A novel unmanned aerial vehicle path planning approach: sand cat optimization algorithm incorporating learned behaviour

Unmanned aerial vehicle (UAV) path planning plays an important role in UAV flight, and an effective algorithm is needed to realize UAV path planning. The sand cat algorithm is characterized by simple parameter setting and easy implementation. However, the convergence speed is slow, easy to fall into...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 35; no. 4; p. 46203
Main Authors Hu, Kun, Mo, Yuanbin
Format Journal Article
LanguageEnglish
Published 01.04.2024
Online AccessGet full text
ISSN0957-0233
1361-6501
1361-6501
DOI10.1088/1361-6501/ad1977

Cover

Abstract Unmanned aerial vehicle (UAV) path planning plays an important role in UAV flight, and an effective algorithm is needed to realize UAV path planning. The sand cat algorithm is characterized by simple parameter setting and easy implementation. However, the convergence speed is slow, easy to fall into the local optimum. In order to solve these problems, a novel sand cat algorithm incorporating learning behaviors (LSCSO) is proposed. LSCSO is inspired by the life habits and learning ability of sand cats and incorporates a new position update strategy into the basic Sand Cat Optimization Algorithm, which maintains the diversity of the population and improves the convergence ability during the optimization process. Finally, LSCSO is applied to the challenging UAV 3D path planning with cubic B-spline interpolation to generate a smooth path, and the proposed algorithm is compared with a variety of other competing algorithms. The experimental results show that LSCSO has excellent optimization-seeking ability and plans a safe and feasible path with minimal cost consideration among all the compared algorithms.
AbstractList Unmanned aerial vehicle (UAV) path planning plays an important role in UAV flight, and an effective algorithm is needed to realize UAV path planning. The sand cat algorithm is characterized by simple parameter setting and easy implementation. However, the convergence speed is slow, easy to fall into the local optimum. In order to solve these problems, a novel sand cat algorithm incorporating learning behaviors (LSCSO) is proposed. LSCSO is inspired by the life habits and learning ability of sand cats and incorporates a new position update strategy into the basic Sand Cat Optimization Algorithm, which maintains the diversity of the population and improves the convergence ability during the optimization process. Finally, LSCSO is applied to the challenging UAV 3D path planning with cubic B-spline interpolation to generate a smooth path, and the proposed algorithm is compared with a variety of other competing algorithms. The experimental results show that LSCSO has excellent optimization-seeking ability and plans a safe and feasible path with minimal cost consideration among all the compared algorithms.
Author Hu, Kun
Mo, Yuanbin
Author_xml – sequence: 1
  givenname: Kun
  orcidid: 0009-0007-2296-6681
  surname: Hu
  fullname: Hu, Kun
– sequence: 2
  givenname: Yuanbin
  surname: Mo
  fullname: Mo, Yuanbin
BookMark eNqNkMFLwzAchYNMcJvePeYfqEvatWm8jaFOGHjRc_k1SddImoQ025h_va0TD4Lg6cF7fO_wzdDEOqsQuqXkjpKyXNCsoEmRE7oASTljF2j6U03QlPCcJSTNsis06_t3QggjnE_RcYWtOyiD97YDa5XEoIIGgw-q1cIo7CG22Jth03aHwfvgQLT3uAcrsYCInY-60x8QtbMYzM4FHdsOaytc8C4M_cAZBWE8r1ULB-324RpdNmB6dfOdc_T2-PC63iTbl6fn9WqbiLTMYwI8BUI55E1dQ1lKCWmac7asmZKFJIVUosyLrFjSXBG2lLzJWM2bBkQmFElVNkf0_Lu3Hk5HMKbyQXcQThUl1WiuGjVVo6bqbG5gyJkRwfV9UM1_kOIXInT8UhIDaPM3-AmgfofB
CitedBy_id crossref_primary_10_3390_drones8050205
crossref_primary_10_1109_ACCESS_2024_3483457
crossref_primary_10_3390_wevj16030157
crossref_primary_10_1007_s10489_024_06124_3
crossref_primary_10_3390_met15020105
crossref_primary_10_1088_1402_4896_ad551b
crossref_primary_10_62762_CJIF_2024_596648
Cites_doi 10.1016/j.petrol.2021.109633
10.1007/s00366-022-01604-x
10.1109/ACCESS.2020.2990153
10.1016/j.cja.2023.07.030
10.1016/j.procs.2019.01.151
10.1016/j.comnet.2017.05.021
10.3390/math10224350
10.1109/ACCESS.2021.3049892
10.1016/j.eswa.2022.119327
10.3390/app10041494
10.1016/j.eswa.2023.120946
10.3390/drones4040070
10.1016/j.eswa.2020.114541
10.1016/j.advengsoft.2023.103411
10.3390/buildings11120602
10.3390/axioms12070702
10.1016/j.agrformet.2023.109646
10.1109/CCDC52312.2021.9602445)
10.1007/s12652-023-04540-w
10.1109/4235.585893
10.1016/j.eswa.2021.114854
10.23919/ChiCC.2018.8482622)
10.1016/j.asoc.2021.107376
10.1016/j.advengsoft.2023.103423
10.1016/j.eswa.2022.119243
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1088/1361-6501/ad1977
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10.1088/1361-6501/ad1977
10_1088_1361_6501_ad1977
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
.GJ
02O
1WK
29M
5ZI
6TJ
6TU
9BW
AAGCF
AALHV
ACARI
ACWPO
ADTOC
AERVB
AETNG
AFFNX
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
H~9
JCGBZ
M45
MVM
NT-
NT.
OHT
Q02
RKQ
S3P
T37
UNPAY
ZCG
ZY4
ID FETCH-LOGICAL-c285t-a92a019a5fbba88dda225974b7ed6d06dec85636415e074d9f37b9ffac3ce02e3
IEDL.DBID UNPAY
ISSN 0957-0233
1361-6501
IngestDate Sun Sep 07 11:27:35 EDT 2025
Wed Oct 01 05:32:03 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c285t-a92a019a5fbba88dda225974b7ed6d06dec85636415e074d9f37b9ffac3ce02e3
ORCID 0009-0007-2296-6681
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6501/ad1977
ParticipantIDs unpaywall_primary_10_1088_1361_6501_ad1977
crossref_primary_10_1088_1361_6501_ad1977
crossref_citationtrail_10_1088_1361_6501_ad1977
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2024
References Wu (mstad1977bib9) 2020; 8
Estrada (mstad1977bib5) 2019; 149
Asadzadeh (mstad1977bib2) 2022; 208
Chen (mstad1977bib13) 2021
Phung (mstad1977bib11) 2021; 107
Wu (mstad1977bib28) 2022; 10
Lyu (mstad1977bib1) 2023; 341
Moshref-Javadi (mstad1977bib4) 2021; 177
Hammad (mstad1977bib3) 2021; 11
Liu (mstad1977bib14) 2023; 233
Pan (mstad1977bib12) 2021; 9
Tian (mstad1977bib16) 2018
Seyyedabbasi (mstad1977bib19) 2023; 39
Wang (mstad1977bib22) 2021; 170
Montes-Romero (mstad1977bib7) 2020; 10
Yang (mstad1977bib6) 2020; 4
Erdelj (mstad1977bib8) 2017; 124
Seyyedabbasi (mstad1977bib21) 2023; 178
Wolpert (mstad1977bib18) 1997; 1
Zhang (mstad1977bib15) 2023; 215
Rajmohan (mstad1977bib24) 2023; 14
Sheng (mstad1977bib10) 2023; 36
Yu (mstad1977bib17) 2023; 215
Kennedy (mstad1977bib26) 1995; vol 4
Chen (mstad1977bib23) 2023; 12
Dorigo (mstad1977bib27) 1999; vol 2
Kiani (mstad1977bib20) 2023; 178
Tizhoosh (mstad1977bib25) 2005; vol 1
References_xml – volume: 208
  year: 2022
  ident: mstad1977bib2
  article-title: UAV-based remote sensing for the petroleum industry and environmental monitoring: state-of-the-art and perspectives
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109633
– volume: 39
  start-page: 2627
  year: 2023
  ident: mstad1977bib19
  article-title: Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01604-x
– volume: 8
  start-page: 85431
  year: 2020
  ident: mstad1977bib9
  article-title: Bi-directional adaptive A* algorithm toward optimal path planning for large-scale UAV under multi-constraints
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990153
– volume: 36
  start-page: 249
  year: 2023
  ident: mstad1977bib10
  article-title: New multi-UAV formation keeping method based on improved artificial potential field
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2023.07.030
– volume: 149
  start-page: 375
  year: 2019
  ident: mstad1977bib5
  article-title: The uses of unmanned aerial vehicles –UAV’s- (or drones) in social logistic: natural disasters response and humanitarian relief aid
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2019.01.151
– volume: 124
  start-page: 72
  year: 2017
  ident: mstad1977bib8
  article-title: Wireless sensor networks and multi-UAV systems for natural disaster management
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2017.05.021
– volume: 10
  start-page: 4350
  year: 2022
  ident: mstad1977bib28
  article-title: Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems
  publication-title: Mathematics
  doi: 10.3390/math10224350
– volume: 9
  start-page: 7994
  year: 2021
  ident: mstad1977bib12
  article-title: A deep learning trained by genetic algorithm to improve the efficiency of path planning for data collection with multi-UAV
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049892
– volume: 215
  year: 2023
  ident: mstad1977bib17
  article-title: A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119327
– volume: 10
  start-page: 1494
  year: 2020
  ident: mstad1977bib7
  article-title: Director tools for autonomous media production with a team of drones
  publication-title: Appl. Sci.
  doi: 10.3390/app10041494
– volume: 233
  year: 2023
  ident: mstad1977bib14
  article-title: Agricultural UAV trajectory planning by incorporating multi-mechanism improved grey wolf optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120946
– volume: 4
  start-page: 70
  year: 2020
  ident: mstad1977bib6
  article-title: Developing an introductory UAV/drone mapping training program for seagrass monitoring and research
  publication-title: Drones
  doi: 10.3390/drones4040070
– volume: 170
  year: 2021
  ident: mstad1977bib22
  article-title: Kinematic constrained bi-directional RRT with efficient branch pruning for robot path planning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114541
– volume: 178
  year: 2023
  ident: mstad1977bib21
  article-title: A reinforcement learning-based metaheuristic algorithm for solving global optimization problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2023.103411
– volume: 11
  start-page: 602
  year: 2021
  ident: mstad1977bib3
  article-title: The use of unmanned aerial vehicles for dynamic site layout planning in large-scale construction projects
  publication-title: Buildings
  doi: 10.3390/buildings11120602
– volume: 12
  start-page: 702
  year: 2023
  ident: mstad1977bib23
  article-title: UAV path planning based on an improved chimp optimization algorithm
  publication-title: Axioms
  doi: 10.3390/axioms12070702
– volume: 341
  year: 2023
  ident: mstad1977bib1
  article-title: UAV time-series imagery with novel machine learning to estimate heading dates of rice accessions for breeding
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2023.109646
– start-page: pp 535
  year: 2021
  ident: mstad1977bib13
  article-title: Research on improved potential field ant colony algorithm for UAV path planning
  doi: 10.1109/CCDC52312.2021.9602445)
– volume: 14
  start-page: 4289
  year: 2023
  ident: mstad1977bib24
  article-title: Improved symbiotic organisms search for path planning of unmanned combat aerial vehicles
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-023-04540-w
– volume: 1
  start-page: 67
  year: 1997
  ident: mstad1977bib18
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 177
  year: 2021
  ident: mstad1977bib4
  article-title: Applications and research avenues for drone-based models in logistics: a classification and review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114854
– volume: vol 2
  start-page: pp 1470
  year: 1999
  ident: mstad1977bib27
  article-title: Ant colony optimization: a new meta-heuristic
– volume: vol 4
  start-page: pp 1942
  year: 1995
  ident: mstad1977bib26
  article-title: Particle swarm optimization
– volume: vol 1
  start-page: pp 695
  year: 2005
  ident: mstad1977bib25
  article-title: Opposition-based learning: a new scheme for machine intelligence
– start-page: pp 10055
  year: 2018
  ident: mstad1977bib16
  article-title: Real-time dynamic track planning of multi-UAV formation based on improved artificial bee colony algorithm
  doi: 10.23919/ChiCC.2018.8482622)
– volume: 107
  year: 2021
  ident: mstad1977bib11
  article-title: Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107376
– volume: 178
  year: 2023
  ident: mstad1977bib20
  article-title: Pscso: enhanced sand cat swarm optimization inspired by the political system to solve complex problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2023.103423
– volume: 215
  year: 2023
  ident: mstad1977bib15
  article-title: A novel UAV path planning approach: heuristic crossing search and rescue optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119243
SSID ssj0007099
Score 2.4999342
Snippet Unmanned aerial vehicle (UAV) path planning plays an important role in UAV flight, and an effective algorithm is needed to realize UAV path planning. The sand...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 46203
Title A novel unmanned aerial vehicle path planning approach: sand cat optimization algorithm incorporating learned behaviour
URI https://doi.org/10.1088/1361-6501/ad1977
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Electronic Journals
  customDbUrl:
  eissn: 1361-6501
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007099
  issn: 0957-0233
  databaseCode: IOP
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66Ip58i4pKDh5UiPaZTb0toqjg4-CCnsrkURW73WW3VfTXO2mjqIiP-2Qok8nMN03mG0I2wygO0C0ipjxPsUhIzpIs8hgERvtCKF97tjn57Jwfd6PT6_ja_e-wvTCf7u-xOPND7jNEEf4eaB-xyjiZ4DGi7haZ6J5fdm4aKr02w9QTNi1Wjbi7kfxOxacMNFUVA3h-gjz_kFaOZhqOo1HNRmhfkzzsVqXcVS9fuBr_8sWzZNphS9ppnGGOjJlinkzWbzzVaJ7MuXM8oluObHp7gTx1aNF_NDmtih7YmEuh9kn6aO6sFmpHFtOBG21E3yjI9-kICk0VlLSPQafnujkp5Lf94X1516OW9aEhSbbr6uEUqNyxAlTDRdI9Orw6OGZuGANTgYhLBkkACAchzqQEIbQGjARYjMi20Vx7XBslYh5yBAQGYYlOsrAtkywDFSrjBSZcIq2iX5hlQmUAEPgqaltqHIQsAFiUxVkQG45BQCYrZO9tg1LlmMrtwIw8rW_MhUitjVNr47Sx8QrZfl8xaFg6fpDded_zX4VX_yO8RlrlsDLriFJKuUHGTy4uN5ybvgK3zOF8
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66Ip58i4pKDh5UiPaZTb0tooigeHBBT2XyqIrd7rLbuuivd9JmRUV83CdDmUxmvmky3xCyG0ZxgG4RMeV5ikVCcpZkkccgMNoXQvnas83Jl1f8vBtd3Ma37n-H7YX5dH-PxZkfcp8hivCPQPuIVabJDI8RdbfITPfqunPXUOm1GaaesGmxasTdjeR3Kj5loLmqGMDLGPL8Q1o5W2g4jkY1G6F9TfJ0WJXyUL1-4Wr8yxcvknmHLWmncYYlMmWKZTJbv_FUo2Wy5M7xiO45sun9FTLu0KL_bHJaFT2wMZdC7ZP02TxYLdSOLKYDN9qITijIj-kICk0VlLSPQafnujkp5Pf94WP50KOW9aEhSbbr6uEUqNyxAlTDVdI9O705OWduGANTgYhLBkkACAchzqQEIbQGjARYjMi20Vx7XBslYh5yBAQGYYlOsrAtkywDFSrjBSZcI62iX5h1QmUAEPgqaltqHIQsAFiUxVkQG45BQCYb5GiyQalyTOV2YEae1jfmQqTWxqm1cdrYeIPsv68YNCwdP8gevO_5r8Kb_xHeIq1yWJltRCml3HEO-gZ0HuBz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+unmanned+aerial+vehicle+path+planning+approach%3A+sand+cat+optimization+algorithm+incorporating+learned+behaviour&rft.jtitle=Measurement+science+%26+technology&rft.au=Hu%2C+Kun&rft.au=Mo%2C+Yuanbin&rft.date=2024-04-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=35&rft.issue=4&rft.spage=46203&rft_id=info:doi/10.1088%2F1361-6501%2Fad1977&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ad1977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon