Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Accelerating beams have been the subject of extensive research in the last few decades because of their self-acceleration and diffraction-free propagation over several Rayleigh lengths. Here, we investigate the propagation dynamics of a Fresnel diffraction beam using the nonlocal nonlinear Schröding...
Saved in:
| Published in | Chinese physics B Vol. 30; no. 11; p. 114209 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.12.2021
|
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 |
| DOI | 10.1088/1674-1056/ac068e |
Cover
| Abstract | Accelerating beams have been the subject of extensive research in the last few decades because of their self-acceleration and diffraction-free propagation over several Rayleigh lengths. Here, we investigate the propagation dynamics of a Fresnel diffraction beam using the nonlocal nonlinear Schrödinger equation (NNLSE). When a nonlocal nonlinearity is introduced into the linear Schrödinger equation without invoking an external potential, the evolution behaviors of incident Fresnel diffraction beams are modulated regularly, and certain novel phenomena are observed. We show through numerical calculations, under varying degrees of nonlocality, that nonlocality significantly affects the evolution of Fresnel diffraction beams. Further, we briefly discuss the two-dimensional case as the equivalent of the product of two one-dimensional cases. At a critical point, the Airy-like intensity profile oscillates between the first and third quadrants, and the process repeats during propagation to yield an unusual oscillation. Our results are expected to contribute to the understanding of NNLSE and nonlinear optics. |
|---|---|
| AbstractList | Accelerating beams have been the subject of extensive research in the last few decades because of their self-acceleration and diffraction-free propagation over several Rayleigh lengths. Here, we investigate the propagation dynamics of a Fresnel diffraction beam using the nonlocal nonlinear Schrödinger equation (NNLSE). When a nonlocal nonlinearity is introduced into the linear Schrödinger equation without invoking an external potential, the evolution behaviors of incident Fresnel diffraction beams are modulated regularly, and certain novel phenomena are observed. We show through numerical calculations, under varying degrees of nonlocality, that nonlocality significantly affects the evolution of Fresnel diffraction beams. Further, we briefly discuss the two-dimensional case as the equivalent of the product of two one-dimensional cases. At a critical point, the Airy-like intensity profile oscillates between the first and third quadrants, and the process repeats during propagation to yield an unusual oscillation. Our results are expected to contribute to the understanding of NNLSE and nonlinear optics. |
| Author | Yuan, Yibo Wen, Feng Pei, Yuheng Gu, Yuzong Wu, Zhenkun Zhang, Yagang |
| Author_xml | – sequence: 1 givenname: Yagang surname: Zhang fullname: Zhang, Yagang – sequence: 2 givenname: Yuheng surname: Pei fullname: Pei, Yuheng – sequence: 3 givenname: Yibo surname: Yuan fullname: Yuan, Yibo – sequence: 4 givenname: Feng surname: Wen fullname: Wen, Feng – sequence: 5 givenname: Yuzong surname: Gu fullname: Gu, Yuzong – sequence: 6 givenname: Zhenkun surname: Wu fullname: Wu, Zhenkun |
| BookMark | eNqFkE1OwzAQhb0oEm1hz9IXCLWT1LGXqKKAVAkkYB1NxnZr5DrFSVX1YlyAi5E0iAULWM3ozbz5-SZkFOpgCLni7JozKWdcFHnC2VzMAJmQZkTGP9I5mTTNG2OCszQbE_cU6x2soXV1aGht6TKaJhhPtbM2AvY6BUTjTeyawppWBrbUBfqMm_j5oTvJRGre96cR9ODaDe3O8TWCPyUuGIiuPV6QMwu-MZffcUpel7cvi_tk9Xj3sLhZJZjKeZtIVghElmk710LqCjkoZVGyXGmjM4VSKyaqQqW5rfK0qNIsB6a6aq5RZFk2JXyYuw87OB7A-3IX3RbiseSs7PmUPYyyh1EOfDqPGDwY66aJxpbo2tNDbQTn_zKyX8Z_d30BH-2Bkw |
| CitedBy_id | crossref_primary_10_1016_j_rinp_2022_105490 |
| Cites_doi | 10.1088/1674-1056/abcf3b 10.1038/nature03101 10.1364/OE.22.007160 10.1088/1674-1056/ab8202 10.1038/nphys3451 10.1103/PhysRevA.82.013826 10.1088/1612-2011/11/10/105001 10.1103/PhysRevLett.115.180403 10.7498/aps.69.20191088 10.1007/s11467-020-0984-2 10.1103/PhysRevA.86.013842 10.1023/B:JMMA.0000015830.62885.69 10.1016/j.chaos.2020.110470 10.1088/1674-1056/ab84d2 10.1364/OL.37.001871 10.1103/PhysRevA.87.043637 10.1364/OL.38.004585 10.1088/2040-8978/18/5/055504 10.1364/OE.26.023705 10.1119/1.11855 10.1103/PhysRevA.84.021807 10.1103/PhysRevLett.99.213901 10.1088/0253-6102/71/6/741 10.1088/1674-1056/abb226 10.1364/OE.19.023706 10.1364/OL.37.003054 10.1364/OL.32.000979 10.1364/OE.25.030468 10.1007/s11467-016-0613-2 10.1038/nphoton.2009.95 10.1364/OE.16.012880 10.1364/JOSAA.4.000651 10.1063/1.2337268 10.1016/j.matcom.2004.08.002 10.1016/j.rinp.2020.103008 10.1023/A:1024802801048 10.1038/nphoton.2009.264 10.1209/0295-5075/104/34007 10.1364/OL.40.003193 10.1209/0295-5075/83/30002 10.1364/OE.21.008886 10.1038/nphys445 10.1364/JOSAB.399840 10.1364/OL.35.003655 10.1364/OL.413104 10.1103/PhysRevLett.109.193901 10.1103/PhysRevLett.106.213903 10.1088/2040-8986/ab4112 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1088/1674-1056/ac068e |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| ExternalDocumentID | 10.1088/1674-1056/ac068e 10_1088_1674_1056_ac068e |
| GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAYXX ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO KOT M45 N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGP U1G U5K W28 02O 1WK AALHV ACARI ADTOC AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ NT- NT. Q02 UNPAY |
| ID | FETCH-LOGICAL-c285t-8076cc03df5d68dbc1a99fc8049ded39c8d906b7924fb427b234a0949d4dc6333 |
| IEDL.DBID | UNPAY |
| ISSN | 1674-1056 2058-3834 |
| IngestDate | Sun Sep 07 10:48:30 EDT 2025 Thu Apr 24 23:00:02 EDT 2025 Wed Oct 01 03:35:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c285t-8076cc03df5d68dbc1a99fc8049ded39c8d906b7924fb427b234a0949d4dc6333 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1674-1056/ac068e |
| ParticipantIDs | unpaywall_primary_10_1088_1674_1056_ac068e crossref_citationtrail_10_1088_1674_1056_ac068e crossref_primary_10_1088_1674_1056_ac068e |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese physics B |
| PublicationYear | 2021 |
| References | Panagiotopoulos (cpb_30_11_114209bib24) 2012; 86 Lotti (cpb_30_11_114209bib23) 2011; 84 Wu (cpb_30_11_114209bib7) 2018; 26 Siviloglou (cpb_30_11_114209bib2) 2007; 99 Chong (cpb_30_11_114209bib5) 2010; 4 Zhu (cpb_30_11_114209bib19) 2020; 69 Kaminer (cpb_30_11_114209bib29) 2013; 21 Broky (cpb_30_11_114209bib3) 2008; 16 Zhang (cpb_30_11_114209bib46) 2020; 37 Wu (cpb_30_11_114209bib13) 2019; 71 Zhuang (cpb_30_11_114209bib28) 2012; 37 Xu (cpb_30_11_114209bib8) 2020; 45 Bouchal (cpb_30_11_114209bib12) 2003; 53 Chen (cpb_30_11_114209bib20) 2020; 29 Zhang (cpb_30_11_114209bib18) 2020; 29 Bekenstein (cpb_30_11_114209bib35) 2015; 11 Zhang (cpb_30_11_114209bib41) 2013; 104 Ru (cpb_30_11_114209bib27) 2020; 15 Zhou (cpb_30_11_114209bib34) 2014; 11 Rotschild (cpb_30_11_114209bib37) 2006; 2 Wu (cpb_30_11_114209bib48) 2016; 12 Siviloglou (cpb_30_11_114209bib1) 2007; 32 Wu (cpb_30_11_114209bib38) 2019; 21 Zhang (cpb_30_11_114209bib42) 2014; 22 Liu (cpb_30_11_114209bib16) 2021; 30 Eichelkraut (cpb_30_11_114209bib47) 2010; 35 Kong (cpb_30_11_114209bib30) 2010; 82 Muslu (cpb_30_11_114209bib40) 2005; 67 Chen (cpb_30_11_114209bib14) 2021; 30 Zhang (cpb_30_11_114209bib43) 2013; 38 Zhuang (cpb_30_11_114209bib26) 2012; 37 Hu (cpb_30_11_114209bib31) 2006; 89 Wu (cpb_30_11_114209bib45) 2020; 16 Xu (cpb_30_11_114209bib39) 2003; 2 Zhang (cpb_30_11_114209bib44) 2015; 115 Ellenbogen (cpb_30_11_114209bib4) 2009; 3 Chen (cpb_30_11_114209bib17) 2016; 18 Wu (cpb_30_11_114209bib33) 2017; 25 He (cpb_30_11_114209bib15) 2021; 142 Lin (cpb_30_11_114209bib10) 2008; 83 Efremidis (cpb_30_11_114209bib25) 2013; 87 Bekenstein (cpb_30_11_114209bib32) 2011; 19 Zhou (cpb_30_11_114209bib6) 2015; 40 Berry (cpb_30_11_114209bib9) 1979; 47 Durnin (cpb_30_11_114209bib11) 1987; 4 Kaminer (cpb_30_11_114209bib22) 2011; 106 Zhang (cpb_30_11_114209bib21) 2012; 109 Peccianti (cpb_30_11_114209bib36) 2004; 432 |
| References_xml | – volume: 30 year: 2021 ident: cpb_30_11_114209bib16 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/abcf3b – volume: 432 start-page: 733 year: 2004 ident: cpb_30_11_114209bib36 publication-title: Nature doi: 10.1038/nature03101 – volume: 22 start-page: 7160 year: 2014 ident: cpb_30_11_114209bib42 publication-title: Opt. Express doi: 10.1364/OE.22.007160 – volume: 29 year: 2020 ident: cpb_30_11_114209bib20 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab8202 – volume: 11 start-page: 872 year: 2015 ident: cpb_30_11_114209bib35 publication-title: Nat. Phys. doi: 10.1038/nphys3451 – volume: 82 year: 2010 ident: cpb_30_11_114209bib30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.013826 – volume: 11 year: 2014 ident: cpb_30_11_114209bib34 publication-title: Laser Phys. Lett. doi: 10.1088/1612-2011/11/10/105001 – volume: 115 year: 2015 ident: cpb_30_11_114209bib44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.180403 – volume: 69 year: 2020 ident: cpb_30_11_114209bib19 publication-title: Acta Phys. Sin. doi: 10.7498/aps.69.20191088 – volume: 15 year: 2020 ident: cpb_30_11_114209bib27 publication-title: Front. Phys. doi: 10.1007/s11467-020-0984-2 – volume: 86 year: 2012 ident: cpb_30_11_114209bib24 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.013842 – volume: 2 start-page: 185 year: 2003 ident: cpb_30_11_114209bib39 publication-title: J. Math. Model. Algorithms doi: 10.1023/B:JMMA.0000015830.62885.69 – volume: 142 year: 2021 ident: cpb_30_11_114209bib15 publication-title: Chaos, Solitons and Fractals doi: 10.1016/j.chaos.2020.110470 – volume: 29 year: 2020 ident: cpb_30_11_114209bib18 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab84d2 – volume: 37 start-page: 1871 year: 2012 ident: cpb_30_11_114209bib28 publication-title: Opt. Lett. doi: 10.1364/OL.37.001871 – volume: 87 year: 2013 ident: cpb_30_11_114209bib25 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.043637 – volume: 38 start-page: 4585 year: 2013 ident: cpb_30_11_114209bib43 publication-title: Opt. Lett. doi: 10.1364/OL.38.004585 – volume: 18 year: 2016 ident: cpb_30_11_114209bib17 publication-title: J. Opt. doi: 10.1088/2040-8978/18/5/055504 – volume: 26 year: 2018 ident: cpb_30_11_114209bib7 publication-title: Opt. Express doi: 10.1364/OE.26.023705 – volume: 47 start-page: 264 year: 1979 ident: cpb_30_11_114209bib9 publication-title: Am. J. Phys. doi: 10.1119/1.11855 – volume: 84 year: 2011 ident: cpb_30_11_114209bib23 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.021807 – volume: 99 year: 2007 ident: cpb_30_11_114209bib2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.213901 – volume: 71 start-page: 741 year: 2019 ident: cpb_30_11_114209bib13 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/71/6/741 – volume: 30 year: 2021 ident: cpb_30_11_114209bib14 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/abb226 – volume: 19 year: 2011 ident: cpb_30_11_114209bib32 publication-title: Opt. Express doi: 10.1364/OE.19.023706 – volume: 37 start-page: 3054 year: 2012 ident: cpb_30_11_114209bib26 publication-title: Opt. Lett. doi: 10.1364/OL.37.003054 – volume: 32 start-page: 979 year: 2007 ident: cpb_30_11_114209bib1 publication-title: Opt. Lett. doi: 10.1364/OL.32.000979 – volume: 25 year: 2017 ident: cpb_30_11_114209bib33 publication-title: Opt. Express doi: 10.1364/OE.25.030468 – volume: 12 year: 2016 ident: cpb_30_11_114209bib48 publication-title: Front. Phys. doi: 10.1007/s11467-016-0613-2 – volume: 3 start-page: 395 year: 2009 ident: cpb_30_11_114209bib4 publication-title: Nat. Photon. doi: 10.1038/nphoton.2009.95 – volume: 16 year: 2008 ident: cpb_30_11_114209bib3 publication-title: Opt. Express doi: 10.1364/OE.16.012880 – volume: 4 start-page: 651 year: 1987 ident: cpb_30_11_114209bib11 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.4.000651 – volume: 89 year: 2006 ident: cpb_30_11_114209bib31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2337268 – volume: 67 start-page: 581 year: 2005 ident: cpb_30_11_114209bib40 publication-title: Math. Comput. Simulat. doi: 10.1016/j.matcom.2004.08.002 – volume: 16 year: 2020 ident: cpb_30_11_114209bib45 publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103008 – volume: 53 start-page: 537 year: 2003 ident: cpb_30_11_114209bib12 publication-title: Czech. J. Phys. doi: 10.1023/A:1024802801048 – volume: 4 start-page: 103 year: 2010 ident: cpb_30_11_114209bib5 publication-title: Nat. Photon. doi: 10.1038/nphoton.2009.264 – volume: 104 year: 2013 ident: cpb_30_11_114209bib41 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/104/34007 – volume: 40 start-page: 3193 year: 2015 ident: cpb_30_11_114209bib6 publication-title: Opt. Lett. doi: 10.1364/OL.40.003193 – volume: 83 year: 2008 ident: cpb_30_11_114209bib10 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/83/30002 – volume: 21 start-page: 8886 year: 2013 ident: cpb_30_11_114209bib29 publication-title: Opt. Express doi: 10.1364/OE.21.008886 – volume: 2 start-page: 769 year: 2006 ident: cpb_30_11_114209bib37 publication-title: Nat. Phys. doi: 10.1038/nphys445 – volume: 37 start-page: 3414 year: 2020 ident: cpb_30_11_114209bib46 publication-title: J. Opt. Soc. A B doi: 10.1364/JOSAB.399840 – volume: 35 start-page: 3655 year: 2010 ident: cpb_30_11_114209bib47 publication-title: Opt. Lett. doi: 10.1364/OL.35.003655 – volume: 45 start-page: 6867 year: 2020 ident: cpb_30_11_114209bib8 publication-title: Opt. Lett. doi: 10.1364/OL.413104 – volume: 109 year: 2012 ident: cpb_30_11_114209bib21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.193901 – volume: 106 year: 2011 ident: cpb_30_11_114209bib22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.213903 – volume: 21 year: 2019 ident: cpb_30_11_114209bib38 publication-title: J. Opt. doi: 10.1088/2040-8986/ab4112 |
| SSID | ssj0061023 |
| Score | 2.2565577 |
| Snippet | Accelerating beams have been the subject of extensive research in the last few decades because of their self-acceleration and diffraction-free propagation over... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 114209 |
| Title | Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity |
| URI | https://doi.org/10.1088/1674-1056/ac068e |
| UnpaywallVersion | publishedVersion |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform issn: 2058-3834 databaseCode: IOP dateStart: 20080101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://iopscience.iop.org/ omitProxy: false ssIdentifier: ssj0061023 providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60InrxLb7ZgxeFaJtstptjEYsK1oIW9BR2Zzcq1rTWFtEf5h_wjzmTpGJFfNxymGzCzMDMNzP7DWPbgABNR5H1HAjriSgRnsG01VOgrKiIqkyqdN_5tCGPWuLkMrws6h10F2akf4_gjIbkPdoOv6-hLJUbZxMyxKy7xCZajWbtivDUUIT2yJVD5SHoEkVH8rsjRiLQ1CDt6ucn3W5_Civ12Zzj6DFjI6Rpkru9Qd_swcsXrsa__PEcmylyS17LnWGejbl0gU1mM57wuMhumz1EyNd5iY53El5HqJ26NqclKb38ggPXABiIyC3Sa26cvue3KT-Hm97bq80qgNw95OzgnEq4PO2kWTjMHjBj1bQMb4m16ocXB0desWnBA1-FfWIklgDlwCahlcoaqKD9ElAIH6yzQYSGi8rSVBGsJUb4VeMHQiMwjKywIIMgWGYl_IxbYdxXSWhspQIaUzUT-spK6aiXCtY5JcQq2x9qP4aChpy2YbTjrB2uVEwKjEmBca7AVbbz8UY3p-D4QXb3w6C_Cq_9R3idTfs0zpJNsmywUr83cJuYj_TNFhs_PmtuFQ75DmKR2rA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60RfTiW6wv9uBFIdomm-3mWMRSBEXQgp7C7uxGizVqH4j-MP-Af8yZJC1WxMcth8kmzAzMfDOz3zC2CwjQdBRZz4GwnogS4RlMWz0FyoqaqMukTvedT89kqy1OrsKrot5Bd2Em-vcIzmhI3qPt8IcaqlK5aVaWIWbdJVZun503rglPjURoj1w1VB6CLlF0JL87YiICzQ7TR_3yrLvdT2GluZBzHPUzNkKaJrk7GA7MAbx-4Wr8yx8vsvkit-SN3BmW2JRLl9lMNuMJ_RXWOe8hQr7JS3T8IeFNhNqp63JaktLLLzhwDYCBiNwiveHG6XveSfkF3Pbe32xWAeTuKWcH51TC5elDmoXD7AEzVk3L8FZZu3l8edTyik0LHvgqHBAjsQSoBjYJrVTWQA3tl4BC-GCdDSI0XFSVpo5gLTHCrxs_EBqBYWSFBRkEwRor4WfcOuO-SkJjazXQmKqZ0FdWSke9VLDOKSEq7HCk_RgKGnLahtGNs3a4UjEpMCYFxrkCK2xv_MZjTsHxg-z-2KC_Cm_8R3iTzfk0zpJNsmyx0qA3dNuYjwzMTuGKH0er2ac |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propagations+of+Fresnel+diffraction+accelerating+beam+in+Schr%C3%B6dinger+equation+with+nonlocal+nonlinearity&rft.jtitle=Chinese+physics+B&rft.au=Zhang%2C+Yagang&rft.au=Pei%2C+Yuheng&rft.au=Yuan%2C+Yibo&rft.au=Wen%2C+Feng&rft.date=2021-12-01&rft.issn=1674-1056&rft.volume=30&rft.issue=11&rft.spage=114209&rft_id=info:doi/10.1088%2F1674-1056%2Fac068e&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ac068e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon |