2D to 3D transformation of gold nanosheets on human adipose-derived α-elastin nanotemplates

[Display omitted] Controlling the morphology and surface properties of gold nanocrystals (AuNCs) can facilitate tailoring their localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) properties for biomedical applications. However, the shape-controlled synthesis of A...

Full description

Saved in:
Bibliographic Details
Published inJournal of industrial and engineering chemistry (Seoul, Korea) Vol. 95; pp. 66 - 72
Main Authors Kim, Jae Dong, Han, Hwa Seung, Kim, Hye-In, Choi, Ji Suk, Park, Jae Hyung, Kim, Jong-Ho, Choi, Ki Young, Cho, Yong Woo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.03.2021
한국공업화학회
Subjects
Online AccessGet full text
ISSN1226-086X
1876-794X
DOI10.1016/j.jiec.2020.12.004

Cover

Abstract [Display omitted] Controlling the morphology and surface properties of gold nanocrystals (AuNCs) can facilitate tailoring their localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) properties for biomedical applications. However, the shape-controlled synthesis of AuNCs for bioapplications remains challenging, given its critical issues, such as the use of toxic reagents and multiple complicated steps. This study demonstrates the facile, biocompatible, and shape-controllable synthesis of AuNCs. This method employs human α-elastin (HαE) self-assemblies as a shape-directing template, reducing agent, and surfactant. Since HαE is a ubiquitous protein present in human tissue, it is non-toxic and non-immunogenic. This method is thus simple and biocompatible. Of particular note, the sheet-type HαE template enables the shape-controlled synthesis of AuNCs—gold nanoparticles, nanosheets, and a rose-flower-like nanostructure (AuRF) stacked with multiple nanosheets. Among the AuNCs, the AuRF exhibits unique optical and electromagnetic properties—an LSPR peak in the near-infrared (NIR) region and characteristic SERS peaks—given the rough surface with sharp edges. To the best of our knowledge, this is the first report on the biosynthesis of AuNCs using human-derived biomolecules such as HαE. The shape-controllable biosynthesis of AuNCs based on HαE may open up possibilities for a wide range of biomedical applications of AuNCs.
AbstractList Controlling the morphology and surface properties of gold nanocrystals (AuNCs) can facilitate tailoringtheir localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS)properties for biomedical applications. However, the shape-controlled synthesis of AuNCs forbioapplications remains challenging, given its critical issues, such as the use of toxic reagents andmultiple complicated steps. This study demonstrates the facile, biocompatible, and shape-controllablesynthesis of AuNCs. This method employs human α-elastin (HαE) self-assemblies as a shape-directingtemplate, reducing agent, and surfactant. Since HαE is a ubiquitous protein present in human tissue, it isnon-toxic and non-immunogenic. This method is thus simple and biocompatible. Of particular note, thesheet-type HαE template enables the shape-controlled synthesis of AuNCs—gold nanoparticles,nanosheets, and a rose-flower-like nanostructure (AuRF) stacked with multiple nanosheets. Amongthe AuNCs, the AuRF exhibits unique optical and electromagnetic properties—an LSPR peak in the near-infrared (NIR) region and characteristic SERS peaks—given the rough surface with sharp edges. To the bestof our knowledge, this is thefirst report on the biosynthesis of AuNCs using human-derived biomoleculessuch as HαE. The shape-controllable biosynthesis of AuNCs based on HαE may open up possibilities for awide range of biomedical applications of AuNCs. KCI Citation Count: 0
[Display omitted] Controlling the morphology and surface properties of gold nanocrystals (AuNCs) can facilitate tailoring their localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) properties for biomedical applications. However, the shape-controlled synthesis of AuNCs for bioapplications remains challenging, given its critical issues, such as the use of toxic reagents and multiple complicated steps. This study demonstrates the facile, biocompatible, and shape-controllable synthesis of AuNCs. This method employs human α-elastin (HαE) self-assemblies as a shape-directing template, reducing agent, and surfactant. Since HαE is a ubiquitous protein present in human tissue, it is non-toxic and non-immunogenic. This method is thus simple and biocompatible. Of particular note, the sheet-type HαE template enables the shape-controlled synthesis of AuNCs—gold nanoparticles, nanosheets, and a rose-flower-like nanostructure (AuRF) stacked with multiple nanosheets. Among the AuNCs, the AuRF exhibits unique optical and electromagnetic properties—an LSPR peak in the near-infrared (NIR) region and characteristic SERS peaks—given the rough surface with sharp edges. To the best of our knowledge, this is the first report on the biosynthesis of AuNCs using human-derived biomolecules such as HαE. The shape-controllable biosynthesis of AuNCs based on HαE may open up possibilities for a wide range of biomedical applications of AuNCs.
Author Choi, Ji Suk
Kim, Hye-In
Kim, Jae Dong
Park, Jae Hyung
Kim, Jong-Ho
Han, Hwa Seung
Choi, Ki Young
Cho, Yong Woo
Author_xml – sequence: 1
  givenname: Jae Dong
  surname: Kim
  fullname: Kim, Jae Dong
  organization: Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
– sequence: 2
  givenname: Hwa Seung
  surname: Han
  fullname: Han, Hwa Seung
  organization: Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
– sequence: 3
  givenname: Hye-In
  surname: Kim
  fullname: Kim, Hye-In
  organization: Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
– sequence: 4
  givenname: Ji Suk
  surname: Choi
  fullname: Choi, Ji Suk
  organization: Exostemtech Inc., Ansan 15588, Republic of Korea
– sequence: 5
  givenname: Jae Hyung
  surname: Park
  fullname: Park, Jae Hyung
  organization: School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
– sequence: 6
  givenname: Jong-Ho
  surname: Kim
  fullname: Kim, Jong-Ho
  organization: Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
– sequence: 7
  givenname: Ki Young
  orcidid: 0000-0002-4207-2665
  surname: Choi
  fullname: Choi, Ki Young
  email: kiyoungchoi@kist.re.kr
  organization: Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
– sequence: 8
  givenname: Yong Woo
  surname: Cho
  fullname: Cho, Yong Woo
  email: ywcho7@hanyang.ac.kr
  organization: Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002699361$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kM1KAzEUhYNUsFZfwNVsXUxNMtNMBtyU-lcoCFKhCyGkyU2b6TQpyVjwsXwRn8m0de3mnsvhnAv3u0Q95x0gdEPwkGDC7pphY0ENKabJoEOMyzPUJ7xieVWXi17aKWU55mxxgS5jbDBmuOCsjz7oQ9b5rEgzSBeND1vZWe8yb7KVb3XmpPNxDdDFLLnrz610mdR25yPkGoLdg85-vnNoZeysO8Y72O5a2UG8QudGthGu_3SA3p8e55OXfPb6PJ2MZ7mifNTlIyW1KQtptK4qwik2nBVaAy2VgRE3ZbXUysiyXspqKXlR45Qgo6UiGINMjwzQ7emuC0ZslBVe2qOuvNgEMX6bT0VdMc7qOmXpKauCjzGAEbtgtzJ8CYLFgaVoxIGlOLAUhIrEMpXuTyVIX-wtBBGVBadA2wCqE9rb_-q_8uuBMQ
Cites_doi 10.1039/C4CC10040A
10.1016/j.tibtech.2019.08.005
10.1038/nnano.2010.235
10.1016/j.jconrel.2009.05.034
10.1016/0039-6028(83)90806-3
10.1016/j.colsurfb.2016.10.012
10.1039/C5RA21182D
10.1007/s12274-009-9028-5
10.1002/ange.200803202
10.1042/bj0610011
10.1021/ja406107u
10.1039/B821763G
10.1016/S0142-9612(00)00383-5
10.1016/j.jcis.2014.12.046
10.1021/nn800442q
10.1016/j.ccr.2012.09.002
10.1021/acsnano.6b05113
10.1039/c0nr00814a
10.1126/science.1066541
10.1039/b923280j
10.1039/c2cp44030j
10.1038/nature08907
10.1039/b711490g
10.1021/jp993593c
10.1039/b517615h
10.1002/jrs.2084
10.1063/1.439002
10.1002/adma.200803464
10.1021/jp1073544
10.1016/j.ymeth.2008.01.007
10.1002/smll.200700484
10.1021/ja807455s
10.1016/j.jare.2010.02.002
10.1016/j.jcrysgro.2012.09.042
10.1002/anie.200802248
10.1039/b919452p
ContentType Journal Article
Copyright 2020 The Korean Society of Industrial and Engineering Chemistry
Copyright_xml – notice: 2020 The Korean Society of Industrial and Engineering Chemistry
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.jiec.2020.12.004
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1876-794X
EndPage 72
ExternalDocumentID oai_kci_go_kr_ARTI_9768699
10_1016_j_jiec_2020_12_004
S1226086X20305402
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9ZL
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
GBLVA
HH5
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SSG
SSZ
T5K
~G-
2WC
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
EJD
HZ~
MZR
OK1
RIG
SSH
ZY4
ZZE
85H
ABPIF
ABTAH
ACYCR
AJBFU
ID FETCH-LOGICAL-c285t-5cadf43afdd771820f863dde24cfe58f47bdcfa49ba7ba83900f815bc100ea603
IEDL.DBID AIKHN
ISSN 1226-086X
IngestDate Tue Nov 21 21:11:46 EST 2023
Tue Jul 01 03:34:19 EDT 2025
Fri Feb 23 02:48:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords AuNCs
CD
HαE NFs
LSPR
SAED
Shape-controlled synthesis
ECM
Human α-elastin
AuNSs
EDS
SERS
NIR
Gold nanocrystals
Gold nanosheets
AuRF
Surface-enhanced Raman scattering (SERS)
HαE NSs
HαE
HαE NPs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c285t-5cadf43afdd771820f863dde24cfe58f47bdcfa49ba7ba83900f815bc100ea603
ORCID 0000-0002-4207-2665
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9768699
crossref_primary_10_1016_j_jiec_2020_12_004
elsevier_sciencedirect_doi_10_1016_j_jiec_2020_12_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-25
PublicationDateYYYYMMDD 2021-03-25
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-25
  day: 25
PublicationDecade 2020
PublicationTitle Journal of industrial and engineering chemistry (Seoul, Korea)
PublicationYear 2021
Publisher Elsevier B.V
한국공업화학회
Publisher_xml – name: Elsevier B.V
– name: 한국공업화학회
References Mecham (bib0155) 2008; 45
Moskovits (bib0090) 2013; 15
Zhao, Li, Astruc (bib0100) 2013; 257
Choi, Yang, Kim, Kim, Kim, Yoo, Park, Lee, Cho (bib0145) 2009; 139
Yang, Huang, Chen, Mevellec, Lefrant, Lee, Chiu (bib0035) 2011; 115
Liao, Jiang, Zhou, Chen, Sun (bib0050) 2008; 120
Murphy, Gole, Hunyadi, Stone, Sisco, Alkilany, Kinard, Hankins (bib0070) 2008; 544
Aravind, Metiu (bib0055) 1983; 124
Huang, El-Sayed (bib0195) 2010; 1
Xie, Zhang, Lee, Wang (bib0075) 2008; 2
Li (bib0015) 2010; 464
Wen, Mithieux, Weiss (bib0135) 2020; 38
Hu, Chen, Li, Au, Hartland, Li, Marquez, Xia (bib0025) 2006; 35
Partridge, Davis, Adair (bib0150) 1955; 61
Yoon, Kang, Choi, Kim, Yoo, Joo, Park, Ihee, Kim (bib0065) 2008; 131
von Maltzahn, Centrone, Park, Ramanathan, Sailor, Hatton, Bhatia (bib0080) 2009; 21
Scelsi, Bochicchio, Smith, Saiani, Pepe (bib0125) 2015; 5
Zhou, Lin, Chen, Wang, Guo, Peng, Guo, Ding (bib0170) 2015; 51
Daamen, Hafmans, Veerkamp, Van Kuppevelt (bib0160) 2001; 22
Xia, Xiong, Lim, Skrabalak (bib0020) 2009; 48
Sun, Wiederrecht (bib0060) 2007; 3
Gersten (bib0095) 1980; 72
Lemieux, Adams, van Hest (bib0120) 2010; 46
Jin, Cao, Mirkin, Kelly, Schatz, Zheng (bib0190) 2001; 294
Sajanlal, Pradeep (bib0105) 2009; 2
Wang (bib0180) 2000; 104
Nalbant Esenturk, Hight Walker (bib0040) 2009; 40
Cobley, Chen, Cho, Wang, Xia (bib0005) 2011; 40
Grzelczak, Pérez-Juste, Mulvaney, Liz-Marzán (bib0030) 2008; 37
Kim, Jung, Woo, Choi, Choi, Cho (bib0140) 2017; 149
Xie, Zhang, Lee, Wang (bib0045) 2008; 2
Qin, Wang, Huang, Wu, Zeng, Ren, Xu, Jin (bib0175) 2013; 135
Xiao, Qi (bib0185) 2011; 3
Almine, Bax, Mithieux, Nivison-Smith, Rnjak, Waterhouse, Wise, Weiss (bib0130) 2010; 39
Nhung, Bu, Lee (bib0110) 2013; 373
Han, Choi, Lee, Lee, An, Shin, Kwon, Lee, Park (bib0085) 2016; 10
Huang, Tang, Mu, Dai, Chen, Zhou, Ruan, Yang, Zheng (bib0010) 2011; 6
Boca, Rugina, Pintea, Barbu-Tudoran, Astilean (bib0115) 2010; 22
Maruyama, Fujimoto, Maekawa (bib0165) 2015; 447
Moskovits (10.1016/j.jiec.2020.12.004_bib0090) 2013; 15
Yang (10.1016/j.jiec.2020.12.004_bib0035) 2011; 115
Aravind (10.1016/j.jiec.2020.12.004_bib0055) 1983; 124
Han (10.1016/j.jiec.2020.12.004_bib0085) 2016; 10
Qin (10.1016/j.jiec.2020.12.004_bib0175) 2013; 135
Daamen (10.1016/j.jiec.2020.12.004_bib0160) 2001; 22
Sajanlal (10.1016/j.jiec.2020.12.004_bib0105) 2009; 2
Xia (10.1016/j.jiec.2020.12.004_bib0020) 2009; 48
Nhung (10.1016/j.jiec.2020.12.004_bib0110) 2013; 373
Liao (10.1016/j.jiec.2020.12.004_bib0050) 2008; 120
von Maltzahn (10.1016/j.jiec.2020.12.004_bib0080) 2009; 21
Choi (10.1016/j.jiec.2020.12.004_bib0145) 2009; 139
Sun (10.1016/j.jiec.2020.12.004_bib0060) 2007; 3
Yoon (10.1016/j.jiec.2020.12.004_bib0065) 2008; 131
Kim (10.1016/j.jiec.2020.12.004_bib0140) 2017; 149
Mecham (10.1016/j.jiec.2020.12.004_bib0155) 2008; 45
Wang (10.1016/j.jiec.2020.12.004_bib0180) 2000; 104
Partridge (10.1016/j.jiec.2020.12.004_bib0150) 1955; 61
Zhao (10.1016/j.jiec.2020.12.004_bib0100) 2013; 257
Maruyama (10.1016/j.jiec.2020.12.004_bib0165) 2015; 447
Xie (10.1016/j.jiec.2020.12.004_bib0075) 2008; 2
Zhou (10.1016/j.jiec.2020.12.004_bib0170) 2015; 51
Huang (10.1016/j.jiec.2020.12.004_bib0195) 2010; 1
Grzelczak (10.1016/j.jiec.2020.12.004_bib0030) 2008; 37
Almine (10.1016/j.jiec.2020.12.004_bib0130) 2010; 39
Jin (10.1016/j.jiec.2020.12.004_bib0190) 2001; 294
Hu (10.1016/j.jiec.2020.12.004_bib0025) 2006; 35
Gersten (10.1016/j.jiec.2020.12.004_bib0095) 1980; 72
Murphy (10.1016/j.jiec.2020.12.004_bib0070) 2008; 544
Wen (10.1016/j.jiec.2020.12.004_bib0135) 2020; 38
Cobley (10.1016/j.jiec.2020.12.004_bib0005) 2011; 40
Xie (10.1016/j.jiec.2020.12.004_bib0045) 2008; 2
Lemieux (10.1016/j.jiec.2020.12.004_bib0120) 2010; 46
Scelsi (10.1016/j.jiec.2020.12.004_bib0125) 2015; 5
Nalbant Esenturk (10.1016/j.jiec.2020.12.004_bib0040) 2009; 40
Boca (10.1016/j.jiec.2020.12.004_bib0115) 2010; 22
Li (10.1016/j.jiec.2020.12.004_bib0015) 2010; 464
Xiao (10.1016/j.jiec.2020.12.004_bib0185) 2011; 3
Huang (10.1016/j.jiec.2020.12.004_bib0010) 2011; 6
References_xml – volume: 257
  start-page: 638
  year: 2013
  ident: bib0100
  publication-title: Coord. Chem. Rev.
– volume: 40
  start-page: 86
  year: 2009
  ident: bib0040
  publication-title: J. Raman Spectrosc.
– volume: 149
  start-page: 122
  year: 2017
  ident: bib0140
  publication-title: Colloids Surf. B Biointerfaces
– volume: 464
  start-page: 392
  year: 2010
  ident: bib0015
  publication-title: Nature
– volume: 115
  start-page: 1932
  year: 2011
  ident: bib0035
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 5301
  year: 2013
  ident: bib0090
  publication-title: Phys. Chem. Chem. Phys.
– volume: 294
  start-page: 1901
  year: 2001
  ident: bib0190
  publication-title: Science
– volume: 45
  start-page: 32
  year: 2008
  ident: bib0155
  publication-title: Methods
– volume: 40
  start-page: 44
  year: 2011
  ident: bib0005
  publication-title: Chem. Soc. Rev.
– volume: 124
  start-page: 506
  year: 1983
  ident: bib0055
  publication-title: Surf. Sci.
– volume: 21
  start-page: 3175
  year: 2009
  ident: bib0080
  publication-title: Adv. Mater.
– volume: 72
  start-page: 5779
  year: 1980
  ident: bib0095
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 2473
  year: 2008
  ident: bib0045
  publication-title: ACS Nano
– volume: 35
  start-page: 1084
  year: 2006
  ident: bib0025
  publication-title: Chem. Soc. Rev.
– volume: 447
  start-page: 254
  year: 2015
  ident: bib0165
  publication-title: J. Colloid Interface Sci.
– volume: 37
  start-page: 1783
  year: 2008
  ident: bib0030
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 95007
  year: 2015
  ident: bib0125
  publication-title: RSC Adv.
– volume: 48
  start-page: 60
  year: 2009
  ident: bib0020
  publication-title: Angew. Chem. Int. Ed.
– volume: 139
  start-page: 2
  year: 2009
  ident: bib0145
  publication-title: J. Control. Release
– volume: 3
  start-page: 1964
  year: 2007
  ident: bib0060
  publication-title: Small
– volume: 10
  start-page: 10858
  year: 2016
  ident: bib0085
  publication-title: ACS Nano
– volume: 373
  start-page: 132
  year: 2013
  ident: bib0110
  publication-title: J. Cryst. Growth
– volume: 51
  start-page: 5116
  year: 2015
  ident: bib0170
  publication-title: Chem. Commun.
– volume: 1
  start-page: 13
  year: 2010
  ident: bib0195
  publication-title: J. Adv. Res.
– volume: 2
  start-page: 2473
  year: 2008
  ident: bib0075
  publication-title: ACS Nano
– volume: 2
  start-page: 306
  year: 2009
  ident: bib0105
  publication-title: Nano Res.
– volume: 61
  start-page: 11
  year: 1955
  ident: bib0150
  publication-title: Biochem. J.
– volume: 544
  year: 2008
  ident: bib0070
  publication-title: Chem. Commun.
– volume: 104
  start-page: 1153
  year: 2000
  ident: bib0180
  publication-title: J. Phys. Chem. B
– volume: 120
  start-page: 9240
  year: 2008
  ident: bib0050
  publication-title: Angew. Chem.
– volume: 135
  start-page: 12544
  year: 2013
  ident: bib0175
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1383
  year: 2011
  ident: bib0185
  publication-title: Nanoscale
– volume: 131
  start-page: 758
  year: 2008
  ident: bib0065
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 28
  year: 2011
  ident: bib0010
  publication-title: Nat. Nanotechnol.
– volume: 22
  year: 2010
  ident: bib0115
  publication-title: Nanotechnology
– volume: 39
  start-page: 3371
  year: 2010
  ident: bib0130
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 280
  year: 2020
  ident: bib0135
  publication-title: Trends Biotechnol.
– volume: 22
  start-page: 1997
  year: 2001
  ident: bib0160
  publication-title: Biomaterials
– volume: 46
  start-page: 3071
  year: 2010
  ident: bib0120
  publication-title: Chem. Commun.
– volume: 22
  year: 2010
  ident: 10.1016/j.jiec.2020.12.004_bib0115
  publication-title: Nanotechnology
– volume: 51
  start-page: 5116
  year: 2015
  ident: 10.1016/j.jiec.2020.12.004_bib0170
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC10040A
– volume: 38
  start-page: 280
  year: 2020
  ident: 10.1016/j.jiec.2020.12.004_bib0135
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2019.08.005
– volume: 6
  start-page: 28
  year: 2011
  ident: 10.1016/j.jiec.2020.12.004_bib0010
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.235
– volume: 139
  start-page: 2
  year: 2009
  ident: 10.1016/j.jiec.2020.12.004_bib0145
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2009.05.034
– volume: 124
  start-page: 506
  year: 1983
  ident: 10.1016/j.jiec.2020.12.004_bib0055
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(83)90806-3
– volume: 149
  start-page: 122
  year: 2017
  ident: 10.1016/j.jiec.2020.12.004_bib0140
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2016.10.012
– volume: 5
  start-page: 95007
  year: 2015
  ident: 10.1016/j.jiec.2020.12.004_bib0125
  publication-title: RSC Adv.
  doi: 10.1039/C5RA21182D
– volume: 2
  start-page: 306
  year: 2009
  ident: 10.1016/j.jiec.2020.12.004_bib0105
  publication-title: Nano Res.
  doi: 10.1007/s12274-009-9028-5
– volume: 120
  start-page: 9240
  year: 2008
  ident: 10.1016/j.jiec.2020.12.004_bib0050
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200803202
– volume: 61
  start-page: 11
  year: 1955
  ident: 10.1016/j.jiec.2020.12.004_bib0150
  publication-title: Biochem. J.
  doi: 10.1042/bj0610011
– volume: 135
  start-page: 12544
  year: 2013
  ident: 10.1016/j.jiec.2020.12.004_bib0175
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja406107u
– volume: 40
  start-page: 44
  year: 2011
  ident: 10.1016/j.jiec.2020.12.004_bib0005
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B821763G
– volume: 22
  start-page: 1997
  year: 2001
  ident: 10.1016/j.jiec.2020.12.004_bib0160
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00383-5
– volume: 447
  start-page: 254
  year: 2015
  ident: 10.1016/j.jiec.2020.12.004_bib0165
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2014.12.046
– volume: 2
  start-page: 2473
  year: 2008
  ident: 10.1016/j.jiec.2020.12.004_bib0045
  publication-title: ACS Nano
  doi: 10.1021/nn800442q
– volume: 257
  start-page: 638
  year: 2013
  ident: 10.1016/j.jiec.2020.12.004_bib0100
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2012.09.002
– volume: 10
  start-page: 10858
  year: 2016
  ident: 10.1016/j.jiec.2020.12.004_bib0085
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05113
– volume: 3
  start-page: 1383
  year: 2011
  ident: 10.1016/j.jiec.2020.12.004_bib0185
  publication-title: Nanoscale
  doi: 10.1039/c0nr00814a
– volume: 294
  start-page: 1901
  year: 2001
  ident: 10.1016/j.jiec.2020.12.004_bib0190
  publication-title: Science
  doi: 10.1126/science.1066541
– volume: 46
  start-page: 3071
  year: 2010
  ident: 10.1016/j.jiec.2020.12.004_bib0120
  publication-title: Chem. Commun.
  doi: 10.1039/b923280j
– volume: 15
  start-page: 5301
  year: 2013
  ident: 10.1016/j.jiec.2020.12.004_bib0090
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp44030j
– volume: 464
  start-page: 392
  year: 2010
  ident: 10.1016/j.jiec.2020.12.004_bib0015
  publication-title: Nature
  doi: 10.1038/nature08907
– volume: 37
  start-page: 1783
  year: 2008
  ident: 10.1016/j.jiec.2020.12.004_bib0030
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b711490g
– volume: 104
  start-page: 1153
  year: 2000
  ident: 10.1016/j.jiec.2020.12.004_bib0180
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp993593c
– volume: 35
  start-page: 1084
  year: 2006
  ident: 10.1016/j.jiec.2020.12.004_bib0025
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b517615h
– volume: 40
  start-page: 86
  year: 2009
  ident: 10.1016/j.jiec.2020.12.004_bib0040
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2084
– volume: 72
  start-page: 5779
  year: 1980
  ident: 10.1016/j.jiec.2020.12.004_bib0095
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.439002
– volume: 544
  year: 2008
  ident: 10.1016/j.jiec.2020.12.004_bib0070
  publication-title: Chem. Commun.
– volume: 21
  start-page: 3175
  year: 2009
  ident: 10.1016/j.jiec.2020.12.004_bib0080
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803464
– volume: 115
  start-page: 1932
  year: 2011
  ident: 10.1016/j.jiec.2020.12.004_bib0035
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1073544
– volume: 45
  start-page: 32
  year: 2008
  ident: 10.1016/j.jiec.2020.12.004_bib0155
  publication-title: Methods
  doi: 10.1016/j.ymeth.2008.01.007
– volume: 2
  start-page: 2473
  year: 2008
  ident: 10.1016/j.jiec.2020.12.004_bib0075
  publication-title: ACS Nano
  doi: 10.1021/nn800442q
– volume: 3
  start-page: 1964
  year: 2007
  ident: 10.1016/j.jiec.2020.12.004_bib0060
  publication-title: Small
  doi: 10.1002/smll.200700484
– volume: 131
  start-page: 758
  year: 2008
  ident: 10.1016/j.jiec.2020.12.004_bib0065
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807455s
– volume: 1
  start-page: 13
  year: 2010
  ident: 10.1016/j.jiec.2020.12.004_bib0195
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2010.02.002
– volume: 373
  start-page: 132
  year: 2013
  ident: 10.1016/j.jiec.2020.12.004_bib0110
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2012.09.042
– volume: 48
  start-page: 60
  year: 2009
  ident: 10.1016/j.jiec.2020.12.004_bib0020
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200802248
– volume: 39
  start-page: 3371
  year: 2010
  ident: 10.1016/j.jiec.2020.12.004_bib0130
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b919452p
SSID ssj0060386
ssib009049966
Score 2.258443
Snippet [Display omitted] Controlling the morphology and surface properties of gold nanocrystals (AuNCs) can facilitate tailoring their localized surface plasmon...
Controlling the morphology and surface properties of gold nanocrystals (AuNCs) can facilitate tailoringtheir localized surface plasmon resonance (LSPR) and...
SourceID nrf
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 66
SubjectTerms Gold nanocrystals
Gold nanosheets
Human α-elastin
Shape-controlled synthesis
Surface-enhanced Raman scattering (SERS)
화학공학
Title 2D to 3D transformation of gold nanosheets on human adipose-derived α-elastin nanotemplates
URI https://dx.doi.org/10.1016/j.jiec.2020.12.004
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002699361
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Industrial and Engineering Chemistry, 2021, 95(0), , pp.66-72
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEG50vcSDJGpQkyyNeJN2Z_oxj6NslFXRiwp7EJqefphRmVl2xxzzn_JH8ptSNTsDK4QcvMxAU90MXxdVH0PVV4QcpZFLrEkdEw48WAofMQN5kuVJkCq2QgWJ3cjXN8nkXl5O1XSNjPteGCyr7GL_Mqa30bpbGXVojmZlObqNgTkAIZ9y9FmJgpIbHLJ9NiAbpxdXk5s-ICeRaAc-oj3DDV3vzLLM66n0qGTIo_avYDev7R_5ab2ah5XMc_6RbHWUkZ4uv-oTWfPVNtlcERLcIQ_8O21qKuC5QkTritaBPtYvjlamqhc_vG8WFFbbwXzUuHJWLzxzcMhP7-if38wDl27KqjVH0aoXZKK75P787G48Yd3cBGZ5phqmrHFBChOcS1MUaA9ZIiCMcWmDV1mQaeFsMDIvTFoYYEgRWMSqsHEUeQNwfSaDqq78HqFKCW-FR5VAnJMeDNBFgDEVwBSEifN9ctyjpWdLeQzd1409acRWI7Y65hqw3SeqB1S_uWQN8fu_-w4Bff1sS41q2Ph-rPXzXAPnv9BAqLIkzw_eefgX8oFjnUokGFdfyaCZv_pvQDSaYkjWT37Fw86d_gKuH9IC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEF0c-5DkENq0JV9tl5BbWSxpdyXrGNIau0l8SQw-FJbVfiRKgmRsJf8rfyS_KTOyBA6EHnKRYJldxNth5iFm3hBykgQ2NjqxjFvwYMFdwDTkSZbGXsjQcOkFdiNfTuLRVPydyVmHnLW9MFhW2cT-VUyvo3Wz0m_Q7M_zvH8VAnMAQj6L0GcFCkr2BA617pLe6fh8NGkDchzweuAj2jPc0PTOrMq87nKHSoZRUP8VbOa1vZOfNoqFX8s8w09kp6GM9HT1VZ9JxxW7ZHtNSPAL-Rf9plVJOTzXiGhZ0NLTm_LB0kIX5fLWuWpJYbUezEe1zefl0jELhzw5S1-emQMuXeVFbY6iVQ_IRL-S6fDP9dmINXMTmIkGsmLSaOsF197aJEGBdj-IOYSxSBjv5MCLJLPGa5FmOsk0MKQALEKZmTAInAa4vpFuURZuj1ApuTPcoUogzkn3GugiwJhwYApch-k--dWipeYreQzV1o3dKcRWIbYqjBRgu09kC6h6c8kK4vd_9x0D-ure5ArVsPF9U6r7hQLOP1ZAqAZxmh588PCfZHN0fXmhLsaT80OyFWHNSsBZJI9It1o8uu9AOqrsR-NUr6Uk0-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+to+3D+transformation+of+gold+nanosheets+on+human+adipose-derived+%CE%B1-elastin+nanotemplates&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=Kim%2C+Jae+Dong&rft.au=Han%2C+Hwa+Seung&rft.au=Kim%2C+Hye-In&rft.au=Choi%2C+Ji+Suk&rft.date=2021-03-25&rft.pub=Elsevier+B.V&rft.issn=1226-086X&rft.volume=95&rft.spage=66&rft.epage=72&rft_id=info:doi/10.1016%2Fj.jiec.2020.12.004&rft.externalDocID=S1226086X20305402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon