Rail crack defect recognition based on a multi-feature fusion algorithm using electromagnetic acoustic emission technique

Multi-feature fusion has been widely used to enhance recognition accuracy for different health stages of rails, which may lead to high dimensionality and information redundancy of signals. In addition, conventional supervised methods require plenty of labeled samples with class information, which ca...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 34; no. 11; p. 115002
Main Authors Chang, Yongqi, Zhang, Xin, Song, Shuzhi, Song, Qinghua, Shen, Yi
Format Journal Article
LanguageEnglish
Published 01.11.2023
Online AccessGet full text
ISSN0957-0233
1361-6501
1361-6501
DOI10.1088/1361-6501/ace840

Cover

Abstract Multi-feature fusion has been widely used to enhance recognition accuracy for different health stages of rails, which may lead to high dimensionality and information redundancy of signals. In addition, conventional supervised methods require plenty of labeled samples with class information, which can take significant time and involve high economic costs. In order to improve the effectiveness of the electromagnetic acoustic emission technique in rail crack defect recognition, a novel method including multi-feature fusion based on weakly supervised learning and recognition threshold construction is proposed in this paper. First, a mechanism consisting of multi-feature extraction and feature selection is developed to fully reflect the information of different health stages of the rail and avoid interference caused by the ineffective features. Then, the effective features and a novel weakly unsupervised label are input into the self-normalizing convolutional neural network and long short-term memory model to construct the rail health indicator (RHI). Finally, the recognition threshold is calculated based on the characteristics of the RHI to achieve crack recognition automatically. Furthermore, the experimental results under different working conditions demonstrate that the proposed method achieves a higher recognition performance than other existing methods in rail crack defect recognition.
AbstractList Multi-feature fusion has been widely used to enhance recognition accuracy for different health stages of rails, which may lead to high dimensionality and information redundancy of signals. In addition, conventional supervised methods require plenty of labeled samples with class information, which can take significant time and involve high economic costs. In order to improve the effectiveness of the electromagnetic acoustic emission technique in rail crack defect recognition, a novel method including multi-feature fusion based on weakly supervised learning and recognition threshold construction is proposed in this paper. First, a mechanism consisting of multi-feature extraction and feature selection is developed to fully reflect the information of different health stages of the rail and avoid interference caused by the ineffective features. Then, the effective features and a novel weakly unsupervised label are input into the self-normalizing convolutional neural network and long short-term memory model to construct the rail health indicator (RHI). Finally, the recognition threshold is calculated based on the characteristics of the RHI to achieve crack recognition automatically. Furthermore, the experimental results under different working conditions demonstrate that the proposed method achieves a higher recognition performance than other existing methods in rail crack defect recognition.
Author Zhang, Xin
Song, Shuzhi
Song, Qinghua
Shen, Yi
Chang, Yongqi
Author_xml – sequence: 1
  givenname: Yongqi
  surname: Chang
  fullname: Chang, Yongqi
– sequence: 2
  givenname: Xin
  orcidid: 0000-0002-0773-8871
  surname: Zhang
  fullname: Zhang, Xin
– sequence: 3
  givenname: Shuzhi
  surname: Song
  fullname: Song, Shuzhi
– sequence: 4
  givenname: Qinghua
  surname: Song
  fullname: Song, Qinghua
– sequence: 5
  givenname: Yi
  surname: Shen
  fullname: Shen, Yi
BookMark eNqFkE1PwzAMhiM0JLbBnWP-QJnTrE12RBNf0iQkBOfKTd0t0KYjSYX272kZ4sABTn5t67GlZ8YmrnPE2KWAKwFaL4TMRZJnIBZoSC_hhE1_RhM2hVWmEkilPGOzEF4BQMFqNWWHJ7QNNx7NG6-oJhO5J9NtnY22c7zEQBUfAvK2b6JNasLYe-J1H8Y9NtvO27hr-dC7LadmuOC7FreOojUcTdeHMVBrwxcRyeycfe_pnJ3W2AS6-K5z9nJ787y-TzaPdw_r601iUp3FJBcyBSFVKWSpRVVqklrrKldpXepymVWUKiEyRFMqiWBknkKqYFmhUaAVyjkTx7u92-PhA5um2Hvboj8UAorRXTGKKkZRxdHdwORHxvguBE91YWzE0Uj0g6-_QPgF_vvrE10ih8g
CitedBy_id crossref_primary_10_1088_1361_6501_ad4735
crossref_primary_10_1088_1361_6501_ada81f
crossref_primary_10_1134_S1061830923601393
crossref_primary_10_1016_j_istruc_2025_108266
crossref_primary_10_1109_TIM_2024_3375420
crossref_primary_10_31857_S0130308224020039
crossref_primary_10_1109_TIM_2024_3523365
crossref_primary_10_1088_1361_6501_ad006b
Cites_doi 10.1080/10589759.2020.1785447
10.1162/neco_a_01199
10.1088/1361-6501/ac4598
10.1109/TGRS.2017.2693346
10.1016/j.neucom.2017.02.045
10.1088/1361-6501/ac346d
10.1109/TGRS.2020.3049012
10.1088/1361-6501/ac329e
10.1016/j.patcog.2021.108177
10.1109/TIM.2023.3277980
10.3390/app10196755
10.11918/j.issn.0367-6234.201709020
10.1109/TITS.2021.3109949
10.1080/0951192X.2019.1636409
10.3390/app10062056
10.3390/s20143837
10.1088/1361-6501/acc2d9
10.1080/08839514.2021.2004346
10.1109/TMAG.2004.829313
10.1109/TMAG.2012.2196419
10.1109/TDEI.2011.6118622
10.1152/ajpheart.2000.278.6.H2039
10.1016/S1004-4132(07)60045-0
10.1186/s10033-022-00726-z
10.1016/j.ymssp.2020.107546
10.1016/j.jtbi.2016.12.010
10.1088/1361-6501/ab4a45
10.1016/j.engstruct.2020.111696
10.1016/j.engfailanal.2021.105813
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1088/1361-6501/ace840
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10.1088/1361-6501/ace840
10_1088_1361_6501_ace840
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
.GJ
02O
1WK
29M
5ZI
6TJ
6TU
9BW
AAGCF
AALHV
ACARI
ACWPO
ADTOC
AERVB
AETNG
AFFNX
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
H~9
JCGBZ
M45
MVM
NT-
NT.
OHT
Q02
RKQ
S3P
T37
UNPAY
ZCG
ZY4
ID FETCH-LOGICAL-c285t-61320137b13b81db8e3888d672fb8b45de27115aacb73a0c36202704dac7087a3
IEDL.DBID UNPAY
ISSN 0957-0233
1361-6501
IngestDate Sun Sep 07 10:53:10 EDT 2025
Wed Oct 01 05:28:22 EDT 2025
Thu Apr 24 22:50:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c285t-61320137b13b81db8e3888d672fb8b45de27115aacb73a0c36202704dac7087a3
ORCID 0000-0002-0773-8871
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6501/ace840
ParticipantIDs unpaywall_primary_10_1088_1361_6501_ace840
crossref_citationtrail_10_1088_1361_6501_ace840
crossref_primary_10_1088_1361_6501_ace840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2023
References Finkel (mstace840bib5) 2004; 40
Garcia (mstace840bib32) 2020; 10
Feng (mstace840bib8) 2021; 59
Mei (mstace840bib15) 2017; 55
Xu (mstace840bib31) 2023; 34
Jiang (mstace840bib9) 2021; 230
Wu (mstace840bib12) 2022; 35
Shu (mstace840bib28) 2023; 72
Hao (mstace840bib29) 2021; 154
Zhuang (mstace840bib3) 2022; 23
Yang (mstace840bib20) 2020; 10
Zhang (mstace840bib7) 2021; 36
Nemzer (mstace840bib19) 2017; 26
Yue (mstace840bib2) 2020
Liang (mstace840bib35) 2021; 33
Ming (mstace840bib10) 2015
Richman (mstace840bib21) 2000; 278
Chang (mstace840bib25) 2022
Zhang (mstace840bib33) 2021; 40
Zhang (mstace840bib11) 2017
Luo (mstace840bib22) 2018; 50
Ito (mstace840bib27) 2011; 18
Yang (mstace840bib24) 2020; 20
Zhou (mstace840bib34) 2020; 31
Xia (mstace840bib17) 2022; 121
Yu (mstace840bib16) 2019; 31
Guo (mstace840bib18) 2017; 240
Weng (mstace840bib30) 2022; 33
Jin (mstace840bib6) 2012; 48
Wang (mstace840bib13) 2022; 36
Zhou (mstace840bib14) 2019; 32
Nguyen (mstace840bib26) 2021; 131
Wang (mstace840bib23) 2007; 18
Wang (mstace840bib1) 2021; 33
Finkel (mstace840bib4) 2001; vol 20
References_xml – volume: 36
  start-page: 411
  year: 2021
  ident: mstace840bib7
  article-title: A parameter optimized variational mode decomposition method for rail crack detection based on acoustic emission technique
  publication-title: Nondestruct. Test. Eval.
  doi: 10.1080/10589759.2020.1785447
– volume: 31
  start-page: 1235
  year: 2019
  ident: mstace840bib16
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– volume: 33
  year: 2022
  ident: mstace840bib30
  article-title: A multi-scale kernel-based network with improved attention mechanism for rotating machinery fault diagnosis under noisy environments
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac4598
– start-page: 3901
  year: 2022
  ident: mstace840bib25
  article-title: Rail fatigue crack classification by WSCNN-GRU based on using acoustic emission
– volume: 55
  start-page: 4520
  year: 2017
  ident: mstace840bib15
  article-title: Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2693346
– volume: 240
  start-page: 98
  year: 2017
  ident: mstace840bib18
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.045
– volume: 33
  year: 2021
  ident: mstace840bib35
  article-title: Remaining useful life prediction for rolling bearings using correlation coefficient and Kullback–Leibler divergence feature selection
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac346d
– volume: 59
  start-page: 8933
  year: 2021
  ident: mstace840bib8
  article-title: Bayesian convolutional neural networks for seismic facies classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3049012
– start-page: 236
  year: 2017
  ident: mstace840bib11
  article-title: An improved method of rail health monitoring based on CNN and multiple acoustic emission events
– volume: 33
  year: 2021
  ident: mstace840bib1
  article-title: Feasibility investigation of rail monitoring by wheel-mounted acoustic emission technology using two-dimensional analytical contact acoustic nonlinearity model
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac329e
– volume: 121
  year: 2022
  ident: mstace840bib17
  article-title: WC-KNNG-PC: watershed clustering based on k-nearest-neighbor graph and Pauta criterion
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108177
– volume: 72
  start-page: 1
  year: 2023
  ident: mstace840bib28
  article-title: External partial discharge detection of gas-insulated switchgears using a low-noise and enhanced-sensitivity UHF sensor module
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3277980
– volume: 10
  start-page: 6755
  year: 2020
  ident: mstace840bib32
  article-title: A comparison of power quality disturbance detection and classification methods using CNN, LSTM and CNN-LSTM
  publication-title: Appl. Sciences
  doi: 10.3390/app10196755
– year: 2020
  ident: mstace840bib2
  article-title: Rail surface defect recognition method based on AdaBoost multi-classifier combination
– volume: 50
  start-page: 38
  year: 2018
  ident: mstace840bib22
  article-title: Remaining useful life prediction based on UKF for aircraft structure with fatigue crack
  publication-title: J. Harbin Inst. Technol.
  doi: 10.11918/j.issn.0367-6234.201709020
– volume: 23
  start-page: 12133
  year: 2022
  ident: mstace840bib3
  article-title: The automatic rail surface multi-flaw identification based on a deep learning powered framework
  publication-title: IEEE Trans. Int. Trans. Syst.
  doi: 10.1109/TITS.2021.3109949
– start-page: 376
  year: 2015
  ident: mstace840bib10
  article-title: Decision approach of maintenance for urban rail transit based on equipment supervision data mining
– volume: 32
  start-page: 798
  year: 2019
  ident: mstace840bib14
  article-title: An adaptive clustering method detecting the surface defects on linear guide rails
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2019.1636409
– volume: 10
  start-page: 2056
  year: 2020
  ident: mstace840bib20
  article-title: Failure prediction of the rotating machinery based on CEEMDAN-ApEn feature and AR-UKF model
  publication-title: Appl. Sci.
  doi: 10.3390/app10062056
– volume: 20
  start-page: 3837
  year: 2020
  ident: mstace840bib24
  article-title: A fault diagnosis method of rotating machinery based on one-dimensional-self-normalizing convolutional neural networks
  publication-title: Sensors
  doi: 10.3390/s20143837
– volume: 34
  year: 2023
  ident: mstace840bib31
  article-title: Multiscale cascade recurrent dilation convolution network for fault diagnosis of rolling bearing under cross-load conditions
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/acc2d9
– volume: 36
  start-page: 1
  year: 2022
  ident: mstace840bib13
  article-title: Rail steel health analysis based on a novel genetic density-based clustering technique and manifold representation of acoustic emission signals
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2021.2004346
– volume: vol 20
  start-page: 1747
  year: 2001
  ident: mstace840bib4
  article-title: Electromagnetically induced acoustic emission-novel NDT technique for damage evaluation
– volume: 40
  start-page: 2179
  year: 2004
  ident: mstace840bib5
  article-title: Numerical simulations of an electromagnetic of the ultrasonic signal for nondestructive detection of ferromagnetic inclusions and flaws
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2004.829313
– volume: 48
  start-page: 2953
  year: 2012
  ident: mstace840bib6
  article-title: Amplitude characteristics of acoustic emission signals induced by electromagnetic exciting
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2012.2196419
– volume: 18
  start-page: 1847
  year: 2011
  ident: mstace840bib27
  article-title: Improving the sensitivity verification method of the UHF PD detection technique for GIS
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2011.6118622
– volume: 278
  start-page: 2039
  year: 2000
  ident: mstace840bib21
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Phys. Heart Circ. Phys.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 18
  start-page: 27
  year: 2007
  ident: mstace840bib23
  article-title: Study on the Hungarian algorithm for the maximum likelihood data association problem
  publication-title: J. Syst. Eng. Electron.
  doi: 10.1016/S1004-4132(07)60045-0
– volume: 35
  start-page: 59
  year: 2022
  ident: mstace840bib12
  article-title: Internal defects detection method of the railway track based on generalization features cluster under ultrasonic images
  publication-title: Chin. J. Mech. Eng.
  doi: 10.1186/s10033-022-00726-z
– volume: 154
  year: 2021
  ident: mstace840bib29
  article-title: An adaptive extraction method for rail crack acoustic emission signal under strong wheel-rail rolling noise of high-speed railway
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107546
– volume: 26
  start-page: 158
  year: 2017
  ident: mstace840bib19
  article-title: Shannon information entropy in the canonical genetic code
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2016.12.010
– volume: 31
  year: 2020
  ident: mstace840bib34
  article-title: Fast prediction of reservoir permeability based on embedded feature selection and LightGBM using direct logging data
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab4a45
– volume: 40
  start-page: 239
  year: 2021
  ident: mstace840bib33
  article-title: Dual-channel feature fusion CNN-GRU gearbox fault diagnosis
  publication-title: J. Vib. Shock
– volume: 230
  year: 2021
  ident: mstace840bib9
  article-title: Prediction of the splitting tensile strength of the bonding interface by combining the support vector machine with the particle swarm optimization algorithm
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.111696
– volume: 131
  year: 2021
  ident: mstace840bib26
  article-title: Fracture mechanisms in rails with mechanically and thermomechanically-induced white etching layers under three-point bending
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2021.105813
SSID ssj0007099
Score 2.4717166
Snippet Multi-feature fusion has been widely used to enhance recognition accuracy for different health stages of rails, which may lead to high dimensionality and...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 115002
Title Rail crack defect recognition based on a multi-feature fusion algorithm using electromagnetic acoustic emission technique
URI https://doi.org/10.1088/1361-6501/ace840
UnpaywallVersion publishedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics (IOP) Publishing Journals
  customDbUrl:
  eissn: 1361-6501
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007099
  issn: 0957-0233
  databaseCode: IOP
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4EYjypoEaMkh48iMlg6360HImRoIlIjCR4WtquQ8IYBLYY_Ottt7qoMf647fC6La_d3vf6Xr8PgHPmYdphCBsmYcRwGCcGc0NkWDjAyAscCZLVPuTdwOuPnNuxO9b7HeoszKf6vUzOLNuzDIkirDblQiYjJVDxXIm6y6AyGgy7TzmVnnwUylTjC3NdkfzuFp8i0E4aL-nmhUbRh7DS28s5jtYZG6HqJpm10oS1-OsXrsa_vPE-2NXYEnbzxVAFWyKuge2sx5Ova6Cqv-M1vNBk080DsHmg0wjyFeUzGAjV2wGLnqJFDFWQC6C8oDBrPTRCkTGBwjBV22yQRpPFapo8z6FqoJ9Araozp5NYnY6E8n-byYVBJSuXjShIYw_BqHf9eNU3tByDwRFxE5lk2kgRFDLLZhLlMiJsmT4HHkYhI8xxA4GwxJeUcoZtanIZGmXOazoB5dgkmNpHoBwvYnEMIJY-6oSIOoocxxIWxZ4IlTYW5yGxMKuD9vsU-VxzlSvJjMjPauaE-MrLvvKyn3u5DprFiGXO0_GD7WUx678an_zH-BSUk1UqziROSVgDlG7uhw29UN8AB-viOQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66IZ7UTcWJSg4enJCtTX8kOw5xDMEh4mCeSpKmc6zrxtYi8683aWNxIv649fDSlpe073t5L98HwCX3CetwTJBFOUUuFxRxL8LIJiHBfugqkKz3Ie8Hfn_o3o28kdnv0GdhNur3KjmzHd9GCkXYbSakSka2QdX3FOqugOpw8NB9Lqj01KNwrhpfmpuK5He32IhAu1myYOtXFsefwkpvv-A4WuVshLqbZNrKUt4Sb1-4Gv_yxgdgz2BL2C0WQw1syaQOdvIeT7Gqg5r5jlfwypBNNw_B-pFNYiiWTExhKHVvByx7iuYJ1EEuhOqCwbz1EEUyZwKFUaa32SCLx_PlJH2ZQd1AP4ZGVWfGxok-HQnV_zaXC4NaVi4fUZLGHoFh7_bppo-MHAMSmHqpSjIdrAkKue1whXI5lY5Kn0Of4IhT7nqhxEThS8YEJw6zhAqNKue13JAJYlHCnGNQSeaJPAGQKB91IsxcTY5jS5sRX0ZaG0uIiNqEN0D7Y4oCYbjKtWRGHOQ1c0oD7eVAezkovNwAzXLEouDp-MH2upz1X41P_2N8BirpMpPnCqek_MIs0Xe_wOEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rail+crack+defect+recognition+based+on+a+multi-feature+fusion+algorithm+using+electromagnetic+acoustic+emission+technique&rft.jtitle=Measurement+science+%26+technology&rft.au=Chang%2C+Yongqi&rft.au=Zhang%2C+Xin&rft.au=Song%2C+Shuzhi&rft.au=Song%2C+Qinghua&rft.date=2023-11-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=34&rft.issue=11&rft.spage=115002&rft_id=info:doi/10.1088%2F1361-6501%2Face840&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ace840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon