A building electrical system fault diagnosis method based on random forest optimized by improved sparrow search algorithm

Addressing the problems of manual dependence and low accuracy of traditional building electrical system fault diagnosis, this paper proposes a novel method, which is based on random forest (RF) optimized by improved sparrow search algorithm (ISSA-RF). Firstly, the method utilizes a fault collection...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 35; no. 5; p. 55110
Main Authors Li, Zhangling, Wang, Qi, Xiong, Jianbin, Cen, Jian, Dai, Qingyun, Liang, Qiong, Lu, Tiantian
Format Journal Article
LanguageEnglish
Published 01.05.2024
Online AccessGet full text
ISSN0957-0233
1361-6501
1361-6501
DOI10.1088/1361-6501/ad2255

Cover

Abstract Addressing the problems of manual dependence and low accuracy of traditional building electrical system fault diagnosis, this paper proposes a novel method, which is based on random forest (RF) optimized by improved sparrow search algorithm (ISSA-RF). Firstly, the method utilizes a fault collection platform to acquire raw signals of various faults. Secondly, the features of these signals are extracted by time-domain and frequency-domain analysis. Furthermore, principal component analysis is employed to reduce the dimensionality of the extracted features. Finally, the reduced features are input into ISSA-RF for classification. In ISSA-RF, the ISSA is used to optimize the parameters of the RF. The parameters for ISSA optimization are n_estimators and min_samples_leaf. In this case, the accuracy of the proposed method can reach 98.61% through validation experiment. In addition, the proposed method also exhibits superior performance compared with traditional fault classification algorithms and the latest building electrical fault diagnosis algorithms.
AbstractList Addressing the problems of manual dependence and low accuracy of traditional building electrical system fault diagnosis, this paper proposes a novel method, which is based on random forest (RF) optimized by improved sparrow search algorithm (ISSA-RF). Firstly, the method utilizes a fault collection platform to acquire raw signals of various faults. Secondly, the features of these signals are extracted by time-domain and frequency-domain analysis. Furthermore, principal component analysis is employed to reduce the dimensionality of the extracted features. Finally, the reduced features are input into ISSA-RF for classification. In ISSA-RF, the ISSA is used to optimize the parameters of the RF. The parameters for ISSA optimization are n_estimators and min_samples_leaf. In this case, the accuracy of the proposed method can reach 98.61% through validation experiment. In addition, the proposed method also exhibits superior performance compared with traditional fault classification algorithms and the latest building electrical fault diagnosis algorithms.
Author Xiong, Jianbin
Cen, Jian
Dai, Qingyun
Wang, Qi
Li, Zhangling
Lu, Tiantian
Liang, Qiong
Author_xml – sequence: 1
  givenname: Zhangling
  orcidid: 0009-0007-8356-0263
  surname: Li
  fullname: Li, Zhangling
– sequence: 2
  givenname: Qi
  orcidid: 0000-0002-6817-7967
  surname: Wang
  fullname: Wang, Qi
– sequence: 3
  givenname: Jianbin
  orcidid: 0000-0002-2253-5546
  surname: Xiong
  fullname: Xiong, Jianbin
– sequence: 4
  givenname: Jian
  orcidid: 0000-0002-1714-7397
  surname: Cen
  fullname: Cen, Jian
– sequence: 5
  givenname: Qingyun
  orcidid: 0000-0002-7561-3704
  surname: Dai
  fullname: Dai, Qingyun
– sequence: 6
  givenname: Qiong
  surname: Liang
  fullname: Liang, Qiong
– sequence: 7
  givenname: Tiantian
  orcidid: 0000-0002-1328-4984
  surname: Lu
  fullname: Lu, Tiantian
BookMark eNqNkE1LAzEQhoMoWKt3j_kDa_PR7G6OpfgFBS96XmY3SRvJJkuSWtZf75aKB0HwNC8z87yH5wqd--A1QreU3FFS1wvKS1qUgtAFKMaEOEOzn9U5mhEpqoIwzi_RVUrvhJCKSDlD4wq3e-uU9Vusne5ytB04nMaUdY8N7F3GysLWh2QT7nXeBYVbSFrh4HEEr8L0FqJOGYch295-Tqd2xLYfYviYchogxnDASUPsdhjcNkSbd_01ujDgkr75nnP09nD_un4qNi-Pz-vVpuhYLXIhqoqZTtRG1RqUlrKSrSRUUEGYJrXgXHFjaqHKJVBSUbKUjLclN5JOHGv5HNFT794PMB7AuWaItoc4NpQ0R3fNUVRzFNWc3E0MOTFdDClFbf6DlL-QzmbINvgcwbq_wS_Ec4bd
CitedBy_id crossref_primary_10_1016_j_engappai_2024_109529
crossref_primary_10_1016_j_techfore_2024_123634
Cites_doi 10.1016/j.cnsns.2013.12.012
10.1109/TIM.2020.3043873
10.1016/j.apacoust.2019.107020
10.1109/ PSGEC51302.2021.9541829
10.1109/AUTEEE48671.2019.9033363
10.1109/JAS.2021.1004129
10.1016/j.ymssp.2019.106587
10.1007/s11749-016-0481-7
10.1016/j.ijrefrig.2020.06.009
10.1016/j.segan.2021.100582
10.1016/j.neucom.2020.07.088
10.1049/iet-epa.2018.5274
10.1016/j.isatra.2021.02.042
10.1109/TIE.2017.2767540
10.1080/21642583.2019.1708830
10.1007/s10470-018-1351-x
10.1007/978-3-030-58728-4_16
10.1007/s00366-022-01604-x
10.1109/ ICICAS48597.2019.00104
10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00093
10.1007/s00521-017-2970-3
10.1088/1361-6501/ac86e5
10.1109/ICNN.1995.488968
10.1016/j.knosys.2021.106924
10.1016/j.ymssp.2015.08.030
10.1109/TII.2019.2915559
10.1016/j.enconman.2018.10.040
10.1023/A:1010933404324
10.1016/j.isatra.2016.10.014
10.1016/j.ymssp.2019.106609
10.1007/s00521-019-04612-z
10.1016/j.cosrev.2021.100378
10.1007/s00500-016-2474-6
10.1016/j.neucom.2018.05.002
10.1016/j.asej.2015.08.005
10.1016/j.ymssp.2018.02.016
10.1016/j.advengsoft.2013.12.007
10.1007/ 978-981-13-7403-6_11
10.1038/s41598-022-27031-y
10.1109/JSEN.2017.2726011
10.1007/s10470-019-01433-x
10.4236/jdaip.2020.84020
10.4249/scholarpedia.1883
10.1109/TEVC.2012.2196047
10.1109/TCYB.2021.3123667
10.1016/j.eswa.2013.02.018
10.1109/57.917529
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1088/1361-6501/ad2255
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10.1088/1361-6501/ad2255
10_1088_1361_6501_ad2255
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
.GJ
02O
1WK
29M
5ZI
6TJ
6TU
9BW
AAGCF
AALHV
ACARI
ACWPO
ADTOC
AERVB
AETNG
AFFNX
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
H~9
JCGBZ
M45
MVM
NT-
NT.
OHT
Q02
RKQ
S3P
T37
UNPAY
ZCG
ZY4
ID FETCH-LOGICAL-c285t-5772fc58fd8eade9979b90151502e08533d3ff85d64a107104923b63f912fc2b3
IEDL.DBID UNPAY
ISSN 0957-0233
1361-6501
IngestDate Sun Sep 07 11:23:25 EDT 2025
Wed Oct 01 05:33:53 EDT 2025
Thu Apr 24 22:58:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c285t-5772fc58fd8eade9979b90151502e08533d3ff85d64a107104923b63f912fc2b3
ORCID 0009-0007-8356-0263
0000-0002-7561-3704
0000-0002-1328-4984
0000-0002-1714-7397
0000-0002-2253-5546
0000-0002-6817-7967
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6501/ad2255
ParticipantIDs unpaywall_primary_10_1088_1361_6501_ad2255
crossref_primary_10_1088_1361_6501_ad2255
crossref_citationtrail_10_1088_1361_6501_ad2255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2024
References Zhang (mstad2255bib24) 2021; 220
Anowar (mstad2255bib13) 2021; 40
Zhang (mstad2255bib3) 2022; 119
Zhu (mstad2255bib41) 2020; 32
Yan (mstad2255bib9) 2018; 313
Chandra Sen (mstad2255bib30) 2020; vol 937
Fang (mstad2255bib29) 2021
Xiong (mstad2255bib38) 2023; 13
Eberhart (mstad2255bib20) 1995; vol 4
Lei (mstad2255bib6) 2020; 138
Mirjalili (mstad2255bib22) 2014; 69
Zhang (mstad2255bib39) 2019; 98
Boateng (mstad2255bib33) 2020; 8
Song (mstad2255bib25) 2020
Breiman (mstad2255bib32) 2001; 45
Guo (mstad2255bib14) 2020; 118
Pan (mstad2255bib4) 2017; 65
Xu (mstad2255bib10) 2019
Wang (mstad2255bib35) 2017; 17
Wang (mstad2255bib21) 2018; 22
Chai (mstad2255bib47) 2019; 16
Xue (mstad2255bib11) 2017; 66
Helmi (mstad2255bib8) 2019; 13
Duval (mstad2255bib49) 2001; 17
Ahmad (mstad2255bib42) 2018; 30
Tang (mstad2255bib19) 2021; 8
Zhang (mstad2255bib40) 2019; 100
Liu (mstad2255bib1) 2019
Liu (mstad2255bib27) 2018; 108
Van der Maaten (mstad2255bib16) 2008; 9
Peterson (mstad2255bib28) 2009; 4
Xue (mstad2255bib23) 2020; 8
Jiao (mstad2255bib5) 2020; 417
Adhya (mstad2255bib2) 2022; 29
Ghojogh (mstad2255bib12) 2019
Seyyedabbasi (mstad2255bib26) 2023; 39
Xiong (mstad2255bib37) 2022; 33
Valdez (mstad2255bib18) 2021; vol 915
Biau (mstad2255bib34) 2016; 25
Sharma (mstad2255bib7) 2020; 158
Li (mstad2255bib45) 2014; 19
Volkan Pehlivanoglu (mstad2255bib44) 2012; 17
Cerrada (mstad2255bib48) 2016; 70
Zhang (mstad2255bib15) 2020; 70
Ramesh Babu (mstad2255bib31) 2017; 8
Hu (mstad2255bib36) 2020; 139
Huang (mstad2255bib17) 2021; 53
De Souza (mstad2255bib43) 2013; 40
Chen (mstad2255bib46) 2018; 178
References_xml – volume: 19
  start-page: 3892
  year: 2014
  ident: mstad2255bib45
  article-title: Research on synchronization of chaotic delayed neural networks with stochastic perturbation using impulsive control method
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.12.012
– volume: 70
  start-page: 1
  year: 2020
  ident: mstad2255bib15
  article-title: A new interpretable learning method for fault diagnosis of rolling bearings
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3043873
– volume: 158
  year: 2020
  ident: mstad2255bib7
  article-title: Trends in audio signal feature extraction methods
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2019.107020
– start-page: 670
  year: 2021
  ident: mstad2255bib29
  article-title: Power distribution transformer fault diagnosis with unbalanced samples based on neighborhood component analysis and k-nearest neighbors
  doi: 10.1109/ PSGEC51302.2021.9541829
– start-page: 49
  year: 2019
  ident: mstad2255bib10
  article-title: A vibration signal anomaly detection method based on frequency component clustering and isolated forest algorithm
  doi: 10.1109/AUTEEE48671.2019.9033363
– volume: 8
  start-page: 1627
  year: 2021
  ident: mstad2255bib19
  article-title: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1004129
– volume: 138
  year: 2020
  ident: mstad2255bib6
  article-title: Applications of machine learning to machine fault diagnosis: a review and roadmap
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106587
– volume: 25
  start-page: 197
  year: 2016
  ident: mstad2255bib34
  article-title: A random forest guided tour
  publication-title: Test
  doi: 10.1007/s11749-016-0481-7
– volume: 118
  start-page: 1
  year: 2020
  ident: mstad2255bib14
  article-title: Fault diagnosis of VRF air-conditioning system based on improved Gaussian mixture model with PCA approach
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2020.06.009
– volume: 29
  year: 2022
  ident: mstad2255bib2
  article-title: Performance assessment of selective machine learning techniques for improved PV array fault diagnosis
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2021.100582
– volume: 417
  start-page: 36
  year: 2020
  ident: mstad2255bib5
  article-title: A comprehensive review on convolutional neural network in machine fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.088
– volume: 13
  start-page: 662
  year: 2019
  ident: mstad2255bib8
  article-title: Rolling bearing fault detection of electric motor using time domain and frequency domain features extraction and ANFIS
  publication-title: IET Electr. Power Appl.
  doi: 10.1049/iet-epa.2018.5274
– volume: 119
  start-page: 152
  year: 2022
  ident: mstad2255bib3
  article-title: Intelligent fault diagnosis of machines with small & imbalanced data: a state-of-the-art review and possible extensions
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.02.042
– volume: 65
  start-page: 4973
  year: 2017
  ident: mstad2255bib4
  article-title: LiftingNet: a novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2767540
– volume: 9
  start-page: 2579
  year: 2008
  ident: mstad2255bib16
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 22
  year: 2020
  ident: mstad2255bib23
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 98
  start-page: 517
  year: 2019
  ident: mstad2255bib39
  article-title: A novel approach of analog circuit fault diagnosis utilizing RFT noise estimation
  publication-title: Analog Integr. Circuits Signal Process.
  doi: 10.1007/s10470-018-1351-x
– volume: vol 915
  start-page: 273
  year: 2021
  ident: mstad2255bib18
  article-title: Swarm intelligence: a review of optimization algorithms based on animal behavior
  doi: 10.1007/978-3-030-58728-4_16
– volume: 39
  start-page: 2627
  year: 2023
  ident: mstad2255bib26
  article-title: Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01604-x
– start-page: 470
  year: 2019
  ident: mstad2255bib1
  article-title: A new method for fault diagnosis of building electrical system based on RBF-BP neural network
  doi: 10.1109/ ICICAS48597.2019.00104
– year: 2019
  ident: mstad2255bib12
  article-title: Feature selection and feature extraction in pattern analysis: a literature review
– start-page: 537
  year: 2020
  ident: mstad2255bib25
  article-title: An improved sparrow search algorithm
  doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00093
– volume: 30
  start-page: 3847
  year: 2018
  ident: mstad2255bib42
  article-title: A novel image encryption scheme based on orthogonal matrix, skew tent map and XOR operation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2970-3
– volume: 33
  year: 2022
  ident: mstad2255bib37
  article-title: Application of multi-kernel relevance vector machine and data pre-processing by complementary ensemble empirical mode decomposition and mutual dimensionless in fault diagnosis
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac86e5
– volume: vol 4
  start-page: 1942
  year: 1995
  ident: mstad2255bib20
  article-title: Particle swarm optimization
  doi: 10.1109/ICNN.1995.488968
– volume: 220
  year: 2021
  ident: mstad2255bib24
  article-title: A stochastic configuration network based on chaotic sparrow search algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106924
– volume: 70
  start-page: 87
  year: 2016
  ident: mstad2255bib48
  article-title: Fault diagnosis in spur gears based on genetic algorithm and random forest
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.08.030
– volume: 16
  start-page: 54
  year: 2019
  ident: mstad2255bib47
  article-title: Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2915559
– volume: 178
  start-page: 250
  year: 2018
  ident: mstad2255bib46
  article-title: Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.10.040
– volume: 45
  start-page: 5
  year: 2001
  ident: mstad2255bib32
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 66
  start-page: 284
  year: 2017
  ident: mstad2255bib11
  article-title: A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2016.10.014
– volume: 139
  year: 2020
  ident: mstad2255bib36
  article-title: A rotating machinery fault diagnosis method based on multi-scale dimensionless indicators and random forests
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106609
– volume: 32
  start-page: 10773
  year: 2020
  ident: mstad2255bib41
  article-title: Intelligent bearing fault diagnosis using PCA–DBN framework
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04612-z
– volume: 40
  year: 2021
  ident: mstad2255bib13
  article-title: Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2021.100378
– volume: 22
  start-page: 387
  year: 2018
  ident: mstad2255bib21
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2474-6
– volume: 313
  start-page: 47
  year: 2018
  ident: mstad2255bib9
  article-title: A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.002
– volume: 8
  start-page: 103
  year: 2017
  ident: mstad2255bib31
  article-title: Fault classification in power systems using EMD and SVM
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2015.08.005
– volume: 108
  start-page: 33
  year: 2018
  ident: mstad2255bib27
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.016
– volume: 69
  start-page: 46
  year: 2014
  ident: mstad2255bib22
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: vol 937
  start-page: 99
  year: 2020
  ident: mstad2255bib30
  article-title: Supervised classification algorithms in machine learning: a survey and review
  doi: 10.1007/ 978-981-13-7403-6_11
– volume: 13
  start-page: 4567
  year: 2023
  ident: mstad2255bib38
  article-title: A fault diagnosis method for building electrical systems based on the combination of variational modal decomposition and new mutual dimensionless
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-27031-y
– volume: 17
  start-page: 5581
  year: 2017
  ident: mstad2255bib35
  article-title: Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2726011
– volume: 100
  start-page: 181
  year: 2019
  ident: mstad2255bib40
  article-title: Analog circuit soft fault diagnosis utilizing matrix perturbation analysis
  publication-title: Analog Integr. Circuits Signal Process.
  doi: 10.1007/s10470-019-01433-x
– volume: 8
  start-page: 341
  year: 2020
  ident: mstad2255bib33
  article-title: Basic tenets of classification algorithms K-nearest-neighbor, support vector machine, random forest and neural network: a review
  publication-title: J. Data Anal. Inf. Process.
  doi: 10.4236/jdaip.2020.84020
– volume: 4
  start-page: 1883
  year: 2009
  ident: mstad2255bib28
  article-title: K-nearest neighbor
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– volume: 17
  start-page: 436
  year: 2012
  ident: mstad2255bib44
  article-title: A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2196047
– volume: 53
  start-page: 443
  year: 2021
  ident: mstad2255bib17
  article-title: Wavelet packet decomposition-based multiscale CNN for fault diagnosis of wind turbine gearbox
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3123667
– volume: 40
  start-page: 4887
  year: 2013
  ident: mstad2255bib43
  article-title: Search based constrained test case selection using execution effort
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.02.018
– volume: 17
  start-page: 31
  year: 2001
  ident: mstad2255bib49
  article-title: Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases
  publication-title: IEEE Electr. Insul. Mag.
  doi: 10.1109/57.917529
SSID ssj0007099
Score 2.476197
Snippet Addressing the problems of manual dependence and low accuracy of traditional building electrical system fault diagnosis, this paper proposes a novel method,...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 55110
Title A building electrical system fault diagnosis method based on random forest optimized by improved sparrow search algorithm
URI https://doi.org/10.1088/1361-6501/ad2255
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP_英国物理学会现刊(含NSTL购买的14种刊)
  customDbUrl:
  eissn: 1361-6501
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007099
  issn: 0957-0233
  databaseCode: IOP
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86EZ_8FicqefDBCVHTJF37OERRH3QPDvSpJG2iw64dW4dsf72XJoqK-PFW6CWUu1zu19zldwgdSM2VPuWUBOBJhKepIMrEEZEMXI9q2k5VXW1xE172-PW9uPfnHfYuzKf8PfycURZSAiiCnsgMlp6YRwuhANTdQAu9m27nwVHptQmEHuauWDlxn5H8bopPEWhpUgzl9EXm-YewcrHiOI7GNRuhrSZ5Pp5U6jidfeFq_MsXr6Jljy1xxy2GNTSni3W0WNd4puN1tOb9eIwPPdl0awNNO1j5ztjYtcSxVsOO4BkbOckrnLlyvP4Yu37T2Ia-DJcFhkCXlSBW2g4fuITtZ9CfwSs1xf36tAKeYcuyPI_Y-RSW-WM56ldPg03Uuzi_O7skvh0DSYNIVEQAEDepiEwW2SrrOG7HyqIJgJSBBuTGWMaMiUQWckktcrHcbypkJqYwLlBsCzWKstDbCAvOVGyCzBLacUW1ZCHX4lRFgGcCw9tNdPJmoiT1XOW2ZUae1DnzKEqslhOr5cRpuYla7yOGjqfjB9mjd6v_KrzzH-Fd1KhGE70HOKVS-2j-6ra77xfqK-PH4LY
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86EZ_8mIoTlTz4oEKmaZKufRziEB-GDw70qSRtosOuFdch21_vpYnDifjxVugllLtc7tfc5XcIHUvNlb7glATgSYSnqSDKxBGRDFyPatpJVV1t0Q-vB_zmXtz78w57F2Yhfw8_Z5SFlACKoOcyg6UnltFKKAB1N9DKoH_bfXBUeh0CoYe5K1ZO3Gckv5tiIQKtTYoXOX2Tef4prPQ2HMfRuGYjtNUkz-1Jpdrp7AtX41--eBOte2yJu24xbKElXTTRal3jmY6baMv78RifeLLp02007WLlO2Nj1xLHWg07gmds5CSvcObK8YZj7PpNYxv6MlwWGAJdVoJYaTt84BK2n9FwBq_UFA_r0wp4hi3L8jxi51NY5o_l67B6Gu2gQe_q7vKa-HYMJA0iUREBQNykIjJZZKus47gTK4smAFIGGpAbYxkzJhJZyCW1yMVyv6mQmZjCuECxXdQoykLvISw4U7EJMktoxxXVkoVciwsVAZ4JDO-00PmHiZLUc5Xblhl5UufMoyixWk6slhOn5RY6nY94cTwdP8ieza3-q_D-f4QPUKN6nehDwCmVOvJL9B2kvd-t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+building+electrical+system+fault+diagnosis+method+based+on+random+forest+optimized+by+improved+sparrow+search+algorithm&rft.jtitle=Measurement+science+%26+technology&rft.au=Li%2C+Zhangling&rft.au=Wang%2C+Qi&rft.au=Xiong%2C+Jianbin&rft.au=Cen%2C+Jian&rft.date=2024-05-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=35&rft.issue=5&rft.spage=55110&rft_id=info:doi/10.1088%2F1361-6501%2Fad2255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ad2255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon