAseMa5XDdYCE1QlHr8_iMBxE7RpV4GpsThBUQjVEtQgVQPEFV02_SEEplC1-xMKqieqkn-ZYTc0ha8p0WPSihB2XRg1XkL2pTpllEJMrLl0j2j2ytVL0s5ngiHQ7c9RA5O12h6Uu02e53O7Jz33s8Q1twK8sGZjVUSWdzc25tnjS4yAb1F1C69Oo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSAgO7IhCAR-4utRx6zhHBFRlqziAxM1yvJQKuqhJBeLr8WRBLQhx4JJLYifxeJmx33uD0Il3upX32RihomFIk1pHfGSriOZUR8qbxTAgJ991eeexef3UKtGESQGrhBja5UIR2VwNg3tsXImIO22ISPi4BWhUAVxCv8bxRbTE4VQMWByN7tdBghC57q4vQqBMSeL5rZq55WlOvPTHZJ2tQO11FJffngNPXurTNK7rj2-yjv_6uQ20Vvin-CzvUJtowQ630OqMauE26t0X3Q0nb2oywPY9Zw9j9dobTfrp8yDBsL2LZw_HcX-Ie5nENeCs8cjPVAP_niwRDwFqcJ5eDJ7FJkOVJDvosX35cN4hRb4GogPBUwLaeY7FNI5Cp1qBsU5pEVqreKgs45ZbHekQBHZaVgVcN5ihVijqI56I8dixXVQZjoZ2D2EFMmNUC6OAiCeoakZNaiBRtogUM66K6qWZ5DiX5ZC0VDstWlBCC8qiBasomjWmTLP9EJcnL5Hsj7K10vKyGOGJDDgo18O-2f4_qj5Gy_cXbXl71b05QCtwJ4MCsxqqpJOpPfQOTxofZV36E1PX844 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+swarm+exchange+algorithms+with+applications+in+generating+optimal+model-discrimination+designs&rft.jtitle=Quality+engineering&rft.au=Chen%2C+Ping-Yang&rft.au=Chen%2C+Ray-Bing&rft.au=Li%2C+Jui-Pin&rft.au=Li%2C+William&rft.date=2022-07-03&rft.pub=Taylor+%26+Francis&rft.issn=0898-2112&rft.eissn=1532-4222&rft.volume=34&rft.issue=3&rft.spage=305&rft.epage=321&rft_id=info:doi/10.1080%2F08982112.2022.2072226&rft.externalDocID=2072226 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-2112&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-2112&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-2112&client=summon |