Time-frequency enhanced characterization method based on asymmetric image reconstruction autoencoder
The vibration signals of mechanical equipment are subject to the influence of complex and variable working conditions, often exhibiting non-smooth and non-linear characteristics. The conventional time-frequency (TF) analysis (TFA) method, which relies on energy concentration, is susceptible to noise...
Saved in:
| Published in | Measurement science & technology Vol. 35; no. 3; p. 35107 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.03.2024
|
| Online Access | Get full text |
| ISSN | 0957-0233 1361-6501 1361-6501 |
| DOI | 10.1088/1361-6501/ad0f07 |
Cover
| Abstract | The vibration signals of mechanical equipment are subject to the influence of complex and variable working conditions, often exhibiting non-smooth and non-linear characteristics. The conventional time-frequency (TF) analysis (TFA) method, which relies on energy concentration, is susceptible to noise and impact, making it challenging to accurately extract fault characteristics. To overcome these limitations, this paper proposes an innovative approach. In this paper, we introduce an asymmetric image reconstruction autoencoder model, which is based on two well-known TFA methods, namely, short-time Fourier transform (STFT) and synchroextracting transform (SET), effectively reducing noise and improving the TF energy concentration process through learning the mapping relationship between STFT and SET. To address the clarity issue in the reconstructed TF images, the paper incorporates a channel attention mechanism known as SE Block into the encoding-decoding structure. Additionally, a skip connection structure is introduced to aid in restoring the structural details of the reconstructed TF images. Moreover, an improved weighted joint loss function is proposed to adaptively enhance various types of TF distribution features. This enhancement ensures that different characteristics of TF distribution are adequately addressed during the reconstruction process. The proposed method is put to the test using both simulated signals and experimental signals from gearbox rolling bearing faults. The results demonstrate that compared to traditional TFA and post-processing methods, the proposed model exhibits superior capabilities in enhancing the TF characterization of multi-source time-varying signals. Furthermore, it demonstrates remarkable robustness to noise and can accurately extract instantaneous frequency. These findings point to the promising potential of this method for mechanical fault identification and diagnosis applications. |
|---|---|
| AbstractList | The vibration signals of mechanical equipment are subject to the influence of complex and variable working conditions, often exhibiting non-smooth and non-linear characteristics. The conventional time-frequency (TF) analysis (TFA) method, which relies on energy concentration, is susceptible to noise and impact, making it challenging to accurately extract fault characteristics. To overcome these limitations, this paper proposes an innovative approach. In this paper, we introduce an asymmetric image reconstruction autoencoder model, which is based on two well-known TFA methods, namely, short-time Fourier transform (STFT) and synchroextracting transform (SET), effectively reducing noise and improving the TF energy concentration process through learning the mapping relationship between STFT and SET. To address the clarity issue in the reconstructed TF images, the paper incorporates a channel attention mechanism known as SE Block into the encoding-decoding structure. Additionally, a skip connection structure is introduced to aid in restoring the structural details of the reconstructed TF images. Moreover, an improved weighted joint loss function is proposed to adaptively enhance various types of TF distribution features. This enhancement ensures that different characteristics of TF distribution are adequately addressed during the reconstruction process. The proposed method is put to the test using both simulated signals and experimental signals from gearbox rolling bearing faults. The results demonstrate that compared to traditional TFA and post-processing methods, the proposed model exhibits superior capabilities in enhancing the TF characterization of multi-source time-varying signals. Furthermore, it demonstrates remarkable robustness to noise and can accurately extract instantaneous frequency. These findings point to the promising potential of this method for mechanical fault identification and diagnosis applications. |
| Author | Zhang, Jinjie Mao, Zhiwei Zhang, Zhenjing Han, Ruiyu |
| Author_xml | – sequence: 1 givenname: Ruiyu surname: Han fullname: Han, Ruiyu – sequence: 2 givenname: Zhiwei orcidid: 0000-0001-5839-5066 surname: Mao fullname: Mao, Zhiwei – sequence: 3 givenname: Zhenjing surname: Zhang fullname: Zhang, Zhenjing – sequence: 4 givenname: Jinjie surname: Zhang fullname: Zhang, Jinjie |
| BookMark | eNqNkE1Lw0AQhhepYFu9e8wfiJ3NNtnNUYpfUPBSz2Eyu2sjyabubpH4601b8SAInoZ5Z55heGZs4npnGLvmcMNBqQUXBU-LHPgCNViQZ2z6E03YFMpcppAJccFmIbwBgISynDK9aTqTWm_e98bRkBi3RUdGJ7RFjxSNbz4xNr1LOhO3vU5qDON07DEM3Zj5hpKmw1eTeEO9C9Hv6biP-9iPJ3tt_CU7t9gGc_Vd5-zl_m6zekzXzw9Pq9t1SpnKY6qVMFpryKQol7osBCdpUGioKRMKclVILYUtyVK5LJZKYa1zToXVdSYtSTFn_HR373Y4fGDbVjs_PueHikN10FQdnFQHJ9VJ08jAiSHfh-CN_Q9S_EKoiUdJ0WPT_g1-AQ7ZgXw |
| CitedBy_id | crossref_primary_10_1088_1361_6501_ad4f01 |
| Cites_doi | 10.1109/TIE.2017.2696503 10.1016/j.jfranklin.2022.11.004 10.1109/cvpr46437.2021.00710 10.1109/TSP.2017.2686355 10.1016/j.ymssp.2022.109602 10.1016/j.ymssp.2022.109832 10.1109/icassp.2018.8461664 10.1088/1361-6501/abb620 10.1109/iccv48922.2021.01366 10.1016/j.isatra.2021.11.030 10.1109/TIM.2021.3115197 10.1109/icassp49357.2023.10094621 10.1016/j.egyr.2022.09.113 10.1016/j.measurement.2020.107667 10.1088/1361-6501/ab1da0 10.1088/1361-6501/acabdb 10.1016/j.ymssp.2021.108616 10.1016/j.ymssp.2022.109476 10.1088/1361-6501/ac69b1 10.1088/1361-6501/acd2f3 10.1109/TIE.2018.2868296 10.1016/j.measurement.2021.110298 10.1016/j.ymssp.2020.107583 10.1098/rsta.2015.0205 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1088/1361-6501/ad0f07 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1361-6501 |
| ExternalDocumentID | 10.1088/1361-6501/ad0f07 10_1088_1361_6501_ad0f07 |
| GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 .GJ 02O 1WK 29M 5ZI 6TJ 6TU 9BW AAGCF AALHV ACARI ACWPO ADTOC AERVB AETNG AFFNX AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF H~9 JCGBZ M45 MVM NT- NT. OHT Q02 RKQ S3P T37 UNPAY ZCG ZY4 |
| ID | FETCH-LOGICAL-c285t-d83eddd027394d9631c7ea3d0bc23805867d73f9cfc946488abd51c6fdb27fc73 |
| IEDL.DBID | UNPAY |
| ISSN | 0957-0233 1361-6501 |
| IngestDate | Sun Sep 07 11:10:33 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Wed Oct 01 05:29:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c285t-d83eddd027394d9631c7ea3d0bc23805867d73f9cfc946488abd51c6fdb27fc73 |
| ORCID | 0000-0001-5839-5066 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6501/ad0f07 |
| ParticipantIDs | unpaywall_primary_10_1088_1361_6501_ad0f07 crossref_primary_10_1088_1361_6501_ad0f07 crossref_citationtrail_10_1088_1361_6501_ad0f07 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Measurement science & technology |
| PublicationYear | 2024 |
| References | Yu (mstad0f07bib4) 2017; 64 Tang (mstad0f07bib10) 2022; 8 Wang (mstad0f07bib9) 2023; 183 Zhang (mstad0f07bib15) 2022; 33 Jiang (mstad0f07bib23) 2021 Pham (mstad0f07bib1) 2017; 65 Ding (mstad0f07bib17) 2022; 168 Zheng (mstad0f07bib3) 2021; 32 Jiang (mstad0f07bib8) 2023; 185 Fu (mstad0f07bib13) 2023; 34 Meignen (mstad0f07bib21) 2016; 374 Zhang (mstad0f07bib14) 2020; 157 Tao (mstad0f07bib19) 2023; 360 Xu (mstad0f07bib6) 2021; 70 Seif (mstad0f07bib22) 2018 Chang (mstad0f07bib16) 2023 Chen (mstad0f07bib18) 2021 Shi (mstad0f07bib5) 2022; 187 Yu (mstad0f07bib24) 2019; 30 Manhertz (mstad0f07bib12) 2021; 154 Chen (mstad0f07bib20) 2023; 34 Yu (mstad0f07bib2) 2019; 66 He (mstad0f07bib7) 2022; 181 Wang (mstad0f07bib11) 2022; 128 |
| References_xml | – volume: 64 start-page: 8042 year: 2017 ident: mstad0f07bib4 article-title: Synchroextracting transform publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2696503 – volume: 360 start-page: 1454 year: 2023 ident: mstad0f07bib19 article-title: Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2022.11.004 – start-page: 7176 year: 2021 ident: mstad0f07bib18 article-title: PSD: principled synthetic-to-real dehazing guided by physical priors doi: 10.1109/cvpr46437.2021.00710 – volume: 65 start-page: 3168 year: 2017 ident: mstad0f07bib1 article-title: High-order synchrosqueezing transform for multicomponent signals analysis—with an application to gravitational-wave signal publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2686355 – volume: 183 year: 2023 ident: mstad0f07bib9 article-title: Reassignment-enable reweighted sparse time-frequency analysis for sparsity-assisted aeroengine rub-impact fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109602 – volume: 185 year: 2023 ident: mstad0f07bib8 article-title: A time-frequency spectral amplitude modulation method and its applications in rolling bearing fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109832 – start-page: 1468 year: 2018 ident: mstad0f07bib22 article-title: Edge-based loss function for single image super-resolution doi: 10.1109/icassp.2018.8461664 – volume: 32 year: 2021 ident: mstad0f07bib3 article-title: Multi-synchrosqueezing S-transform for fault diagnosis in rolling bearings publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/abb620 – start-page: 13899 year: 2021 ident: mstad0f07bib23 article-title: Focal frequency loss for image reconstruction and synthesis doi: 10.1109/iccv48922.2021.01366 – volume: 128 start-page: 579 year: 2022 ident: mstad0f07bib11 article-title: Sparse and low-rank decomposition of the time–frequency representation for bearing fault diagnosis under variable speed conditions publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.11.030 – volume: 70 start-page: 1 year: 2021 ident: mstad0f07bib6 article-title: Match-extracting chirplet transform with application to bearing fault diagnosis publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3115197 – start-page: 1 year: 2023 ident: mstad0f07bib16 article-title: Removing radio frequency interference from auroral kilometric radiation with stacked autoencoders doi: 10.1109/icassp49357.2023.10094621 – volume: 8 start-page: 12727 year: 2022 ident: mstad0f07bib10 article-title: A wind turbine bearing fault diagnosis method based on fused depth features in time–frequency domain publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.09.113 – volume: 157 year: 2020 ident: mstad0f07bib14 article-title: An enhanced convolutional neural network for bearing fault diagnosis based on time–frequency image publication-title: Measurement doi: 10.1016/j.measurement.2020.107667 – volume: 30 year: 2019 ident: mstad0f07bib24 article-title: Planetary gear fault diagnosis using stacked denoising autoencoder and gated recurrent unit neural network under noisy environment and time-varying rotational speed conditions publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab1da0 – volume: 34 year: 2023 ident: mstad0f07bib13 article-title: Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/acabdb – volume: 168 year: 2022 ident: mstad0f07bib17 article-title: A novel time–frequency transformer based on self–attention mechanism and its application in fault diagnosis of rolling bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108616 – volume: 181 year: 2022 ident: mstad0f07bib7 article-title: Local maximum synchrosqueezes from entropy matching chirplet transform publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109476 – volume: 33 year: 2022 ident: mstad0f07bib15 article-title: Bearing fault diagnosis under various operation conditions using synchrosqueezing transform and improved two-dimensional convolutional neural network publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac69b1 – volume: 34 year: 2023 ident: mstad0f07bib20 article-title: Time–frequency transformer with shifted windows for journal bearing-rotor systems fault diagnosis under multiple working conditions publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/acd2f3 – volume: 66 start-page: 5441 year: 2019 ident: mstad0f07bib2 article-title: Multisynchrosqueezing transform publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2868296 – volume: 187 year: 2022 ident: mstad0f07bib5 article-title: Refined matching linear chirplet transform for exhibiting time-frequency features of nonstationary vibration and acoustic signals publication-title: Measurement doi: 10.1016/j.measurement.2021.110298 – volume: 154 year: 2021 ident: mstad0f07bib12 article-title: STFT spectrogram based hybrid evaluation method for rotating machine transient vibration analysis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107583 – volume: 374 year: 2016 ident: mstad0f07bib21 article-title: Adaptive multimode signal reconstruction from time–frequency representations publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2015.0205 |
| SSID | ssj0007099 |
| Score | 2.4570084 |
| Snippet | The vibration signals of mechanical equipment are subject to the influence of complex and variable working conditions, often exhibiting non-smooth and... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 35107 |
| Title | Time-frequency enhanced characterization method based on asymmetric image reconstruction autoencoder |
| URI | https://doi.org/10.1088/1361-6501/ad0f07 |
| UnpaywallVersion | publishedVersion |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Journals customDbUrl: eissn: 1361-6501 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007099 issn: 0957-0233 databaseCode: IOP dateStart: 19900101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86EZ_UTcWJjjz44IRu7dKP9HGIYwrOPTiYTyW9JChu3Vg7ZP71Jk0tTsSPx8KvpVzucnfJ3e8QOqeeYHEHlKV54FuuVAkrtZm0CCjlCYlPJdfnkHcDvz9yb8feuDjv0L0wa_f3KjlziO9YKopw2ozbUreNb_meiroraGs0GHYfDZVeYCnXQ0yLlYEXN5LffWLNA-0skzlbvbLJ5JNb6e0ZjqM0ZyPU1SQvrWUWt-DtC1fjX_54H-0WsSXuGmWoog2R1NB2XuMJaQ1VCztO8UVBNt08QFz3gFhyYSqqV1gkT3lNAIaSydk0amIzaxprt8exembpajrV87gAP0_VroTz3Lrko8Vsmc00SyYXi0M06l0_XPWtYvKCBR3qZRanRHDONddN6HJlow4EghFux6BcvO1RP-ABkSFICF1f7QEs5p4DvuRxJ5AQkCNUSWaJOEbYpWB7jAuFcdxAhGGHuURhwGGMQSzrqP2xGhEUtOR6OsYkyq_HKY20QCMt0MgItI6a5RtzQ8nxA_ayXOBfwSf_AZ-iihKoOFMhSRY30ObN_bBR6OQ7nLndFw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-yIT6pm4oTlTz44IRubdOP9HGIYwgOHxzMp5JeEhS3bmwdMv96kyYWJ-LHY-HXUi53ubvk7ncIXdBQsMwHZWkhRE4gVcJKXSYdAkp5EhJRyfU55N0wGoyC23E4tucduhdm4_5eJWceiTxHRRFel3FX6rbxehSqqLuG6qPhfe_RUOnFjnI9xLRYGbi9kfzuExseaGeVz9n6lU0mn9xKf89wHC1LNkJdTfLSWRVZB96-cDX-5Y_30a6NLXHPKEMDbYm8ibbLGk9YNlHD2vESX1qy6fYB4roHxJELU1G9xiJ_KmsCMFRMzqZRE5tZ01i7PY7VM1uup1M9jwvw81TtSrjMrSs-WsxWxUyzZHKxOESj_s3D9cCxkxcc8GlYOJwSwTnXXDdJwJWNehALRribgXLxbkijmMdEJiAhCSK1B7CMhx5Ekmd-LCEmR6iWz3JxjHBAwQ0ZFwrjBbFIEp8FRGHAY4xBJluo-7EaKVhacj0dY5KW1-OUplqgqRZoagTaQu3qjbmh5PgBe1Ut8K_gk_-AT1FNCVScqZCkyM6tNr4Dc2ncDg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-frequency+enhanced+characterization+method+based+on+asymmetric+image+reconstruction+autoencoder&rft.jtitle=Measurement+science+%26+technology&rft.au=Han%2C+Ruiyu&rft.au=Mao%2C+Zhiwei&rft.au=Zhang%2C+Zhenjing&rft.au=Zhang%2C+Jinjie&rft.date=2024-03-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=35&rft.issue=3&rft.spage=35107&rft_id=info:doi/10.1088%2F1361-6501%2Fad0f07&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ad0f07 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |