Long-time asymptotic solution structure of Camassa-Holm equation subject to an initial condition with non-zero reflection coefficient of the scattering data

In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut − uxxt + 2ux + 3uux = 2uxuxx + uuxxx . The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underl...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical physics Vol. 57; no. 10; pp. 103508 - 103536
Main Authors Chang, Chueh-Hsin, Yu, Ching-Hao, Sheu, Tony Wen-Hann
Format Journal Article
LanguageEnglish
Published New York American Institute of Physics 01.10.2016
Subjects
Online AccessGet full text
ISSN0022-2488
1089-7658
DOI10.1063/1.4966112

Cover

Abstract In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut − uxxt + 2ux + 3uux = 2uxuxx + uuxxx . The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underlying strategy of deriving a numerical phase accurate finite difference scheme in time domain is to reduce the numerical dispersion error through minimization of the derived discrepancy between the numerical and exact modified wavenumbers. Additionally, to achieve the goal of conserving Hamiltonians in the completely integrable equation of current interest, a symplecticity-preserving time-stepping scheme is developed. Based on the solutions computed from the temporally symplecticity-preserving and the spatially wavenumber-preserving schemes, the long-time asymptotic CH solution characters can be accurately depicted in distinct regions of the space-time domain featuring with their own quantitatively very different solution behaviors. We also aim to numerically confirm that in the two transition zones their long-time asymptotics can indeed be described in terms of the theoretically derived Painlevé transcendents. Another attempt of this study is to numerically exhibit a close connection between the presently predicted finite-difference solution and the solution of the Painlevé ordinary differential equation of type II in two different transition zones.
AbstractList In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut − uxxt + 2ux + 3uux = 2uxuxx + uuxxx. The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underlying strategy of deriving a numerical phase accurate finite difference scheme in time domain is to reduce the numerical dispersion error through minimization of the derived discrepancy between the numerical and exact modified wavenumbers. Additionally, to achieve the goal of conserving Hamiltonians in the completely integrable equation of current interest, a symplecticity-preserving time-stepping scheme is developed. Based on the solutions computed from the temporally symplecticity-preserving and the spatially wavenumber-preserving schemes, the long-time asymptotic CH solution characters can be accurately depicted in distinct regions of the space-time domain featuring with their own quantitatively very different solution behaviors. We also aim to numerically confirm that in the two transition zones their long-time asymptotics can indeed be described in terms of the theoretically derived Painlevé transcendents. Another attempt of this study is to numerically exhibit a close connection between the presently predicted finite-difference solution and the solution of the Painlevé ordinary differential equation of type II in two different transition zones.
In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation u... - u... + 2u... + 3uu... = 2... + uu... The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underlying strategy of deriving a numerical phase accurate finite difference scheme in time domain is to reduce the numerical dispersion error through minimization of the derived discrepancy between the numerical and exact modified wavenumbers. Additionally, to achieve the goal of conserving Hamiltonians in the completely integrable equation of current interest, a symplecticity-preserving time-stepping scheme is developed. Based on the solutions computed from the temporally symplecticity-preserving and the spatially wavenumber-preserving schemes, the long-time asymptotic CH solution characters can be accurately depicted in distinct regions of the space-time domain featuring with their own quantitatively very different solution behaviors. We also aim to numerically confirm that in the two transition zones their long-time asymptotics can indeed be described in terms of the theoretically derived Painleve transcendents. Another attempt of this study is to numerically exhibit a close connection between the presently predicted finite-difference solution and the solution of the Painleve ordinary differential equation of type II in two different transition zones. (ProQuest: ... denotes formulae/symbols omitted.)
In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut − uxxt + 2ux + 3uux = 2uxuxx + uuxxx . The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underlying strategy of deriving a numerical phase accurate finite difference scheme in time domain is to reduce the numerical dispersion error through minimization of the derived discrepancy between the numerical and exact modified wavenumbers. Additionally, to achieve the goal of conserving Hamiltonians in the completely integrable equation of current interest, a symplecticity-preserving time-stepping scheme is developed. Based on the solutions computed from the temporally symplecticity-preserving and the spatially wavenumber-preserving schemes, the long-time asymptotic CH solution characters can be accurately depicted in distinct regions of the space-time domain featuring with their own quantitatively very different solution behaviors. We also aim to numerically confirm that in the two transition zones their long-time asymptotics can indeed be described in terms of the theoretically derived Painlevé transcendents. Another attempt of this study is to numerically exhibit a close connection between the presently predicted finite-difference solution and the solution of the Painlevé ordinary differential equation of type II in two different transition zones.
Author Yu, Ching-Hao
Sheu, Tony Wen-Hann
Chang, Chueh-Hsin
Author_xml – sequence: 1
  givenname: Chueh-Hsin
  surname: Chang
  fullname: Chang, Chueh-Hsin
  organization: Tunghai University
– sequence: 2
  givenname: Ching-Hao
  surname: Yu
  fullname: Yu, Ching-Hao
  organization: Zhejiang University
– sequence: 3
  givenname: Tony Wen-Hann
  surname: Sheu
  fullname: Sheu, Tony Wen-Hann
  email: twhsheu@ntu.edu.tw
  organization: 5Institute of Applied Mathematical Science, National Taiwan University, Taipei, Taiwan
BookMark eNp90cFu3CAQBmAUpVI3aQ99A6ScWskJYIPxsVq1TaWVcknOFoYhYWXDBsatkmfpw9abTVWpSnPiMN_8MMwJOY4pAiEfODvnTNUX_LzplOJcHJEVZ7qrWiX1MVkxJkQlGq3fkpNStoxxrptmRX5tUrytMExATXmYdpgwWFrSOGNIkRbMs8U5A02ers1kSjHVZRonCvezOZB52IJFiomaSEMMGMxIbYouPNV_BryjyyurR8iJZvDjovcFm8D7YANE3KfjHdBiDSLkEG-pM2jekTfejAXeP5-n5Obrl-v1ZbW5-vZ9_XlTWaElVtIxJgernFWtH8A5oy00djBc2hagbpgbQLhadV53shvawXhtvG2MVQ2Tqj4lZ4fcXU73MxTst2nOcbmyF1xw2Yq2flVxXbeyVkq3i_p4UDanUpZx-10Ok8kPPWf9fkU9759XtNiLf6wN-PSrmE0YX-z4dOgof-Sr8f_FP1L-C_ud8_VvDay1Ag
CODEN JMAPAQ
CitedBy_id crossref_primary_10_1007_s00332_021_09766_6
crossref_primary_10_1080_10407790_2019_1627811
Cites_doi 10.1002/sapm1974534249
10.1137/090772976
10.1006/jcph.1993.1142
10.2991/jnmp.2007.14.3.1
10.1080/14029251.2015.996443
10.1103/PhysRevLett.38.1103
10.2307/2946540
10.1088/0951-7715/23/10/007
10.1098/rspa.2000.0701
10.2991/jnmp.2002.9.4.2
10.1103/PhysRevLett.71.1661
10.1007/BF00283254
10.1017/S0022112001007224
10.1006/jcph.1998.5899
10.1007/s00205-008-0128-2
10.1007/s11005-006-0063-9
10.1098/rspa.2002.1078
10.1098/rspa.2004.1331
10.1002/cpa.3160320202
10.1016/S0021-9991(03)00293-6
10.1137/090748500
10.1007/BF00251504
ContentType Journal Article
Copyright Author(s)
Copyright American Institute of Physics Oct 2016
2016 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: Copyright American Institute of Physics Oct 2016
– notice: 2016 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
7U5
8FD
H8D
JQ2
L7M
DOI 10.1063/1.4966112
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
Aerospace Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1089-7658
ExternalDocumentID 4244102171
10_1063_1_4966112
jmp
Genre Feature
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan (MOST)
  grantid: NSC 98-2628-M-002-006
  funderid: http://dx.doi.org/10.13039/501100004663
GroupedDBID -DZ
-~X
0ZJ
186
1UP
2-P
29L
4.4
41~
5GY
5VS
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
AAYJJ
ABJNI
ABTAH
ACBRY
ACGFS
ACIWK
ACKIV
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AETEA
AFATG
AFDAS
AFFNX
AFHCQ
AFMIJ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AI.
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
MVM
N9A
NEUPN
NPSNA
O-B
OHT
P2P
PQQKQ
RDFOP
RIP
RNS
ROL
RQS
TN5
UPT
VH1
WH7
XJT
XOL
XSW
YQT
YYP
ZCG
ZKB
ZY4
AAGWI
AAYXX
ABJGX
AMVHM
BDMKI
CITATION
7U5
8FD
H8D
JQ2
L7M
ID FETCH-LOGICAL-c285t-5d005bc6dc67fbedda8ce4cba15c7ee340dbe2d369f8959b7baf8afc4ac640563
ISSN 0022-2488
IngestDate Mon Jun 30 10:27:02 EDT 2025
Mon Jun 30 10:24:42 EDT 2025
Thu Apr 24 23:04:44 EDT 2025
Tue Jul 01 02:50:53 EDT 2025
Fri Jun 21 00:17:28 EDT 2024
Sun Jul 14 10:28:28 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 0022-2488/2016/57(10)/103508/29/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-5d005bc6dc67fbedda8ce4cba15c7ee340dbe2d369f8959b7baf8afc4ac640563
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
PQID 1837536687
PQPubID 45358
PageCount 29
ParticipantIDs proquest_journals_2121572736
scitation_primary_10_1063_1_4966112
crossref_primary_10_1063_1_4966112
proquest_journals_1837536687
crossref_citationtrail_10_1063_1_4966112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161000
2016-10-01
20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 20161000
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical physics
PublicationYear 2016
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Chang, Sheu (c9) 2015
Constantin, Ivanov (c14) 2006
Lenells (c26) 2002
Deift, Trubowitz (c17) 1979
Deift, Zhou (c18) 1993
Camassa, Holm (c8) 1993
Constantin, Lannes (c15) 2009
Ablowitz, Kaup, Newell, Segur (c1) 1974
Boutet de Monvel, Its, Shepelsky (c5) 2010
Chu, Fan (c10) 1998
Ionescu-Kruse (c22) 2007
Johnson (c25) 2003
Boutet de Monvel, Kotlyarov, Shepelsky, Zheng (c7) 2010
Constantin (c13) 2001
Faddeev (c19) 1958
Clarkson, McLeod (c12) 1988
Hastings, McLeod (c21) 1980
Johnson (c24) 2002
Boutet de Monvel, Kostenko, Shepelsky, Teschl (c6) 2009
Ashcroft, Zhang (c4) 2003
Tam, Webb (c29) 1993
Li, Zhang (c27) 2004
Ablowitz, Segur (c2) 1977
(2023073107225478800_c4) 2003; 190
(2023073107225478800_c13) 2001; 457
(2023073107225478800_c22) 2007; 14
(2023073107225478800_c19) 1958; 121
(2023073107225478800_c8) 1993; 71
(2023073107225478800_c2) 1977; 38
(2023073107225478800_c28) 1997
(2023073107225478800_c15) 2009; 192
(2023073107225478800_c5) 2010; 42
(2023073107225478800_c7) 2010; 23
(2023073107225478800_c11) 2006
(2023073107225478800_c17) 1979; 32
(2023073107225478800_c14) 2006; 76
(2023073107225478800_c26) 2002; 9
(2023073107225478800_c3) 1964
(2023073107225478800_c23) 1991
(2023073107225478800_c10) 1998; 140
(2023073107225478800_c25) 2003; 459
(2023073107225478800_c12) 1988; 103
(2023073107225478800_c29) 1993; 107
(2023073107225478800_c16) 1989
(2023073107225478800_c9) 2015; 22
(2023073107225478800_c18) 1993; 137
(2023073107225478800_c24) 2002; 455
(2023073107225478800_c20) 2006
(2023073107225478800_c21) 1980; 73
(2023073107225478800_c27) 2004; 460
(2023073107225478800_c1) 1974; 53
(2023073107225478800_c6) 2009; 41
(2023073107225478800_c30) 1974
References_xml – start-page: 165
  year: 2009
  ident: c15
  article-title: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations
  publication-title: Arch. Ration. Mech. Anal.
– start-page: 63
  year: 2002
  ident: c24
  article-title: Camassa-Holm, Korteweg-de Vries and related models for water waves
  publication-title: J. Fluid Mech.
– start-page: 389
  year: 2002
  ident: c26
  article-title: The scattering approach for the Camassa-Holm equation
  publication-title: J. Nonlinear Math. Phys.
– start-page: 295
  year: 1993
  ident: c18
  article-title: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation
  publication-title: Ann. Math.
– start-page: 1559
  year: 2009
  ident: c6
  article-title: Long- time asymptotics for the Camassa-Holm equation
  publication-title: SIAM J. Math. Anal.
– start-page: 121
  year: 1979
  ident: c17
  article-title: Inverse scattering on the line
  publication-title: Commun. Pure Appl. Math.
– start-page: 1661
  year: 1993
  ident: c8
  article-title: An integrable shallow water equation with peaked solitons
  publication-title: Phys. Rev. Lett.
– start-page: 249
  year: 1974
  ident: c1
  article-title: The inverse scattering transform-Fourier analysis for nonlinear problems
  publication-title: Stud. Appl. Math
– start-page: 459
  year: 2003
  ident: c4
  article-title: Optimized prefactored compact schemes
  publication-title: J. Comput. Phys.
– start-page: 1854
  year: 2010
  ident: c5
  article-title: Painlevé-type asymptotics for the Camassa-Holm equation
  publication-title: SIAM J. Math. Anal.
– start-page: 2483
  year: 2010
  ident: c7
  article-title: Initial boundary value problems for integrable systems: Towards the long-time asymptotics
  publication-title: Nonlinearity
– start-page: 370
  year: 1998
  ident: c10
  article-title: A three-point combined compact difference scheme
  publication-title: J. Comput. Phys.
– start-page: 953
  year: 2001
  ident: c13
  article-title: On the scattering problem for the Camassa-Holm equation
  publication-title: Proc. R. Soc. A
– start-page: 31
  year: 1980
  ident: c21
  article-title: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation
  publication-title: Arch. Ration. Mech. Anal.
– start-page: 1687
  year: 2003
  ident: c25
  article-title: On solutions of the Camassa-Holm equation
  publication-title: Proc. R. Soc. A
– start-page: 102
  year: 2015
  ident: c9
  article-title: On a spectral analysis of scattering data for the Camassa-Holm equation
  publication-title: J. Nonlinear Math. Phys.
– start-page: 63
  year: 1958
  ident: c19
  article-title: On the relation between S-matrix and potential for the one-dimensional Schrödinger operator
  publication-title: Dokl. Akad. Nauk SSSR
– start-page: 262
  year: 1993
  ident: c29
  article-title: Dispersion-relation-preserving finite difference schemes for computational acoustics
  publication-title: J. Comput. Phys.
– start-page: 97
  year: 1988
  ident: c12
  article-title: A connection formula for the second Painlevé transcendent
  publication-title: Arch. Ration. Mech. Anal.
– start-page: 303
  year: 2007
  ident: c22
  article-title: Variational derivation of the Camassa-Holm shallow water equation
  publication-title: J. Nonlinear Math. Phys.
– start-page: 2617
  year: 2004
  ident: c27
  article-title: The multiple-soliton solution of the Camassa-Holm equation
  publication-title: Proc. R. Soc. A
– start-page: 1103
  year: 1977
  ident: c2
  article-title: Exact linearization of a Painlevé transcendent
  publication-title: Phys. Rev. Lett.
– start-page: 93
  year: 2006
  ident: c14
  article-title: Poisson structure and action-angle variables for the Camassa-Holm equation
  publication-title: Lett. Math. Phys.
– volume: 53
  start-page: 249
  year: 1974
  ident: 2023073107225478800_c1
  article-title: The inverse scattering transform-Fourier analysis for nonlinear problems
  publication-title: Stud. Appl. Math
  doi: 10.1002/sapm1974534249
– volume: 42
  start-page: 1854
  year: 2010
  ident: 2023073107225478800_c5
  article-title: Painlevé-type asymptotics for the Camassa-Holm equation
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/090772976
– volume: 107
  start-page: 262
  year: 1993
  ident: 2023073107225478800_c29
  article-title: Dispersion-relation-preserving finite difference schemes for computational acoustics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1993.1142
– volume: 121
  start-page: 63
  year: 1958
  ident: 2023073107225478800_c19
  article-title: On the relation between S-matrix and potential for the one-dimensional Schrödinger operator
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 14
  start-page: 303
  year: 2007
  ident: 2023073107225478800_c22
  article-title: Variational derivation of the Camassa-Holm shallow water equation
  publication-title: J. Nonlinear Math. Phys.
  doi: 10.2991/jnmp.2007.14.3.1
– volume-title: Cambridge Texts in Applied Mathematics
  year: 1989
  ident: 2023073107225478800_c16
  article-title: Solitons: An introduction
– volume: 22
  start-page: 102
  year: 2015
  ident: 2023073107225478800_c9
  article-title: On a spectral analysis of scattering data for the Camassa-Holm equation
  publication-title: J. Nonlinear Math. Phys.
  doi: 10.1080/14029251.2015.996443
– volume: 38
  start-page: 1103
  year: 1977
  ident: 2023073107225478800_c2
  article-title: Exact linearization of a Painlevé transcendent
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.38.1103
– volume: 137
  start-page: 295
  issue: 2
  year: 1993
  ident: 2023073107225478800_c18
  article-title: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation
  publication-title: Ann. Math.
  doi: 10.2307/2946540
– volume-title: From Gauss to Painlevé
  year: 1991
  ident: 2023073107225478800_c23
  article-title: A modern theory of special functions
– volume: 23
  start-page: 2483
  year: 2010
  ident: 2023073107225478800_c7
  article-title: Initial boundary value problems for integrable systems: Towards the long-time asymptotics
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/23/10/007
– volume: 457
  start-page: 953
  year: 2001
  ident: 2023073107225478800_c13
  article-title: On the scattering problem for the Camassa-Holm equation
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2000.0701
– volume: 9
  start-page: 389
  year: 2002
  ident: 2023073107225478800_c26
  article-title: The scattering approach for the Camassa-Holm equation
  publication-title: J. Nonlinear Math. Phys.
  doi: 10.2991/jnmp.2002.9.4.2
– volume: 71
  start-page: 1661
  year: 1993
  ident: 2023073107225478800_c8
  article-title: An integrable shallow water equation with peaked solitons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1661
– volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  year: 1964
  ident: 2023073107225478800_c3
– volume-title: Pure and Applied Mathematics
  year: 1974
  ident: 2023073107225478800_c30
  article-title: Linear and nonlinear waves
– start-page: 331
  volume-title: Orthogonal Polynomials and Special Functions
  year: 2006
  ident: 2023073107225478800_c11
  article-title: Painlevé equations—nonlinear special functions
– volume: 73
  start-page: 31
  year: 1980
  ident: 2023073107225478800_c21
  article-title: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00283254
– volume-title: Painlevé Transcendents
  year: 2006
  ident: 2023073107225478800_c20
  article-title: The Riemann-Hilbert approach
– volume: 455
  start-page: 63
  year: 2002
  ident: 2023073107225478800_c24
  article-title: Camassa-Holm, Korteweg-de Vries and related models for water waves
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112001007224
– volume: 140
  start-page: 370
  year: 1998
  ident: 2023073107225478800_c10
  article-title: A three-point combined compact difference scheme
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1998.5899
– volume: 192
  start-page: 165
  year: 2009
  ident: 2023073107225478800_c15
  article-title: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-008-0128-2
– volume: 76
  start-page: 93
  year: 2006
  ident: 2023073107225478800_c14
  article-title: Poisson structure and action-angle variables for the Camassa-Holm equation
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-006-0063-9
– volume: 459
  start-page: 1687
  year: 2003
  ident: 2023073107225478800_c25
  article-title: On solutions of the Camassa-Holm equation
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2002.1078
– volume: 460
  start-page: 2617
  year: 2004
  ident: 2023073107225478800_c27
  article-title: The multiple-soliton solution of the Camassa-Holm equation
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2004.1331
– volume: 32
  start-page: 121
  year: 1979
  ident: 2023073107225478800_c17
  article-title: Inverse scattering on the line
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160320202
– volume: 190
  start-page: 459
  year: 2003
  ident: 2023073107225478800_c4
  article-title: Optimized prefactored compact schemes
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00293-6
– volume: 41
  start-page: 1559
  year: 2009
  ident: 2023073107225478800_c6
  article-title: Long- time asymptotics for the Camassa-Holm equation
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/090748500
– volume-title: Symplectic Runge-Kutta Schemes II: Classification of Symmetric Methods
  year: 1997
  ident: 2023073107225478800_c28
– volume: 103
  start-page: 97
  year: 1988
  ident: 2023073107225478800_c12
  article-title: A connection formula for the second Painlevé transcendent
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00251504
SSID ssj0011844
Score 2.1631517
Snippet In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut − uxxt + 2ux + 3uux = 2uxuxx + uuxxx . The finite...
In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut − uxxt + 2ux + 3uux = 2uxuxx + uuxxx. The finite...
In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation u... - u... + 2u... + 3uu... = 2... + uu... The finite...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103508
SubjectTerms Asymptotic methods
Finite difference method
Fluid dynamics
Hamiltonian functions
Integral equations
Numerical prediction
Ordinary differential equations
Partial differential equations
Physics
Reflectance
Time domain analysis
Wavelengths
Title Long-time asymptotic solution structure of Camassa-Holm equation subject to an initial condition with non-zero reflection coefficient of the scattering data
URI http://dx.doi.org/10.1063/1.4966112
https://www.proquest.com/docview/1837536687
https://www.proquest.com/docview/2121572736
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1089-7658
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0011844
  issn: 0022-2488
  databaseCode: AMVHM
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJwQ88GcMURjIAoSQqpT8dZLHqdpUoXbw0EJ5ipzEoZXWpFtSpO2z8PH4INwljpNK0QS8RK1tJW7vF9_5fPc7Qt55MbdCWPM0pruJZjteAq-UY5RZILFuJElUEmnPztlkYX9aOste73cramlXhKPopjOv5H-kCm0gV8yS_QfJqptCA3wG-cIVJAzXv5LxNEt_aFgdfsjz6822yJB9tX7ksKKGxQOCMgdrA2Yy1zAFYSguK4LvYb4L0Q-DBijHkMd1sS75QvAcG_tLL22apdqNuMqGoEwvRFVaPMpEyT0hIwnQes2jkqoTXQ8y4a3L6t0omlhMAStBoqz6ce28Hq92YqVN8rVC7vdd1Q531yY8U36hlSg75ll6PfwmUuhL07Yjw2AqJK5o5Q7wdD9K4ktrIk36gWlXtQBHolq1dc_XXFZxwNfLesV7XcNXby3SBp6mep36Aww2dGWMbNgFGjK-e4-j-_xzcLaYToP56XK-31vaBJg2iMXSXeP99lLD2mYYAyALvdwhByboHr1PDk5mXyczddoFu2y7ZrXHn1YzYDHro5rKvt3UbIbugaVUBW207KL5Y_JQipaeVOh8QnoiPSSP5OaGStWRH5IHMyV5-HZX_uNPyS8FYtqAmNYgpgrENEtoG8S0BjGVIKZFRnlKJYipAjFFENMaxLQBMW2BGO8O06MNiCmC-Igszk7n44kmS4Zokek5hebEoFXCiMURc5NQxDH3ImFHITecyBXCsvU4FGZsMT_xfMcP3ZAnHocFiUcMti7Mekb6MCHxnFCD67abGI4wQ9dO3DiMfIMnICvfiw3H5QPyoRZIUIsAy7pcBGVcB7MCI5CyG5A3aui2IpHpGnRcSzWQa0wegMJ1HYsxz-3sNpEbBncgbEDeKiDc9oyOUT-zq2ZEsI2TF7fP5CW537y-x6QPOBCvwDIvwtcS2H8ASOfu8Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-time+asymptotic+solution+structure+of+Camassa-Holm+equation+subject+to+an+initial+condition+with+non-zero+reflection+coefficient+of+the+scattering+data&rft.jtitle=Journal+of+mathematical+physics&rft.au=Chang%2C+Chueh-Hsin&rft.au=Yu%2C+Ching-Hao&rft.au=Sheu%2C+Tony+Wen-Hann&rft.date=2016-10-01&rft.pub=American+Institute+of+Physics&rft.issn=0022-2488&rft.eissn=1089-7658&rft.volume=57&rft.issue=10&rft.spage=103508&rft_id=info:doi/10.1063%2F1.4966112&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4244102171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2488&client=summon