Time-frequency enhanced characterization method based on asymmetric image reconstruction autoencoder

The vibration signals of mechanical equipment are subject to the influence of complex and variable working conditions, often exhibiting non-smooth and non-linear characteristics. The conventional time-frequency (TF) analysis (TFA) method, which relies on energy concentration, is susceptible to noise...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 35; no. 3; p. 35107
Main Authors Han, Ruiyu, Mao, Zhiwei, Zhang, Zhenjing, Zhang, Jinjie
Format Journal Article
LanguageEnglish
Published 01.03.2024
Online AccessGet full text
ISSN0957-0233
1361-6501
1361-6501
DOI10.1088/1361-6501/ad0f07

Cover

Abstract The vibration signals of mechanical equipment are subject to the influence of complex and variable working conditions, often exhibiting non-smooth and non-linear characteristics. The conventional time-frequency (TF) analysis (TFA) method, which relies on energy concentration, is susceptible to noise and impact, making it challenging to accurately extract fault characteristics. To overcome these limitations, this paper proposes an innovative approach. In this paper, we introduce an asymmetric image reconstruction autoencoder model, which is based on two well-known TFA methods, namely, short-time Fourier transform (STFT) and synchroextracting transform (SET), effectively reducing noise and improving the TF energy concentration process through learning the mapping relationship between STFT and SET. To address the clarity issue in the reconstructed TF images, the paper incorporates a channel attention mechanism known as SE Block into the encoding-decoding structure. Additionally, a skip connection structure is introduced to aid in restoring the structural details of the reconstructed TF images. Moreover, an improved weighted joint loss function is proposed to adaptively enhance various types of TF distribution features. This enhancement ensures that different characteristics of TF distribution are adequately addressed during the reconstruction process. The proposed method is put to the test using both simulated signals and experimental signals from gearbox rolling bearing faults. The results demonstrate that compared to traditional TFA and post-processing methods, the proposed model exhibits superior capabilities in enhancing the TF characterization of multi-source time-varying signals. Furthermore, it demonstrates remarkable robustness to noise and can accurately extract instantaneous frequency. These findings point to the promising potential of this method for mechanical fault identification and diagnosis applications.
AbstractList The vibration signals of mechanical equipment are subject to the influence of complex and variable working conditions, often exhibiting non-smooth and non-linear characteristics. The conventional time-frequency (TF) analysis (TFA) method, which relies on energy concentration, is susceptible to noise and impact, making it challenging to accurately extract fault characteristics. To overcome these limitations, this paper proposes an innovative approach. In this paper, we introduce an asymmetric image reconstruction autoencoder model, which is based on two well-known TFA methods, namely, short-time Fourier transform (STFT) and synchroextracting transform (SET), effectively reducing noise and improving the TF energy concentration process through learning the mapping relationship between STFT and SET. To address the clarity issue in the reconstructed TF images, the paper incorporates a channel attention mechanism known as SE Block into the encoding-decoding structure. Additionally, a skip connection structure is introduced to aid in restoring the structural details of the reconstructed TF images. Moreover, an improved weighted joint loss function is proposed to adaptively enhance various types of TF distribution features. This enhancement ensures that different characteristics of TF distribution are adequately addressed during the reconstruction process. The proposed method is put to the test using both simulated signals and experimental signals from gearbox rolling bearing faults. The results demonstrate that compared to traditional TFA and post-processing methods, the proposed model exhibits superior capabilities in enhancing the TF characterization of multi-source time-varying signals. Furthermore, it demonstrates remarkable robustness to noise and can accurately extract instantaneous frequency. These findings point to the promising potential of this method for mechanical fault identification and diagnosis applications.
Author Zhang, Jinjie
Mao, Zhiwei
Zhang, Zhenjing
Han, Ruiyu
Author_xml – sequence: 1
  givenname: Ruiyu
  surname: Han
  fullname: Han, Ruiyu
– sequence: 2
  givenname: Zhiwei
  orcidid: 0000-0001-5839-5066
  surname: Mao
  fullname: Mao, Zhiwei
– sequence: 3
  givenname: Zhenjing
  surname: Zhang
  fullname: Zhang, Zhenjing
– sequence: 4
  givenname: Jinjie
  surname: Zhang
  fullname: Zhang, Jinjie
BookMark eNqNkE1Lw0AQhhepYFu9e8wfiJ3NNtnNUYpfUPBSz2Eyu2sjyabubpH4601b8SAInoZ5Z55heGZs4npnGLvmcMNBqQUXBU-LHPgCNViQZ2z6E03YFMpcppAJccFmIbwBgISynDK9aTqTWm_e98bRkBi3RUdGJ7RFjxSNbz4xNr1LOhO3vU5qDON07DEM3Zj5hpKmw1eTeEO9C9Hv6biP-9iPJ3tt_CU7t9gGc_Vd5-zl_m6zekzXzw9Pq9t1SpnKY6qVMFpryKQol7osBCdpUGioKRMKclVILYUtyVK5LJZKYa1zToXVdSYtSTFn_HR373Y4fGDbVjs_PueHikN10FQdnFQHJ9VJ08jAiSHfh-CN_Q9S_EKoiUdJ0WPT_g1-AQ7ZgXw
CitedBy_id crossref_primary_10_1088_1361_6501_ad4f01
Cites_doi 10.1109/TIE.2017.2696503
10.1016/j.jfranklin.2022.11.004
10.1109/cvpr46437.2021.00710
10.1109/TSP.2017.2686355
10.1016/j.ymssp.2022.109602
10.1016/j.ymssp.2022.109832
10.1109/icassp.2018.8461664
10.1088/1361-6501/abb620
10.1109/iccv48922.2021.01366
10.1016/j.isatra.2021.11.030
10.1109/TIM.2021.3115197
10.1109/icassp49357.2023.10094621
10.1016/j.egyr.2022.09.113
10.1016/j.measurement.2020.107667
10.1088/1361-6501/ab1da0
10.1088/1361-6501/acabdb
10.1016/j.ymssp.2021.108616
10.1016/j.ymssp.2022.109476
10.1088/1361-6501/ac69b1
10.1088/1361-6501/acd2f3
10.1109/TIE.2018.2868296
10.1016/j.measurement.2021.110298
10.1016/j.ymssp.2020.107583
10.1098/rsta.2015.0205
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1088/1361-6501/ad0f07
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10.1088/1361-6501/ad0f07
10_1088_1361_6501_ad0f07
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
.GJ
02O
1WK
29M
5ZI
6TJ
6TU
9BW
AAGCF
AALHV
ACARI
ACWPO
ADTOC
AERVB
AETNG
AFFNX
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
H~9
JCGBZ
M45
MVM
NT-
NT.
OHT
Q02
RKQ
S3P
T37
UNPAY
ZCG
ZY4
ID FETCH-LOGICAL-c285t-d83eddd027394d9631c7ea3d0bc23805867d73f9cfc946488abd51c6fdb27fc73
IEDL.DBID UNPAY
ISSN 0957-0233
1361-6501
IngestDate Sun Sep 07 11:10:33 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Wed Oct 01 05:29:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c285t-d83eddd027394d9631c7ea3d0bc23805867d73f9cfc946488abd51c6fdb27fc73
ORCID 0000-0001-5839-5066
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6501/ad0f07
ParticipantIDs unpaywall_primary_10_1088_1361_6501_ad0f07
crossref_primary_10_1088_1361_6501_ad0f07
crossref_citationtrail_10_1088_1361_6501_ad0f07
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2024
References Yu (mstad0f07bib4) 2017; 64
Tang (mstad0f07bib10) 2022; 8
Wang (mstad0f07bib9) 2023; 183
Zhang (mstad0f07bib15) 2022; 33
Jiang (mstad0f07bib23) 2021
Pham (mstad0f07bib1) 2017; 65
Ding (mstad0f07bib17) 2022; 168
Zheng (mstad0f07bib3) 2021; 32
Jiang (mstad0f07bib8) 2023; 185
Fu (mstad0f07bib13) 2023; 34
Meignen (mstad0f07bib21) 2016; 374
Zhang (mstad0f07bib14) 2020; 157
Tao (mstad0f07bib19) 2023; 360
Xu (mstad0f07bib6) 2021; 70
Seif (mstad0f07bib22) 2018
Chang (mstad0f07bib16) 2023
Chen (mstad0f07bib18) 2021
Shi (mstad0f07bib5) 2022; 187
Yu (mstad0f07bib24) 2019; 30
Manhertz (mstad0f07bib12) 2021; 154
Chen (mstad0f07bib20) 2023; 34
Yu (mstad0f07bib2) 2019; 66
He (mstad0f07bib7) 2022; 181
Wang (mstad0f07bib11) 2022; 128
References_xml – volume: 64
  start-page: 8042
  year: 2017
  ident: mstad0f07bib4
  article-title: Synchroextracting transform
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2696503
– volume: 360
  start-page: 1454
  year: 2023
  ident: mstad0f07bib19
  article-title: Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2022.11.004
– start-page: 7176
  year: 2021
  ident: mstad0f07bib18
  article-title: PSD: principled synthetic-to-real dehazing guided by physical priors
  doi: 10.1109/cvpr46437.2021.00710
– volume: 65
  start-page: 3168
  year: 2017
  ident: mstad0f07bib1
  article-title: High-order synchrosqueezing transform for multicomponent signals analysis—with an application to gravitational-wave signal
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2686355
– volume: 183
  year: 2023
  ident: mstad0f07bib9
  article-title: Reassignment-enable reweighted sparse time-frequency analysis for sparsity-assisted aeroengine rub-impact fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109602
– volume: 185
  year: 2023
  ident: mstad0f07bib8
  article-title: A time-frequency spectral amplitude modulation method and its applications in rolling bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109832
– start-page: 1468
  year: 2018
  ident: mstad0f07bib22
  article-title: Edge-based loss function for single image super-resolution
  doi: 10.1109/icassp.2018.8461664
– volume: 32
  year: 2021
  ident: mstad0f07bib3
  article-title: Multi-synchrosqueezing S-transform for fault diagnosis in rolling bearings
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/abb620
– start-page: 13899
  year: 2021
  ident: mstad0f07bib23
  article-title: Focal frequency loss for image reconstruction and synthesis
  doi: 10.1109/iccv48922.2021.01366
– volume: 128
  start-page: 579
  year: 2022
  ident: mstad0f07bib11
  article-title: Sparse and low-rank decomposition of the time–frequency representation for bearing fault diagnosis under variable speed conditions
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.11.030
– volume: 70
  start-page: 1
  year: 2021
  ident: mstad0f07bib6
  article-title: Match-extracting chirplet transform with application to bearing fault diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3115197
– start-page: 1
  year: 2023
  ident: mstad0f07bib16
  article-title: Removing radio frequency interference from auroral kilometric radiation with stacked autoencoders
  doi: 10.1109/icassp49357.2023.10094621
– volume: 8
  start-page: 12727
  year: 2022
  ident: mstad0f07bib10
  article-title: A wind turbine bearing fault diagnosis method based on fused depth features in time–frequency domain
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.09.113
– volume: 157
  year: 2020
  ident: mstad0f07bib14
  article-title: An enhanced convolutional neural network for bearing fault diagnosis based on time–frequency image
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107667
– volume: 30
  year: 2019
  ident: mstad0f07bib24
  article-title: Planetary gear fault diagnosis using stacked denoising autoencoder and gated recurrent unit neural network under noisy environment and time-varying rotational speed conditions
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab1da0
– volume: 34
  year: 2023
  ident: mstad0f07bib13
  article-title: Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/acabdb
– volume: 168
  year: 2022
  ident: mstad0f07bib17
  article-title: A novel time–frequency transformer based on self–attention mechanism and its application in fault diagnosis of rolling bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108616
– volume: 181
  year: 2022
  ident: mstad0f07bib7
  article-title: Local maximum synchrosqueezes from entropy matching chirplet transform
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109476
– volume: 33
  year: 2022
  ident: mstad0f07bib15
  article-title: Bearing fault diagnosis under various operation conditions using synchrosqueezing transform and improved two-dimensional convolutional neural network
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac69b1
– volume: 34
  year: 2023
  ident: mstad0f07bib20
  article-title: Time–frequency transformer with shifted windows for journal bearing-rotor systems fault diagnosis under multiple working conditions
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/acd2f3
– volume: 66
  start-page: 5441
  year: 2019
  ident: mstad0f07bib2
  article-title: Multisynchrosqueezing transform
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2868296
– volume: 187
  year: 2022
  ident: mstad0f07bib5
  article-title: Refined matching linear chirplet transform for exhibiting time-frequency features of nonstationary vibration and acoustic signals
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110298
– volume: 154
  year: 2021
  ident: mstad0f07bib12
  article-title: STFT spectrogram based hybrid evaluation method for rotating machine transient vibration analysis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107583
– volume: 374
  year: 2016
  ident: mstad0f07bib21
  article-title: Adaptive multimode signal reconstruction from time–frequency representations
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2015.0205
SSID ssj0007099
Score 2.4570084
Snippet The vibration signals of mechanical equipment are subject to the influence of complex and variable working conditions, often exhibiting non-smooth and...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 35107
Title Time-frequency enhanced characterization method based on asymmetric image reconstruction autoencoder
URI https://doi.org/10.1088/1361-6501/ad0f07
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Journals
  customDbUrl:
  eissn: 1361-6501
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007099
  issn: 0957-0233
  databaseCode: IOP
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86EZ_UTcWJjjz44IRu7dKP9HGIYwrOPTiYTyW9JChu3Vg7ZP71Jk0tTsSPx8KvpVzucnfJ3e8QOqeeYHEHlKV54FuuVAkrtZm0CCjlCYlPJdfnkHcDvz9yb8feuDjv0L0wa_f3KjlziO9YKopw2ozbUreNb_meiroraGs0GHYfDZVeYCnXQ0yLlYEXN5LffWLNA-0skzlbvbLJ5JNb6e0ZjqM0ZyPU1SQvrWUWt-DtC1fjX_54H-0WsSXuGmWoog2R1NB2XuMJaQ1VCztO8UVBNt08QFz3gFhyYSqqV1gkT3lNAIaSydk0amIzaxprt8exembpajrV87gAP0_VroTz3Lrko8Vsmc00SyYXi0M06l0_XPWtYvKCBR3qZRanRHDONddN6HJlow4EghFux6BcvO1RP-ABkSFICF1f7QEs5p4DvuRxJ5AQkCNUSWaJOEbYpWB7jAuFcdxAhGGHuURhwGGMQSzrqP2xGhEUtOR6OsYkyq_HKY20QCMt0MgItI6a5RtzQ8nxA_ayXOBfwSf_AZ-iihKoOFMhSRY30ObN_bBR6OQ7nLndFw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-yIT6pm4oTlTz44IRubdOP9HGIYwgOHxzMp5JeEhS3bmwdMv96kyYWJ-LHY-HXUi53ubvk7ncIXdBQsMwHZWkhRE4gVcJKXSYdAkp5EhJRyfU55N0wGoyC23E4tucduhdm4_5eJWceiTxHRRFel3FX6rbxehSqqLuG6qPhfe_RUOnFjnI9xLRYGbi9kfzuExseaGeVz9n6lU0mn9xKf89wHC1LNkJdTfLSWRVZB96-cDX-5Y_30a6NLXHPKEMDbYm8ibbLGk9YNlHD2vESX1qy6fYB4roHxJELU1G9xiJ_KmsCMFRMzqZRE5tZ01i7PY7VM1uup1M9jwvw81TtSrjMrSs-WsxWxUyzZHKxOESj_s3D9cCxkxcc8GlYOJwSwTnXXDdJwJWNehALRribgXLxbkijmMdEJiAhCSK1B7CMhx5Ekmd-LCEmR6iWz3JxjHBAwQ0ZFwrjBbFIEp8FRGHAY4xBJluo-7EaKVhacj0dY5KW1-OUplqgqRZoagTaQu3qjbmh5PgBe1Ut8K_gk_-AT1FNCVScqZCkyM6tNr4Dc2ncDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-frequency+enhanced+characterization+method+based+on+asymmetric+image+reconstruction+autoencoder&rft.jtitle=Measurement+science+%26+technology&rft.au=Han%2C+Ruiyu&rft.au=Mao%2C+Zhiwei&rft.au=Zhang%2C+Zhenjing&rft.au=Zhang%2C+Jinjie&rft.date=2024-03-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=35&rft.issue=3&rft.spage=35107&rft_id=info:doi/10.1088%2F1361-6501%2Fad0f07&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ad0f07
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon