Long-time asymptotic solution structure of Camassa-Holm equation subject to an initial condition with non-zero reflection coefficient of the scattering data
In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut − uxxt + 2ux + 3uux = 2uxuxx + uuxxx . The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underl...
Saved in:
| Published in | Journal of mathematical physics Vol. 57; no. 10; pp. 103508 - 103536 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
American Institute of Physics
01.10.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-2488 1089-7658 |
| DOI | 10.1063/1.4966112 |
Cover
| Abstract | In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut
− uxxt
+ 2ux
+ 3uux
= 2uxuxx
+ uuxxx
. The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underlying strategy of deriving a numerical phase accurate finite difference scheme in time domain is to reduce the numerical dispersion error through minimization of the derived discrepancy between the numerical and exact modified wavenumbers. Additionally, to achieve the goal of conserving Hamiltonians in the completely integrable equation of current interest, a symplecticity-preserving time-stepping scheme is developed. Based on the solutions computed from the temporally symplecticity-preserving and the spatially wavenumber-preserving schemes, the long-time asymptotic CH solution characters can be accurately depicted in distinct regions of the space-time domain featuring with their own quantitatively very different solution behaviors. We also aim to numerically confirm that in the two transition zones their long-time asymptotics can indeed be described in terms of the theoretically derived Painlevé transcendents. Another attempt of this study is to numerically exhibit a close connection between the presently predicted finite-difference solution and the solution of the Painlevé ordinary differential equation of type II in two different transition zones. |
|---|---|
| AbstractList | In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut − uxxt + 2ux + 3uux = 2uxuxx + uuxxx. The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underlying strategy of deriving a numerical phase accurate finite difference scheme in time domain is to reduce the numerical dispersion error through minimization of the derived discrepancy between the numerical and exact modified wavenumbers. Additionally, to achieve the goal of conserving Hamiltonians in the completely integrable equation of current interest, a symplecticity-preserving time-stepping scheme is developed. Based on the solutions computed from the temporally symplecticity-preserving and the spatially wavenumber-preserving schemes, the long-time asymptotic CH solution characters can be accurately depicted in distinct regions of the space-time domain featuring with their own quantitatively very different solution behaviors. We also aim to numerically confirm that in the two transition zones their long-time asymptotics can indeed be described in terms of the theoretically derived Painlevé transcendents. Another attempt of this study is to numerically exhibit a close connection between the presently predicted finite-difference solution and the solution of the Painlevé ordinary differential equation of type II in two different transition zones. In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation u... - u... + 2u... + 3uu... = 2... + uu... The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underlying strategy of deriving a numerical phase accurate finite difference scheme in time domain is to reduce the numerical dispersion error through minimization of the derived discrepancy between the numerical and exact modified wavenumbers. Additionally, to achieve the goal of conserving Hamiltonians in the completely integrable equation of current interest, a symplecticity-preserving time-stepping scheme is developed. Based on the solutions computed from the temporally symplecticity-preserving and the spatially wavenumber-preserving schemes, the long-time asymptotic CH solution characters can be accurately depicted in distinct regions of the space-time domain featuring with their own quantitatively very different solution behaviors. We also aim to numerically confirm that in the two transition zones their long-time asymptotics can indeed be described in terms of the theoretically derived Painleve transcendents. Another attempt of this study is to numerically exhibit a close connection between the presently predicted finite-difference solution and the solution of the Painleve ordinary differential equation of type II in two different transition zones. (ProQuest: ... denotes formulae/symbols omitted.) In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut − uxxt + 2ux + 3uux = 2uxuxx + uuxxx . The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underlying strategy of deriving a numerical phase accurate finite difference scheme in time domain is to reduce the numerical dispersion error through minimization of the derived discrepancy between the numerical and exact modified wavenumbers. Additionally, to achieve the goal of conserving Hamiltonians in the completely integrable equation of current interest, a symplecticity-preserving time-stepping scheme is developed. Based on the solutions computed from the temporally symplecticity-preserving and the spatially wavenumber-preserving schemes, the long-time asymptotic CH solution characters can be accurately depicted in distinct regions of the space-time domain featuring with their own quantitatively very different solution behaviors. We also aim to numerically confirm that in the two transition zones their long-time asymptotics can indeed be described in terms of the theoretically derived Painlevé transcendents. Another attempt of this study is to numerically exhibit a close connection between the presently predicted finite-difference solution and the solution of the Painlevé ordinary differential equation of type II in two different transition zones. |
| Author | Yu, Ching-Hao Sheu, Tony Wen-Hann Chang, Chueh-Hsin |
| Author_xml | – sequence: 1 givenname: Chueh-Hsin surname: Chang fullname: Chang, Chueh-Hsin organization: Tunghai University – sequence: 2 givenname: Ching-Hao surname: Yu fullname: Yu, Ching-Hao organization: Zhejiang University – sequence: 3 givenname: Tony Wen-Hann surname: Sheu fullname: Sheu, Tony Wen-Hann email: twhsheu@ntu.edu.tw organization: 5Institute of Applied Mathematical Science, National Taiwan University, Taipei, Taiwan |
| BookMark | eNp90cFu3CAQBmAUpVI3aQ99A6ScWskJYIPxsVq1TaWVcknOFoYhYWXDBsatkmfpw9abTVWpSnPiMN_8MMwJOY4pAiEfODvnTNUX_LzplOJcHJEVZ7qrWiX1MVkxJkQlGq3fkpNStoxxrptmRX5tUrytMExATXmYdpgwWFrSOGNIkRbMs8U5A02ers1kSjHVZRonCvezOZB52IJFiomaSEMMGMxIbYouPNV_BryjyyurR8iJZvDjovcFm8D7YANE3KfjHdBiDSLkEG-pM2jekTfejAXeP5-n5Obrl-v1ZbW5-vZ9_XlTWaElVtIxJgernFWtH8A5oy00djBc2hagbpgbQLhadV53shvawXhtvG2MVQ2Tqj4lZ4fcXU73MxTst2nOcbmyF1xw2Yq2flVxXbeyVkq3i_p4UDanUpZx-10Ok8kPPWf9fkU9759XtNiLf6wN-PSrmE0YX-z4dOgof-Sr8f_FP1L-C_ud8_VvDay1Ag |
| CODEN | JMAPAQ |
| CitedBy_id | crossref_primary_10_1007_s00332_021_09766_6 crossref_primary_10_1080_10407790_2019_1627811 |
| Cites_doi | 10.1002/sapm1974534249 10.1137/090772976 10.1006/jcph.1993.1142 10.2991/jnmp.2007.14.3.1 10.1080/14029251.2015.996443 10.1103/PhysRevLett.38.1103 10.2307/2946540 10.1088/0951-7715/23/10/007 10.1098/rspa.2000.0701 10.2991/jnmp.2002.9.4.2 10.1103/PhysRevLett.71.1661 10.1007/BF00283254 10.1017/S0022112001007224 10.1006/jcph.1998.5899 10.1007/s00205-008-0128-2 10.1007/s11005-006-0063-9 10.1098/rspa.2002.1078 10.1098/rspa.2004.1331 10.1002/cpa.3160320202 10.1016/S0021-9991(03)00293-6 10.1137/090748500 10.1007/BF00251504 |
| ContentType | Journal Article |
| Copyright | Author(s) Copyright American Institute of Physics Oct 2016 2016 Author(s). Published by AIP Publishing. |
| Copyright_xml | – notice: Author(s) – notice: Copyright American Institute of Physics Oct 2016 – notice: 2016 Author(s). Published by AIP Publishing. |
| DBID | AAYXX CITATION 7U5 8FD H8D JQ2 L7M |
| DOI | 10.1063/1.4966112 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef Aerospace Database Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Physics |
| EISSN | 1089-7658 |
| ExternalDocumentID | 4244102171 10_1063_1_4966112 jmp |
| Genre | Feature |
| GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan (MOST) grantid: NSC 98-2628-M-002-006 funderid: http://dx.doi.org/10.13039/501100004663 |
| GroupedDBID | -DZ -~X 0ZJ 186 1UP 2-P 29L 4.4 41~ 5GY 5VS AAAAW AABDS AAEUA AAPUP AAYIH AAYJJ ABJNI ABTAH ACBRY ACGFS ACIWK ACKIV ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AETEA AFATG AFDAS AFFNX AFHCQ AFMIJ AGKCL AGLKD AGMXG AGTJO AHSDT AI. AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 MVM N9A NEUPN NPSNA O-B OHT P2P PQQKQ RDFOP RIP RNS ROL RQS TN5 UPT VH1 WH7 XJT XOL XSW YQT YYP ZCG ZKB ZY4 AAGWI AAYXX ABJGX AMVHM BDMKI CITATION 7U5 8FD H8D JQ2 L7M |
| ID | FETCH-LOGICAL-c285t-5d005bc6dc67fbedda8ce4cba15c7ee340dbe2d369f8959b7baf8afc4ac640563 |
| ISSN | 0022-2488 |
| IngestDate | Mon Jun 30 10:27:02 EDT 2025 Mon Jun 30 10:24:42 EDT 2025 Thu Apr 24 23:04:44 EDT 2025 Tue Jul 01 02:50:53 EDT 2025 Fri Jun 21 00:17:28 EDT 2024 Sun Jul 14 10:28:28 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | 0022-2488/2016/57(10)/103508/29/$30.00 Published by AIP Publishing. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c285t-5d005bc6dc67fbedda8ce4cba15c7ee340dbe2d369f8959b7baf8afc4ac640563 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1837536687 |
| PQPubID | 45358 |
| PageCount | 29 |
| ParticipantIDs | proquest_journals_2121572736 scitation_primary_10_1063_1_4966112 crossref_primary_10_1063_1_4966112 proquest_journals_1837536687 crossref_citationtrail_10_1063_1_4966112 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20161000 2016-10-01 20161001 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 20161000 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of mathematical physics |
| PublicationYear | 2016 |
| Publisher | American Institute of Physics |
| Publisher_xml | – name: American Institute of Physics |
| References | Chang, Sheu (c9) 2015 Constantin, Ivanov (c14) 2006 Lenells (c26) 2002 Deift, Trubowitz (c17) 1979 Deift, Zhou (c18) 1993 Camassa, Holm (c8) 1993 Constantin, Lannes (c15) 2009 Ablowitz, Kaup, Newell, Segur (c1) 1974 Boutet de Monvel, Its, Shepelsky (c5) 2010 Chu, Fan (c10) 1998 Ionescu-Kruse (c22) 2007 Johnson (c25) 2003 Boutet de Monvel, Kotlyarov, Shepelsky, Zheng (c7) 2010 Constantin (c13) 2001 Faddeev (c19) 1958 Clarkson, McLeod (c12) 1988 Hastings, McLeod (c21) 1980 Johnson (c24) 2002 Boutet de Monvel, Kostenko, Shepelsky, Teschl (c6) 2009 Ashcroft, Zhang (c4) 2003 Tam, Webb (c29) 1993 Li, Zhang (c27) 2004 Ablowitz, Segur (c2) 1977 (2023073107225478800_c4) 2003; 190 (2023073107225478800_c13) 2001; 457 (2023073107225478800_c22) 2007; 14 (2023073107225478800_c19) 1958; 121 (2023073107225478800_c8) 1993; 71 (2023073107225478800_c2) 1977; 38 (2023073107225478800_c28) 1997 (2023073107225478800_c15) 2009; 192 (2023073107225478800_c5) 2010; 42 (2023073107225478800_c7) 2010; 23 (2023073107225478800_c11) 2006 (2023073107225478800_c17) 1979; 32 (2023073107225478800_c14) 2006; 76 (2023073107225478800_c26) 2002; 9 (2023073107225478800_c3) 1964 (2023073107225478800_c23) 1991 (2023073107225478800_c10) 1998; 140 (2023073107225478800_c25) 2003; 459 (2023073107225478800_c12) 1988; 103 (2023073107225478800_c29) 1993; 107 (2023073107225478800_c16) 1989 (2023073107225478800_c9) 2015; 22 (2023073107225478800_c18) 1993; 137 (2023073107225478800_c24) 2002; 455 (2023073107225478800_c20) 2006 (2023073107225478800_c21) 1980; 73 (2023073107225478800_c27) 2004; 460 (2023073107225478800_c1) 1974; 53 (2023073107225478800_c6) 2009; 41 (2023073107225478800_c30) 1974 |
| References_xml | – start-page: 165 year: 2009 ident: c15 article-title: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations publication-title: Arch. Ration. Mech. Anal. – start-page: 63 year: 2002 ident: c24 article-title: Camassa-Holm, Korteweg-de Vries and related models for water waves publication-title: J. Fluid Mech. – start-page: 389 year: 2002 ident: c26 article-title: The scattering approach for the Camassa-Holm equation publication-title: J. Nonlinear Math. Phys. – start-page: 295 year: 1993 ident: c18 article-title: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation publication-title: Ann. Math. – start-page: 1559 year: 2009 ident: c6 article-title: Long- time asymptotics for the Camassa-Holm equation publication-title: SIAM J. Math. Anal. – start-page: 121 year: 1979 ident: c17 article-title: Inverse scattering on the line publication-title: Commun. Pure Appl. Math. – start-page: 1661 year: 1993 ident: c8 article-title: An integrable shallow water equation with peaked solitons publication-title: Phys. Rev. Lett. – start-page: 249 year: 1974 ident: c1 article-title: The inverse scattering transform-Fourier analysis for nonlinear problems publication-title: Stud. Appl. Math – start-page: 459 year: 2003 ident: c4 article-title: Optimized prefactored compact schemes publication-title: J. Comput. Phys. – start-page: 1854 year: 2010 ident: c5 article-title: Painlevé-type asymptotics for the Camassa-Holm equation publication-title: SIAM J. Math. Anal. – start-page: 2483 year: 2010 ident: c7 article-title: Initial boundary value problems for integrable systems: Towards the long-time asymptotics publication-title: Nonlinearity – start-page: 370 year: 1998 ident: c10 article-title: A three-point combined compact difference scheme publication-title: J. Comput. Phys. – start-page: 953 year: 2001 ident: c13 article-title: On the scattering problem for the Camassa-Holm equation publication-title: Proc. R. Soc. A – start-page: 31 year: 1980 ident: c21 article-title: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation publication-title: Arch. Ration. Mech. Anal. – start-page: 1687 year: 2003 ident: c25 article-title: On solutions of the Camassa-Holm equation publication-title: Proc. R. Soc. A – start-page: 102 year: 2015 ident: c9 article-title: On a spectral analysis of scattering data for the Camassa-Holm equation publication-title: J. Nonlinear Math. Phys. – start-page: 63 year: 1958 ident: c19 article-title: On the relation between S-matrix and potential for the one-dimensional Schrödinger operator publication-title: Dokl. Akad. Nauk SSSR – start-page: 262 year: 1993 ident: c29 article-title: Dispersion-relation-preserving finite difference schemes for computational acoustics publication-title: J. Comput. Phys. – start-page: 97 year: 1988 ident: c12 article-title: A connection formula for the second Painlevé transcendent publication-title: Arch. Ration. Mech. Anal. – start-page: 303 year: 2007 ident: c22 article-title: Variational derivation of the Camassa-Holm shallow water equation publication-title: J. Nonlinear Math. Phys. – start-page: 2617 year: 2004 ident: c27 article-title: The multiple-soliton solution of the Camassa-Holm equation publication-title: Proc. R. Soc. A – start-page: 1103 year: 1977 ident: c2 article-title: Exact linearization of a Painlevé transcendent publication-title: Phys. Rev. Lett. – start-page: 93 year: 2006 ident: c14 article-title: Poisson structure and action-angle variables for the Camassa-Holm equation publication-title: Lett. Math. Phys. – volume: 53 start-page: 249 year: 1974 ident: 2023073107225478800_c1 article-title: The inverse scattering transform-Fourier analysis for nonlinear problems publication-title: Stud. Appl. Math doi: 10.1002/sapm1974534249 – volume: 42 start-page: 1854 year: 2010 ident: 2023073107225478800_c5 article-title: Painlevé-type asymptotics for the Camassa-Holm equation publication-title: SIAM J. Math. Anal. doi: 10.1137/090772976 – volume: 107 start-page: 262 year: 1993 ident: 2023073107225478800_c29 article-title: Dispersion-relation-preserving finite difference schemes for computational acoustics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1993.1142 – volume: 121 start-page: 63 year: 1958 ident: 2023073107225478800_c19 article-title: On the relation between S-matrix and potential for the one-dimensional Schrödinger operator publication-title: Dokl. Akad. Nauk SSSR – volume: 14 start-page: 303 year: 2007 ident: 2023073107225478800_c22 article-title: Variational derivation of the Camassa-Holm shallow water equation publication-title: J. Nonlinear Math. Phys. doi: 10.2991/jnmp.2007.14.3.1 – volume-title: Cambridge Texts in Applied Mathematics year: 1989 ident: 2023073107225478800_c16 article-title: Solitons: An introduction – volume: 22 start-page: 102 year: 2015 ident: 2023073107225478800_c9 article-title: On a spectral analysis of scattering data for the Camassa-Holm equation publication-title: J. Nonlinear Math. Phys. doi: 10.1080/14029251.2015.996443 – volume: 38 start-page: 1103 year: 1977 ident: 2023073107225478800_c2 article-title: Exact linearization of a Painlevé transcendent publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.38.1103 – volume: 137 start-page: 295 issue: 2 year: 1993 ident: 2023073107225478800_c18 article-title: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation publication-title: Ann. Math. doi: 10.2307/2946540 – volume-title: From Gauss to Painlevé year: 1991 ident: 2023073107225478800_c23 article-title: A modern theory of special functions – volume: 23 start-page: 2483 year: 2010 ident: 2023073107225478800_c7 article-title: Initial boundary value problems for integrable systems: Towards the long-time asymptotics publication-title: Nonlinearity doi: 10.1088/0951-7715/23/10/007 – volume: 457 start-page: 953 year: 2001 ident: 2023073107225478800_c13 article-title: On the scattering problem for the Camassa-Holm equation publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2000.0701 – volume: 9 start-page: 389 year: 2002 ident: 2023073107225478800_c26 article-title: The scattering approach for the Camassa-Holm equation publication-title: J. Nonlinear Math. Phys. doi: 10.2991/jnmp.2002.9.4.2 – volume: 71 start-page: 1661 year: 1993 ident: 2023073107225478800_c8 article-title: An integrable shallow water equation with peaked solitons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.1661 – volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables year: 1964 ident: 2023073107225478800_c3 – volume-title: Pure and Applied Mathematics year: 1974 ident: 2023073107225478800_c30 article-title: Linear and nonlinear waves – start-page: 331 volume-title: Orthogonal Polynomials and Special Functions year: 2006 ident: 2023073107225478800_c11 article-title: Painlevé equations—nonlinear special functions – volume: 73 start-page: 31 year: 1980 ident: 2023073107225478800_c21 article-title: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00283254 – volume-title: Painlevé Transcendents year: 2006 ident: 2023073107225478800_c20 article-title: The Riemann-Hilbert approach – volume: 455 start-page: 63 year: 2002 ident: 2023073107225478800_c24 article-title: Camassa-Holm, Korteweg-de Vries and related models for water waves publication-title: J. Fluid Mech. doi: 10.1017/S0022112001007224 – volume: 140 start-page: 370 year: 1998 ident: 2023073107225478800_c10 article-title: A three-point combined compact difference scheme publication-title: J. Comput. Phys. doi: 10.1006/jcph.1998.5899 – volume: 192 start-page: 165 year: 2009 ident: 2023073107225478800_c15 article-title: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-008-0128-2 – volume: 76 start-page: 93 year: 2006 ident: 2023073107225478800_c14 article-title: Poisson structure and action-angle variables for the Camassa-Holm equation publication-title: Lett. Math. Phys. doi: 10.1007/s11005-006-0063-9 – volume: 459 start-page: 1687 year: 2003 ident: 2023073107225478800_c25 article-title: On solutions of the Camassa-Holm equation publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2002.1078 – volume: 460 start-page: 2617 year: 2004 ident: 2023073107225478800_c27 article-title: The multiple-soliton solution of the Camassa-Holm equation publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2004.1331 – volume: 32 start-page: 121 year: 1979 ident: 2023073107225478800_c17 article-title: Inverse scattering on the line publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160320202 – volume: 190 start-page: 459 year: 2003 ident: 2023073107225478800_c4 article-title: Optimized prefactored compact schemes publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00293-6 – volume: 41 start-page: 1559 year: 2009 ident: 2023073107225478800_c6 article-title: Long- time asymptotics for the Camassa-Holm equation publication-title: SIAM J. Math. Anal. doi: 10.1137/090748500 – volume-title: Symplectic Runge-Kutta Schemes II: Classification of Symmetric Methods year: 1997 ident: 2023073107225478800_c28 – volume: 103 start-page: 97 year: 1988 ident: 2023073107225478800_c12 article-title: A connection formula for the second Painlevé transcendent publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00251504 |
| SSID | ssj0011844 |
| Score | 2.1631517 |
| Snippet | In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut
− uxxt
+ 2ux
+ 3uux
= 2uxuxx
+ uuxxx
. The finite... In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut − uxxt + 2ux + 3uux = 2uxuxx + uuxxx. The finite... In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation u... - u... + 2u... + 3uu... = 2... + uu... The finite... |
| SourceID | proquest crossref scitation |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 103508 |
| SubjectTerms | Asymptotic methods Finite difference method Fluid dynamics Hamiltonian functions Integral equations Numerical prediction Ordinary differential equations Partial differential equations Physics Reflectance Time domain analysis Wavelengths |
| Title | Long-time asymptotic solution structure of Camassa-Holm equation subject to an initial condition with non-zero reflection coefficient of the scattering data |
| URI | http://dx.doi.org/10.1063/1.4966112 https://www.proquest.com/docview/1837536687 https://www.proquest.com/docview/2121572736 |
| Volume | 57 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1089-7658 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0011844 issn: 0022-2488 databaseCode: AMVHM dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJwQ88GcMURjIAoSQqpT8dZLHqdpUoXbw0EJ5ipzEoZXWpFtSpO2z8PH4INwljpNK0QS8RK1tJW7vF9_5fPc7Qt55MbdCWPM0pruJZjteAq-UY5RZILFuJElUEmnPztlkYX9aOste73cramlXhKPopjOv5H-kCm0gV8yS_QfJqptCA3wG-cIVJAzXv5LxNEt_aFgdfsjz6822yJB9tX7ksKKGxQOCMgdrA2Yy1zAFYSguK4LvYb4L0Q-DBijHkMd1sS75QvAcG_tLL22apdqNuMqGoEwvRFVaPMpEyT0hIwnQes2jkqoTXQ8y4a3L6t0omlhMAStBoqz6ce28Hq92YqVN8rVC7vdd1Q531yY8U36hlSg75ll6PfwmUuhL07Yjw2AqJK5o5Q7wdD9K4ktrIk36gWlXtQBHolq1dc_XXFZxwNfLesV7XcNXby3SBp6mep36Aww2dGWMbNgFGjK-e4-j-_xzcLaYToP56XK-31vaBJg2iMXSXeP99lLD2mYYAyALvdwhByboHr1PDk5mXyczddoFu2y7ZrXHn1YzYDHro5rKvt3UbIbugaVUBW207KL5Y_JQipaeVOh8QnoiPSSP5OaGStWRH5IHMyV5-HZX_uNPyS8FYtqAmNYgpgrENEtoG8S0BjGVIKZFRnlKJYipAjFFENMaxLQBMW2BGO8O06MNiCmC-Igszk7n44kmS4Zokek5hebEoFXCiMURc5NQxDH3ImFHITecyBXCsvU4FGZsMT_xfMcP3ZAnHocFiUcMti7Mekb6MCHxnFCD67abGI4wQ9dO3DiMfIMnICvfiw3H5QPyoRZIUIsAy7pcBGVcB7MCI5CyG5A3aui2IpHpGnRcSzWQa0wegMJ1HYsxz-3sNpEbBncgbEDeKiDc9oyOUT-zq2ZEsI2TF7fP5CW537y-x6QPOBCvwDIvwtcS2H8ASOfu8Q |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-time+asymptotic+solution+structure+of+Camassa-Holm+equation+subject+to+an+initial+condition+with+non-zero+reflection+coefficient+of+the+scattering+data&rft.jtitle=Journal+of+mathematical+physics&rft.au=Chang%2C+Chueh-Hsin&rft.au=Yu%2C+Ching-Hao&rft.au=Sheu%2C+Tony+Wen-Hann&rft.date=2016-10-01&rft.pub=American+Institute+of+Physics&rft.issn=0022-2488&rft.eissn=1089-7658&rft.volume=57&rft.issue=10&rft.spage=103508&rft_id=info:doi/10.1063%2F1.4966112&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4244102171 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2488&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2488&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2488&client=summon |