Research on artificial neural networks to accurately predict element concentrations in nutrient solutions

Calcium, potassium, nitrogen, magnesium, and phosphorus, the main elements of the nutrient solution, are absorbed by plants and play an important role in plants. By measuring Ca 2+ , K + , Mg 2+ , NH 4 + , NO 3 − , HPO 4 2− , the artificial neural networks (ANNs) were used in this study to accuratel...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 34; no. 11; p. 115121
Main Authors Zhai, Jiawei, Dong, Hongtu, Liu, Tianyang, Jin, Xiaotong, Luo, Bin, Li, Aixue, Wang, Cheng, Wang, Xiaodong
Format Journal Article
LanguageEnglish
Published 01.11.2023
Online AccessGet full text
ISSN0957-0233
1361-6501
1361-6501
DOI10.1088/1361-6501/ace4e5

Cover

Abstract Calcium, potassium, nitrogen, magnesium, and phosphorus, the main elements of the nutrient solution, are absorbed by plants and play an important role in plants. By measuring Ca 2+ , K + , Mg 2+ , NH 4 + , NO 3 − , HPO 4 2− , the artificial neural networks (ANNs) were used in this study to accurately calculate the concentrations of these elements. Firstly, the error sources of the calculating element concentration were analyzed based on the data of six-ion measurement experiments. Subsequently, various optimization algorithms were compared to optimize back propagation and radial basis function ANNs. Finally, the results of mean relative errors (MREs) and recovery values show that ANNs can effectively reduce the measurement error of ion sensors. From the perspective of recovery values, the prediction error of all elements can be controlled within 15%. From the perspective of MRE, except for magnesium and phosphorus elements, the improved model prediction errors of other elements were also less than 10%.
AbstractList Calcium, potassium, nitrogen, magnesium, and phosphorus, the main elements of the nutrient solution, are absorbed by plants and play an important role in plants. By measuring Ca 2+ , K + , Mg 2+ , NH 4 + , NO 3 − , HPO 4 2− , the artificial neural networks (ANNs) were used in this study to accurately calculate the concentrations of these elements. Firstly, the error sources of the calculating element concentration were analyzed based on the data of six-ion measurement experiments. Subsequently, various optimization algorithms were compared to optimize back propagation and radial basis function ANNs. Finally, the results of mean relative errors (MREs) and recovery values show that ANNs can effectively reduce the measurement error of ion sensors. From the perspective of recovery values, the prediction error of all elements can be controlled within 15%. From the perspective of MRE, except for magnesium and phosphorus elements, the improved model prediction errors of other elements were also less than 10%.
Author Li, Aixue
Dong, Hongtu
Wang, Xiaodong
Wang, Cheng
Zhai, Jiawei
Luo, Bin
Jin, Xiaotong
Liu, Tianyang
Author_xml – sequence: 1
  givenname: Jiawei
  orcidid: 0000-0001-6261-4129
  surname: Zhai
  fullname: Zhai, Jiawei
– sequence: 2
  givenname: Hongtu
  surname: Dong
  fullname: Dong, Hongtu
– sequence: 3
  givenname: Tianyang
  surname: Liu
  fullname: Liu, Tianyang
– sequence: 4
  givenname: Xiaotong
  surname: Jin
  fullname: Jin, Xiaotong
– sequence: 5
  givenname: Bin
  surname: Luo
  fullname: Luo, Bin
– sequence: 6
  givenname: Aixue
  surname: Li
  fullname: Li, Aixue
– sequence: 7
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
– sequence: 8
  givenname: Xiaodong
  surname: Wang
  fullname: Wang, Xiaodong
BookMark eNqFkE9LAzEQxYNUsK3ePeYLrE02Zps9SvEfFATR8zLOzmI0TUqSpfTbu9uKBw96esMbfjO8N2MTHzwxdinFlRTGLKSqZFFpIReAdE36hE1_rAmbilovC1EqdcZmKX0IIZairqfMPlMiiPjOg-cQs-0sWnDcUx8PknchfiaeAwfEwcvk9nwbqbWYOTnakM8cg8dBh60NPnHrue9ztOMqBdcf3HN22oFLdPGtc_Z6d_uyeijWT_ePq5t1gaXRuTCkTVW2qqKuMqbtNLaACuBtCZJaU2oFREOYyigYRlMbUHWHioyAGvVSzZk83u39FvY7cK7ZRruBuG-kaMaumrGYZiymOXY1MNWRwRhSitQ1aPMhzJDJur9A8Qv899cXDKmErA
CitedBy_id crossref_primary_10_1016_j_microc_2024_112017
crossref_primary_10_3390_agriculture14122171
crossref_primary_10_1088_1361_6501_ad5612
crossref_primary_10_1039_D4AY01346H
crossref_primary_10_1109_LSENS_2024_3503720
crossref_primary_10_1088_2631_8695_ad8539
Cites_doi 10.1016/j.bioelechem.2007.01.002
10.1016/j.compag.2018.01.019
10.3390/biology11070991
10.1088/1742-6596/1617/1/012079
10.1016/j.scitotenv.2021.145534
10.1590/1983-21252017v30n313rc
10.1016/j.cca.2009.12.005
10.1016/j.measurement.2021.110680
10.1016/j.biosx.2021.100088
10.1016/j.jmmm.2022.169936
10.1007/s10462-016-9486-6
10.1007/978-3-540-73190-0_2
10.1109/access.2022.3220620
10.1016/j.talanta.2020.121110
10.1016/j.eti.2019.100424
10.1115/1.4055995
10.2166/ws.2021.432
10.1109/icnn.1995.488968
10.1016/j.talanta.2011.09.023
10.1080/14680629.2023.2199889
10.1016/j.eti.2016.10.001
10.1080/00103620802006628
10.2480/agrmet.D-14-00039
10.1039/d0an00327a
10.1016/j.suscom.2022.100735
10.1088/0957-0233/17/1/002
10.1016/j.asoc.2022.109661
10.1515/aep-2016-0022
10.1080/01904167.2013.805220
10.1088/0957-0233/20/9/095201
10.1007/s13369-023-07631-0
10.1016/j.ins.2009.03.004
10.1016/j.jallcom.2020.154047
10.17660/ActaHortic.2006.718.51
10.3390/s22155541
10.1016/j.ymssp.2020.106707
10.1016/j.indcrop.2022.114556
10.1016/j.engfracmech.2022.108835
10.1038/s41598-023-30099-9
10.1016/j.sjbs.2019.06.016
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1088/1361-6501/ace4e5
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10.1088/1361-6501/ace4e5
10_1088_1361_6501_ace4e5
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
.GJ
02O
1WK
29M
5ZI
6TJ
6TU
9BW
AAGCF
AALHV
ACARI
ACWPO
ADTOC
AERVB
AETNG
AFFNX
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
H~9
JCGBZ
M45
MVM
NT-
NT.
OHT
Q02
RKQ
S3P
T37
UNPAY
ZCG
ZY4
ID FETCH-LOGICAL-c285t-8e5862d36ef688df5cdac3aab7a1ed8253aee957683a3ae898a39fc3e80a9c573
IEDL.DBID UNPAY
ISSN 0957-0233
1361-6501
IngestDate Sun Sep 07 11:10:07 EDT 2025
Wed Oct 01 05:25:57 EDT 2025
Thu Apr 24 23:12:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c285t-8e5862d36ef688df5cdac3aab7a1ed8253aee957683a3ae898a39fc3e80a9c573
ORCID 0000-0001-6261-4129
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6501/ace4e5
ParticipantIDs unpaywall_primary_10_1088_1361_6501_ace4e5
crossref_citationtrail_10_1088_1361_6501_ace4e5
crossref_primary_10_1088_1361_6501_ace4e5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2023
References Anita Gonçalves da Silva (mstace4e5bib23) 2008; 39
Cao (mstace4e5bib20) 2022; 10
Mattson (mstace4e5bib22) 2006; 718
Liu (mstace4e5bib32) 2020; 141
Xu (mstace4e5bib33) 2022; 178
Islam (mstace4e5bib9) 2013; 36
Huang (mstace4e5bib12) 2021; 9
Mahadeva (mstace4e5bib38) 2023
Maj-Zurawska (mstace4e5bib6) 2011; 87
Sivanandam (mstace4e5bib41) 2008
Silva (mstace4e5bib25) 2017; 30
Zhuiykov (mstace4e5bib4) 2009; 20
Mahadeva (mstace4e5bib19) 2022; 35
Zhou (mstace4e5bib31) 2022; 563
Rashedi (mstace4e5bib40) 2009; 179
Wang (mstace4e5bib13) 2016; 6
Huang (mstace4e5bib34) 2022; 130
Dong (mstace4e5bib2) 2022
Atas (mstace4e5bib15) 2020; 217
Chhabra (mstace4e5bib18) 2023
Ciosek (mstace4e5bib11) 2006; 17
Wang (mstace4e5bib14) 2019; 15
Deng (mstace4e5bib29) 2021; 772
Kennedy (mstace4e5bib37) 1995
Musielińska (mstace4e5bib7) 2016; 42
Akyol (mstace4e5bib17) 2016; 47
Gan (mstace4e5bib35) 2022; 190
Paczosa-Bator (mstace4e5bib10) 2007; 71
Cho (mstace4e5bib3) 2018; 146
Zhai (mstace4e5bib1) 2022; 22
Ren (mstace4e5bib21) 2022; 11
Deng (mstace4e5bib30) 2019; 26
Wan (mstace4e5bib36) 2020; 826
Wang (mstace4e5bib42) 2022; 275
Mahadeva (mstace4e5bib39) 2022; 22
Cuartero (mstace4e5bib5) 2020; 145
Okuyama (mstace4e5bib24) 2015; 71
Goel (mstace4e5bib16) 2023; 145
Mahadeva (mstace4e5bib28) 2023; 13
Custic (mstace4e5bib8) 2008; 36
Liu (mstace4e5bib27) 2020; 1617
Dimeski (mstace4e5bib26) 2010; 411
References_xml – volume: 71
  start-page: 66
  year: 2007
  ident: mstace4e5bib10
  article-title: Conducting polymers in modelling transient potential of biological membranes
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2007.01.002
– volume: 146
  start-page: 51
  year: 2018
  ident: mstace4e5bib3
  article-title: On-site ion monitoring system for precision hydroponic nutrient management
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.01.019
– volume: 11
  start-page: 991
  year: 2022
  ident: mstace4e5bib21
  article-title: Growth and nutrient utilization in basil plant as affected by applied nutrient quantity in nutrient solution and light spectrum
  publication-title: Biology
  doi: 10.3390/biology11070991
– volume: 1617
  year: 2020
  ident: mstace4e5bib27
  article-title: Application of PSO-BP neural network in methane chemical looping reforming reaction
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1617/1/012079
– volume: 772
  year: 2021
  ident: mstace4e5bib29
  article-title: New methods based on back propagation (BP) and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145534
– year: 2022
  ident: mstace4e5bib2
  article-title: Self-contained, automated, long-term sensor system for monitoring of soil and water nutrients in fields
– volume: 30
  start-page: 653
  year: 2017
  ident: mstace4e5bib25
  article-title: Peanut plant nutrient absorption and growth
  publication-title: Rev. Caatinga
  doi: 10.1590/1983-21252017v30n313rc
– volume: 411
  start-page: 309
  year: 2010
  ident: mstace4e5bib26
  article-title: Ion selective electrodes (ISEs) and interferences–a review
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2009.12.005
– volume: 190
  year: 2022
  ident: mstace4e5bib35
  article-title: An intelligent measurement method of the resonant frequency of ultrasonic scalpel transducers based on PSO-BP neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110680
– volume: 9
  year: 2021
  ident: mstace4e5bib12
  article-title: Ion composition profiling and pattern recognition of vegetable sap using a solid-contact ion-selective electrode array
  publication-title: Biosens. Bioelectron. X
  doi: 10.1016/j.biosx.2021.100088
– volume: 563
  year: 2022
  ident: mstace4e5bib31
  article-title: Real-time online inversion of GA-PSO-BP flux leakage defects based on information fusion: numerical simulation and experimental research
  publication-title: J. Magne. Magne. Mater.
  doi: 10.1016/j.jmmm.2022.169936
– volume: 47
  start-page: 417
  year: 2016
  ident: mstace4e5bib17
  article-title: Plant intelligence based metaheuristic optimization algorithms
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-016-9486-6
– start-page: 15
  year: 2008
  ident: mstace4e5bib41
  doi: 10.1007/978-3-540-73190-0_2
– volume: 10
  start-page: 119013
  year: 2022
  ident: mstace4e5bib20
  article-title: A dynamic neural network optimization model for heavy metal content prediction in farmland soil
  publication-title: IEEE Access
  doi: 10.1109/access.2022.3220620
– volume: 217
  year: 2020
  ident: mstace4e5bib15
  article-title: An electronic tongue for simultaneous determination of Ca(2+), Mg(2+), K(+) and NH(4)(+) in water samples by multivariate calibration methods
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.121110
– volume: 15
  year: 2019
  ident: mstace4e5bib14
  article-title: Application of ion selective electrode array to simultaneously determinate multi-free ions in solution
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2019.100424
– volume: 145
  year: 2023
  ident: mstace4e5bib16
  article-title: Analysis and optimization of parabolic trough solar collector to improve its optical performance
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.4055995
– volume: 22
  start-page: 2874
  year: 2022
  ident: mstace4e5bib39
  article-title: An optimized PSO-ANN model for improved prediction of water treatment desalination plant performance
  publication-title: Water Supply
  doi: 10.2166/ws.2021.432
– start-page: 1942
  year: 1995
  ident: mstace4e5bib37
  article-title: Particle swarm optimization
  doi: 10.1109/icnn.1995.488968
– volume: 87
  start-page: 295
  year: 2011
  ident: mstace4e5bib6
  article-title: Selectivity coefficients of ion-selective magnesium electrodes used for simultaneous determination of magnesium and calcium ions
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.09.023
– start-page: 1
  year: 2023
  ident: mstace4e5bib18
  article-title: Unconfined compressive strength prediction of recycled cement-treated base mixes using soft computing techniques
  doi: 10.1080/14680629.2023.2199889
– volume: 6
  start-page: 165
  year: 2016
  ident: mstace4e5bib13
  article-title: Simultaneously determining multi-metal ions using an ion selective electrode array system
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2016.10.001
– volume: 39
  start-page: 1507
  year: 2008
  ident: mstace4e5bib23
  article-title: Nutrient availability in the soil and its absorption, transport, and redistribution in vines
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103620802006628
– volume: 71
  start-page: 256
  year: 2015
  ident: mstace4e5bib24
  article-title: Diurnal changes in nitrogen and potassium absorption rates of plants grown in a greenhouse
  publication-title: J. Agric. Meteorol.
  doi: 10.2480/agrmet.D-14-00039
– volume: 145
  start-page: 3188
  year: 2020
  ident: mstace4e5bib5
  article-title: Why ammonium detection is particularly challenging but insightful with ionophore-based potentiometric sensors—an overview of the progress in the last 20 years
  publication-title: Analyst
  doi: 10.1039/d0an00327a
– volume: 35
  year: 2022
  ident: mstace4e5bib19
  article-title: Employing artificial neural network for accurate modeling, simulation and performance analysis of an RO-based desalination process
  publication-title: Sustain. Comput. Inform. Syst.
  doi: 10.1016/j.suscom.2022.100735
– volume: 17
  start-page: 6
  year: 2006
  ident: mstace4e5bib11
  article-title: ISE-based sensor array system for classification of foodstuffs
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/1/002
– volume: 130
  year: 2022
  ident: mstace4e5bib34
  article-title: Research on strip crown by uncertain sampling strategy modified particle swarm optimization with RBF neural network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109661
– volume: 42
  start-page: 78
  year: 2016
  ident: mstace4e5bib7
  article-title: Antagonism between lead and zinc ions in plants
  publication-title: Arch. Environ. Prot.
  doi: 10.1515/aep-2016-0022
– volume: 36
  start-page: 1649
  year: 2013
  ident: mstace4e5bib9
  article-title: Interactive effect of sulfur and phosphorus on nodulation, nitrogen fixation, and nutrient uptake by chickpea grown on calcareous soils in Pakistan
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2013.805220
– volume: 20
  year: 2009
  ident: mstace4e5bib4
  article-title: Water quality assessment by an integrated multi-sensor based on semiconductor RuO2 nanostructures
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/20/9/095201
– start-page: 1
  year: 2023
  ident: mstace4e5bib38
  article-title: A novel AGPSO3-based ANN prediction approach: application to the RO desalination plant
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-023-07631-0
– volume: 179
  start-page: 2232
  year: 2009
  ident: mstace4e5bib40
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 826
  year: 2020
  ident: mstace4e5bib36
  article-title: Research on hot deformation behavior of Zr-4 alloy based on PSO-BP artificial neural network
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154047
– volume: 718
  start-page: 445
  year: 2006
  ident: mstace4e5bib22
  article-title: Modeling the influence of cyclical plant growth and nutrient storage on N, P, and K absorption by hydroponically grown cut flower roses
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2006.718.51
– volume: 22
  start-page: 5541
  year: 2022
  ident: mstace4e5bib1
  article-title: Unlocking all-solid ion selective electrodes: prospects in crop detection
  publication-title: Sensors
  doi: 10.3390/s22155541
– volume: 141
  year: 2020
  ident: mstace4e5bib32
  article-title: Comparative analysis of BP neural network and RBF neural network in seismic performance evaluation of pier columns
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106707
– volume: 36
  start-page: 439
  year: 2008
  ident: mstace4e5bib8
  article-title: Vine plant chlorosis on unstructured calcareous soils and leaf Ca, Mg and K content
  publication-title: Cereal Res. Commun.
– volume: 178
  year: 2022
  ident: mstace4e5bib33
  article-title: Optimization of extraction and purification processes of six flavonoid components from Radix Astragali using BP neural network combined with particle swarm optimization and genetic algorithm
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2022.114556
– volume: 275
  year: 2022
  ident: mstace4e5bib42
  article-title: The investigation into the failure criteria of concrete based on the BP neural network
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2022.108835
– volume: 13
  start-page: 2901
  year: 2023
  ident: mstace4e5bib28
  article-title: Modified Whale Optimization Algorithm based ANN: a novel predictive model for RO desalination plant
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-30099-9
– volume: 26
  start-page: 1154
  year: 2019
  ident: mstace4e5bib30
  article-title: Prediction model of PSO-BP neural network on coliform amount in special food
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2019.06.016
SSID ssj0007099
Score 2.4475417
Snippet Calcium, potassium, nitrogen, magnesium, and phosphorus, the main elements of the nutrient solution, are absorbed by plants and play an important role in...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 115121
Title Research on artificial neural networks to accurately predict element concentrations in nutrient solutions
URI https://doi.org/10.1088/1361-6501/ace4e5
UnpaywallVersion publishedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6501
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007099
  issn: 0957-0233
  databaseCode: IOP
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dS8MwEMCDbohP6qbiREcefHBCt7Zp2vRxiGMKzj04mE8lSVMYlm6sLTL_epMmG07Ej6cWei3lcuXuene_AHDFXV8QlxNLOn-VoNi2xVAQWi5DTFV5QuGqAefHkT-ceA9TPDX_O9QszFb9XiZnDvIdS0YRTo9y4Qm8C-o-llF3DdQno3H_RaP0Aku6HqRHrLS4qUh-94gtD7RfZgu6eqNp-smtDA414yivaISqm-S1Wxasy9-_sBr_8sZH4MDElrCvjaEBdkTWBHtVjyfPm6BhvuMcXhvYdOcYzNatd3CeQWVGmigBFeeyOlRd4jks5pByXiqwRLqCi6Wq7xRQ6OZzyNXwY2YIvDmcZTBTlH91aWPbJ2AyuHu-HVpm-wWLuwQXFhFYpjsx8kXiExInmMeUI0pZQB0Ry8wSUSFCla8gKk9JSCgKE44EsWnIcYBOQS2bZ-IMQJtwJiOpmKIYe44ImOcjxuIQkQQz1w1aoLdekogbNrnaIiONqho5IZHSaqS0GmmttkBnc8dCczl-kL3ZrPKvwuf_Eb4AtWJZiksZlxSsDXbvn8ZtY5gfb83fiA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dS8MwEMCDbohP6qbiRCUPPjihW9s0bfo4xDEEhw8O5lNJ0hSGJRtri8y_3qTJhhPx46mFXku5XLm73t0vAFxzPxTE58RRzl8nKK7rMBTFjs8Q01WeWPh6wPlxHI4mwcMUT-3_Dj0Ls1W_V8mZh0LPUVGE16dcBALvgmaIVdTdAM3J-GnwYlB6kaNcDzIjVkbcViS_e8SWB9qv5IKu3mief3Irw0PDOCpqGqHuJnntVSXr8fcvrMa_vPEROLCxJRwYY2iBHSHbYK_u8eRFG7Tsd1zAGwub7h6D2br1Ds4l1GZkiBJQcy7rQ90lXsByDinnlQZL5Cu4WOr6TgmFaT6HXA8_SkvgLeBMQqkp__rSxrZPwGR4_3w3cuz2Cw73CS4dIrBKd1IUiiwkJM0wTylHlLKIeiJVmSWiQsQ6X0FUnZKYUBRnHAni0pjjCJ2ChpxLcQagSzhTkVRKUYoDT0QsCBFjaYxIhpnvRx3QXy9Jwi2bXG-RkSd1jZyQRGs10VpNjFY7oLu5Y2G4HD_I3m5W-Vfh8_8IX4BGuazEpYpLSnZlTfIDN9fefw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+artificial+neural+networks+to+accurately+predict+element+concentrations+in+nutrient+solutions&rft.jtitle=Measurement+science+%26+technology&rft.au=Zhai%2C+Jiawei&rft.au=Dong%2C+Hongtu&rft.au=Liu%2C+Tianyang&rft.au=Jin%2C+Xiaotong&rft.date=2023-11-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=34&rft.issue=11&rft.spage=115121&rft_id=info:doi/10.1088%2F1361-6501%2Face4e5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ace4e5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon