Contrast‐enhanced, single‐shot LED array microscopy based on Fourier ptychographic algorithm and deep learning

LED array microscopes have the advantages of miniaturisation and low cost. It has been demonstrated that LED array microscopes outperform Köhler illumination microscopes in some applications. A LED array allows for a large numerical aperture of illumination. The larger numerical aperture of illumina...

Full description

Saved in:
Bibliographic Details
Published inJournal of microscopy (Oxford) Vol. 292; no. 1; pp. 19 - 26
Main Authors Wang, Shengping, Zhang, Zibang, Yao, Manhong, Deng, Zihao, Peng, Junzheng, Zhong, Jingang
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text
ISSN0022-2720
1365-2818
1365-2818
DOI10.1111/jmi.13218

Cover

Abstract LED array microscopes have the advantages of miniaturisation and low cost. It has been demonstrated that LED array microscopes outperform Köhler illumination microscopes in some applications. A LED array allows for a large numerical aperture of illumination. The larger numerical aperture of illumination brings the higher spatial resolution, but the lower image contrast as well. Therefore, there is a tradeoff between resolution and contrast for LED array microscopes. The Fourier ptychographic algorithm can overcome this tradeoff by increasing image contrast without sacrificing spatial resolution. However, the Fourier ptychographic algorithm requires acquisition of multiple images, which is time‐consuming and results in live sample imaging challenging. To solve this problem, we develop contrast‐enhanced, single‐shot LED array microscopy based on the Fourier ptychographic algorithm and deep learning. The sample to be imaged is under illumination by all LEDs of the array simultaneously. The image captured is fed to several trained convolutional neural networks to generate the same number of images that are required by the Fourier ptychographic algorithm. We experimentally present that the image contrast of the final reconstruction is remarkably improved in comparison with the image captured. The proposed method can also produce chromatic‐aberration‐free results, even when an objective without aberration correction is used. We believe the method might provide live sample imaging with a low‐cost approach.
AbstractList LED array microscopes have the advantages of miniaturisation and low cost. It has been demonstrated that LED array microscopes outperform Köhler illumination microscopes in some applications. A LED array allows for a large numerical aperture of illumination. The larger numerical aperture of illumination brings the higher spatial resolution, but the lower image contrast as well. Therefore, there is a tradeoff between resolution and contrast for LED array microscopes. The Fourier ptychographic algorithm can overcome this tradeoff by increasing image contrast without sacrificing spatial resolution. However, the Fourier ptychographic algorithm requires acquisition of multiple images, which is time‐consuming and results in live sample imaging challenging. To solve this problem, we develop contrast‐enhanced, single‐shot LED array microscopy based on the Fourier ptychographic algorithm and deep learning. The sample to be imaged is under illumination by all LEDs of the array simultaneously. The image captured is fed to several trained convolutional neural networks to generate the same number of images that are required by the Fourier ptychographic algorithm. We experimentally present that the image contrast of the final reconstruction is remarkably improved in comparison with the image captured. The proposed method can also produce chromatic‐aberration‐free results, even when an objective without aberration correction is used. We believe the method might provide live sample imaging with a low‐cost approach.
LED array microscopes have the advantages of miniaturisation and low cost. It has been demonstrated that LED array microscopes outperform Köhler illumination microscopes in some applications. A LED array allows for a large numerical aperture of illumination. The larger numerical aperture of illumination brings the higher spatial resolution, but the lower image contrast as well. Therefore, there is a tradeoff between resolution and contrast for LED array microscopes. The Fourier ptychographic algorithm can overcome this tradeoff by increasing image contrast without sacrificing spatial resolution. However, the Fourier ptychographic algorithm requires acquisition of multiple images, which is time-consuming and results in live sample imaging challenging. To solve this problem, we develop contrast-enhanced, single-shot LED array microscopy based on the Fourier ptychographic algorithm and deep learning. The sample to be imaged is under illumination by all LEDs of the array simultaneously. The image captured is fed to several trained convolutional neural networks to generate the same number of images that are required by the Fourier ptychographic algorithm. We experimentally present that the image contrast of the final reconstruction is remarkably improved in comparison with the image captured. The proposed method can also produce chromatic-aberration-free results, even when an objective without aberration correction is used. We believe the method might provide live sample imaging with a low-cost approach.LED array microscopes have the advantages of miniaturisation and low cost. It has been demonstrated that LED array microscopes outperform Köhler illumination microscopes in some applications. A LED array allows for a large numerical aperture of illumination. The larger numerical aperture of illumination brings the higher spatial resolution, but the lower image contrast as well. Therefore, there is a tradeoff between resolution and contrast for LED array microscopes. The Fourier ptychographic algorithm can overcome this tradeoff by increasing image contrast without sacrificing spatial resolution. However, the Fourier ptychographic algorithm requires acquisition of multiple images, which is time-consuming and results in live sample imaging challenging. To solve this problem, we develop contrast-enhanced, single-shot LED array microscopy based on the Fourier ptychographic algorithm and deep learning. The sample to be imaged is under illumination by all LEDs of the array simultaneously. The image captured is fed to several trained convolutional neural networks to generate the same number of images that are required by the Fourier ptychographic algorithm. We experimentally present that the image contrast of the final reconstruction is remarkably improved in comparison with the image captured. The proposed method can also produce chromatic-aberration-free results, even when an objective without aberration correction is used. We believe the method might provide live sample imaging with a low-cost approach.
Author Yao, Manhong
Zhang, Zibang
Zhong, Jingang
Peng, Junzheng
Deng, Zihao
Wang, Shengping
Author_xml – sequence: 1
  givenname: Shengping
  surname: Wang
  fullname: Wang, Shengping
  organization: Department of Optoelectronic Engineering Jinan University Guangzhou China
– sequence: 2
  givenname: Zibang
  surname: Zhang
  fullname: Zhang, Zibang
  organization: Department of Optoelectronic Engineering Jinan University Guangzhou China
– sequence: 3
  givenname: Manhong
  surname: Yao
  fullname: Yao, Manhong
  organization: School of Optoelectronic Engineering Guangdong Polytechnic Normal University Guangzhou China
– sequence: 4
  givenname: Zihao
  surname: Deng
  fullname: Deng, Zihao
  organization: Department of Optoelectronic Engineering Jinan University Guangzhou China
– sequence: 5
  givenname: Junzheng
  surname: Peng
  fullname: Peng, Junzheng
  organization: Department of Optoelectronic Engineering Jinan University Guangzhou China
– sequence: 6
  givenname: Jingang
  orcidid: 0000-0001-9495-6975
  surname: Zhong
  fullname: Zhong, Jingang
  organization: Department of Optoelectronic Engineering Jinan University Guangzhou China
BookMark eNp9kLtOwzAUQC1UJNrCwB9YYgFEih9Ja4-otIBUiQXm6MZxmlSJHexEKBufwDfyJbiUiQEvV_I993UmaGSs0QidUzKj4d3ummpGOaPiCI0pnycRE1SM0JgQxiK2YOQETbzfEUJEIsgYuaU1nQPffX18alOCUTq_wb4y21qHL1_aDm9W9xicgwE3lXLWK9sOOAOvc2wNXtveVdrhthtUabcO2rJSGOqtdVVXNhhMjnOtW1xrcCY0PkXHBdRen_3GKXpdr16Wj9Hm-eFpebeJFBNJFzFZ8JiJXM5lIXkmRKwSYHPJRKYoJTEPqYUgkiqWZAupec61UHkBwAnloWSKrg99e9PC8A51nbauasANKSXp3lYabKU_tgJ8eYBbZ9967bu0qbzSdQ1G296nYaVYzgVNeEAv_qC7oMCEUwIV9kukZItAXR2ovTHvdPHP8G8-_4mo
Cites_doi 10.1364/BOE.10.001044
10.1371/journal.pone.0143547
10.1371/journal.pone.0002146
10.1038/s41592-018-0239-0
10.1101/pdb.top072306
10.11648/j.ajesa.20210801.12
10.1109/TASSP.1981.1163711
10.1016/j.optlaseng.2022.107066
10.1364/OE.27.000644
10.1364/OE.27.008612
10.1364/BOE.5.003305
10.1364/OL.36.003987
10.1038/s41598-019-43845-9
10.1364/OE.466075
10.1038/nphoton.2013.187
10.1038/nbt.4106
10.1002/9781118382905
10.1038/s41467-020-15784-x
10.1364/OPTICA.5.000976
10.1364/OPTICA.4.001437
10.1364/OPTICA.5.000458
10.1016/j.optlaseng.2022.107103
10.1109/TMI.2021.3091207
10.1109/TIP.2006.888338
10.1364/OE.25.008398
10.34133/icomputing.0015
10.1364/OE.26.026470
10.3390/s19224913
10.1364/BOE.6.004912
ContentType Journal Article
Copyright 2023 Royal Microscopical Society.
Copyright_xml – notice: 2023 Royal Microscopical Society.
DBID AAYXX
CITATION
7U5
8FD
L7M
7X8
ADTOC
UNPAY
DOI 10.1111/jmi.13218
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2818
EndPage 26
ExternalDocumentID 10.1111/jmi.13218
10_1111_jmi_13218
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29L
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
C45
CAG
CITATION
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBO
EBS
EBX
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TH9
TN5
TUS
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WIN
WOHZO
WOW
WQJ
WVDHM
WXSBR
X7M
XG1
XOL
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
7U5
8FD
L7M
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c285t-29f3428d969f93b884c5a26928bc110438d978091c25b79e3d3e8cdfaa3013f93
IEDL.DBID UNPAY
ISSN 0022-2720
1365-2818
IngestDate Tue Aug 19 14:55:09 EDT 2025
Thu Jul 10 18:59:50 EDT 2025
Sun Jul 13 04:26:18 EDT 2025
Wed Oct 01 02:02:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c285t-29f3428d969f93b884c5a26928bc110438d978091c25b79e3d3e8cdfaa3013f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9495-6975
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jmi.13218
PQID 2869259927
PQPubID 1086390
PageCount 8
ParticipantIDs unpaywall_primary_10_1111_jmi_13218
proquest_miscellaneous_2854968153
proquest_journals_2869259927
crossref_primary_10_1111_jmi_13218
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of microscopy (Oxford)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_6_1
e_1_2_7_5_1
Wayne R. O. (e_1_2_7_14_1) 2019
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
Ronneberger O. (e_1_2_7_30_1) 2015
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – ident: e_1_2_7_20_1
  doi: 10.1364/BOE.10.001044
– ident: e_1_2_7_5_1
  doi: 10.1371/journal.pone.0143547
– ident: e_1_2_7_2_1
  doi: 10.1371/journal.pone.0002146
– ident: e_1_2_7_21_1
  doi: 10.1038/s41592-018-0239-0
– ident: e_1_2_7_4_1
  doi: 10.1101/pdb.top072306
– ident: e_1_2_7_8_1
  doi: 10.11648/j.ajesa.20210801.12
– ident: e_1_2_7_31_1
  doi: 10.1109/TASSP.1981.1163711
– ident: e_1_2_7_29_1
  doi: 10.1016/j.optlaseng.2022.107066
– ident: e_1_2_7_26_1
  doi: 10.1364/OE.27.000644
– ident: e_1_2_7_25_1
  doi: 10.1364/OE.27.008612
– start-page: 234
  volume-title: U‐Net: Convolutional networks for biomedical image segmentation
  year: 2015
  ident: e_1_2_7_30_1
– ident: e_1_2_7_13_1
  doi: 10.1364/BOE.5.003305
– ident: e_1_2_7_3_1
  doi: 10.1364/OL.36.003987
– ident: e_1_2_7_11_1
  doi: 10.1038/s41598-019-43845-9
– ident: e_1_2_7_18_1
  doi: 10.1364/OE.466075
– ident: e_1_2_7_16_1
  doi: 10.1038/nphoton.2013.187
– ident: e_1_2_7_23_1
  doi: 10.1038/nbt.4106
– volume-title: Light and video microscopy
  year: 2019
  ident: e_1_2_7_14_1
– ident: e_1_2_7_15_1
  doi: 10.1002/9781118382905
– ident: e_1_2_7_27_1
  doi: 10.1038/s41467-020-15784-x
– ident: e_1_2_7_17_1
  doi: 10.1364/OPTICA.5.000976
– ident: e_1_2_7_19_1
  doi: 10.1364/OPTICA.4.001437
– ident: e_1_2_7_22_1
  doi: 10.1364/OPTICA.5.000458
– ident: e_1_2_7_10_1
  doi: 10.1016/j.optlaseng.2022.107103
– ident: e_1_2_7_28_1
  doi: 10.1109/TMI.2021.3091207
– ident: e_1_2_7_32_1
  doi: 10.1109/TIP.2006.888338
– ident: e_1_2_7_7_1
  doi: 10.1364/OE.25.008398
– ident: e_1_2_7_9_1
  doi: 10.34133/icomputing.0015
– ident: e_1_2_7_24_1
  doi: 10.1364/OE.26.026470
– ident: e_1_2_7_12_1
  doi: 10.3390/s19224913
– ident: e_1_2_7_6_1
  doi: 10.1364/BOE.6.004912
SSID ssj0008580
Score 2.395106
Snippet LED array microscopes have the advantages of miniaturisation and low cost. It has been demonstrated that LED array microscopes outperform Köhler illumination...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 19
SubjectTerms Aberration
Algorithms
Arrays
Artificial neural networks
Deep learning
Illumination
Image acquisition
Image contrast
Image reconstruction
Machine learning
Microscopes
Microscopy
Neural networks
Numerical aperture
Spatial discrimination
Spatial resolution
Tradeoffs
Title Contrast‐enhanced, single‐shot LED array microscopy based on Fourier ptychographic algorithm and deep learning
URI https://www.proquest.com/docview/2869259927
https://www.proquest.com/docview/2854968153
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jmi.13218
UnpaywallVersion publishedVersion
Volume 292
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1365-2818
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0008580
  issn: 0022-2720
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0022-2720
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2818
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008580
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46EZ-8ixMd8fJopyZplzwOdYioiDjQp5omqRtubek6ZD75E_yN_hJP1q5eQBB8bZI26ck55zvJuSC0ByBCMaWoI0zgOkxr5ghXGIdwJYWhIWhtG-B8eeWdtdn5nXtX1Dm1sTB5fojywM1yxlheWwZPdJjL-YPSH6ffrYM5dcSn0YznAhivoJn21XXzfpIj3N4ylpFXoJuK3ELfxn7XSJ8wc24YJXL0LHu9LxqntYAeJnPNHU2e6sMsqKuXH2kc_7GYRTRfoFHczLfPEpoy0TKazetTjlZQanNXpXKQvb--magzdhbYx_Z0oWfg0aATZ_ji9ATLNJUj3Le-fTbKZYStbtQ4jnArL4mHk8zK2XF27K7CsvcYp92s08cy0lgbk-CiesXjKmq3Tm-Pz5yiSIOjCHczh4iQggmjhSdCQQPOmXIl8QThgQJowSg0NTigEkXcoAHk19RwpUMpQbRQGLKGKlEcmXWEDQVxYxijDU2ZCULAnhrEUQiIKSDksFFFOxNC-Umei8MvbZh-1x__vCranJDQL9hx4BMOE3KFIPCO7bIZGMnejsjIxEPbB0xlj4MGqKLdkvS_f2jjT702USVLh2YLkEsW1ACz35BasUc_AOa58zs
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46EZ-8i5Mp8fJopyZplzwOdYio-OBAn2qapNtwa0vXIfPJn-Bv9Jd4snb1AoLga5O0SU_OOd9JzgWhAwARiilFHWEC12FaM0e4wjiEKykMDUFr2wDn6xvvos0u7937os6pjYXJ80OUB26WMyby2jJ4osNczh-V_jiDXh3MqRM-i-Y8F8B4Bc21b26bD9Mc4faWsYy8At1U5Bb6Nva7RvqEmQujKJHjZ9nvf9E4rSX0OJ1r7mjyVB9lQV29_Ejj-I_FLKPFAo3iZr59VtCMiVbRfF6fcryGUpu7KpXD7P31zUTdibPAIbanC30Dj4bdOMNX52dYpqkc44H17bNRLmNsdaPGcYRbeUk8nGRWzk6yY_cUlv1OnPay7gDLSGNtTIKL6hWdddRund-dXjhFkQZHEe5mDhEhBRNGC0-EggacM-VK4gnCAwXQglFoanBAJYq4QQPIr6nhSodSgmihMGQDVaI4MpsIGwrixjBGG5oyE4SAPTWIoxAQU0DIcaOK9qaE8pM8F4df2jCDnj_5eVVUm5LQL9hx6BMOE3KFIPCO3bIZGMnejsjIxCPbB0xlj4MGqKL9kvS_f2jrT71qqJKlI7MNyCULdord-QE4-PJS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contrast%E2%80%90enhanced%2C+single%E2%80%90shot+LED+array+microscopy+based+on+Fourier+ptychographic+algorithm+and+deep+learning&rft.jtitle=Journal+of+microscopy+%28Oxford%29&rft.au=Wang%2C+Shengping&rft.au=Zhang%2C+Zibang&rft.au=Yao%2C+Manhong&rft.au=Deng%2C+Zihao&rft.date=2023-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-2720&rft.eissn=1365-2818&rft.volume=292&rft.issue=1&rft.spage=19&rft.epage=26&rft_id=info:doi/10.1111%2Fjmi.13218&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2720&client=summon