Contrast‐enhanced, single‐shot LED array microscopy based on Fourier ptychographic algorithm and deep learning
LED array microscopes have the advantages of miniaturisation and low cost. It has been demonstrated that LED array microscopes outperform Köhler illumination microscopes in some applications. A LED array allows for a large numerical aperture of illumination. The larger numerical aperture of illumina...
        Saved in:
      
    
          | Published in | Journal of microscopy (Oxford) Vol. 292; no. 1; pp. 19 - 26 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Wiley Subscription Services, Inc
    
        01.10.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0022-2720 1365-2818 1365-2818  | 
| DOI | 10.1111/jmi.13218 | 
Cover
| Abstract | LED array microscopes have the advantages of miniaturisation and low cost. It has been demonstrated that LED array microscopes outperform Köhler illumination microscopes in some applications. A LED array allows for a large numerical aperture of illumination. The larger numerical aperture of illumination brings the higher spatial resolution, but the lower image contrast as well. Therefore, there is a tradeoff between resolution and contrast for LED array microscopes. The Fourier ptychographic algorithm can overcome this tradeoff by increasing image contrast without sacrificing spatial resolution. However, the Fourier ptychographic algorithm requires acquisition of multiple images, which is time‐consuming and results in live sample imaging challenging. To solve this problem, we develop contrast‐enhanced, single‐shot LED array microscopy based on the Fourier ptychographic algorithm and deep learning. The sample to be imaged is under illumination by all LEDs of the array simultaneously. The image captured is fed to several trained convolutional neural networks to generate the same number of images that are required by the Fourier ptychographic algorithm. We experimentally present that the image contrast of the final reconstruction is remarkably improved in comparison with the image captured. The proposed method can also produce chromatic‐aberration‐free results, even when an objective without aberration correction is used. We believe the method might provide live sample imaging with a low‐cost approach. | 
    
|---|---|
| AbstractList | LED array microscopes have the advantages of miniaturisation and low cost. It has been demonstrated that LED array microscopes outperform Köhler illumination microscopes in some applications. A LED array allows for a large numerical aperture of illumination. The larger numerical aperture of illumination brings the higher spatial resolution, but the lower image contrast as well. Therefore, there is a tradeoff between resolution and contrast for LED array microscopes. The Fourier ptychographic algorithm can overcome this tradeoff by increasing image contrast without sacrificing spatial resolution. However, the Fourier ptychographic algorithm requires acquisition of multiple images, which is time‐consuming and results in live sample imaging challenging. To solve this problem, we develop contrast‐enhanced, single‐shot LED array microscopy based on the Fourier ptychographic algorithm and deep learning. The sample to be imaged is under illumination by all LEDs of the array simultaneously. The image captured is fed to several trained convolutional neural networks to generate the same number of images that are required by the Fourier ptychographic algorithm. We experimentally present that the image contrast of the final reconstruction is remarkably improved in comparison with the image captured. The proposed method can also produce chromatic‐aberration‐free results, even when an objective without aberration correction is used. We believe the method might provide live sample imaging with a low‐cost approach. LED array microscopes have the advantages of miniaturisation and low cost. It has been demonstrated that LED array microscopes outperform Köhler illumination microscopes in some applications. A LED array allows for a large numerical aperture of illumination. The larger numerical aperture of illumination brings the higher spatial resolution, but the lower image contrast as well. Therefore, there is a tradeoff between resolution and contrast for LED array microscopes. The Fourier ptychographic algorithm can overcome this tradeoff by increasing image contrast without sacrificing spatial resolution. However, the Fourier ptychographic algorithm requires acquisition of multiple images, which is time-consuming and results in live sample imaging challenging. To solve this problem, we develop contrast-enhanced, single-shot LED array microscopy based on the Fourier ptychographic algorithm and deep learning. The sample to be imaged is under illumination by all LEDs of the array simultaneously. The image captured is fed to several trained convolutional neural networks to generate the same number of images that are required by the Fourier ptychographic algorithm. We experimentally present that the image contrast of the final reconstruction is remarkably improved in comparison with the image captured. The proposed method can also produce chromatic-aberration-free results, even when an objective without aberration correction is used. We believe the method might provide live sample imaging with a low-cost approach.LED array microscopes have the advantages of miniaturisation and low cost. It has been demonstrated that LED array microscopes outperform Köhler illumination microscopes in some applications. A LED array allows for a large numerical aperture of illumination. The larger numerical aperture of illumination brings the higher spatial resolution, but the lower image contrast as well. Therefore, there is a tradeoff between resolution and contrast for LED array microscopes. The Fourier ptychographic algorithm can overcome this tradeoff by increasing image contrast without sacrificing spatial resolution. However, the Fourier ptychographic algorithm requires acquisition of multiple images, which is time-consuming and results in live sample imaging challenging. To solve this problem, we develop contrast-enhanced, single-shot LED array microscopy based on the Fourier ptychographic algorithm and deep learning. The sample to be imaged is under illumination by all LEDs of the array simultaneously. The image captured is fed to several trained convolutional neural networks to generate the same number of images that are required by the Fourier ptychographic algorithm. We experimentally present that the image contrast of the final reconstruction is remarkably improved in comparison with the image captured. The proposed method can also produce chromatic-aberration-free results, even when an objective without aberration correction is used. We believe the method might provide live sample imaging with a low-cost approach.  | 
    
| Author | Yao, Manhong Zhang, Zibang Zhong, Jingang Peng, Junzheng Deng, Zihao Wang, Shengping  | 
    
| Author_xml | – sequence: 1 givenname: Shengping surname: Wang fullname: Wang, Shengping organization: Department of Optoelectronic Engineering Jinan University Guangzhou China – sequence: 2 givenname: Zibang surname: Zhang fullname: Zhang, Zibang organization: Department of Optoelectronic Engineering Jinan University Guangzhou China – sequence: 3 givenname: Manhong surname: Yao fullname: Yao, Manhong organization: School of Optoelectronic Engineering Guangdong Polytechnic Normal University Guangzhou China – sequence: 4 givenname: Zihao surname: Deng fullname: Deng, Zihao organization: Department of Optoelectronic Engineering Jinan University Guangzhou China – sequence: 5 givenname: Junzheng surname: Peng fullname: Peng, Junzheng organization: Department of Optoelectronic Engineering Jinan University Guangzhou China – sequence: 6 givenname: Jingang orcidid: 0000-0001-9495-6975 surname: Zhong fullname: Zhong, Jingang organization: Department of Optoelectronic Engineering Jinan University Guangzhou China  | 
    
| BookMark | eNp9kLtOwzAUQC1UJNrCwB9YYgFEih9Ja4-otIBUiQXm6MZxmlSJHexEKBufwDfyJbiUiQEvV_I993UmaGSs0QidUzKj4d3ummpGOaPiCI0pnycRE1SM0JgQxiK2YOQETbzfEUJEIsgYuaU1nQPffX18alOCUTq_wb4y21qHL1_aDm9W9xicgwE3lXLWK9sOOAOvc2wNXtveVdrhthtUabcO2rJSGOqtdVVXNhhMjnOtW1xrcCY0PkXHBdRen_3GKXpdr16Wj9Hm-eFpebeJFBNJFzFZ8JiJXM5lIXkmRKwSYHPJRKYoJTEPqYUgkiqWZAupec61UHkBwAnloWSKrg99e9PC8A51nbauasANKSXp3lYabKU_tgJ8eYBbZ9967bu0qbzSdQ1G296nYaVYzgVNeEAv_qC7oMCEUwIV9kukZItAXR2ovTHvdPHP8G8-_4mo | 
    
| Cites_doi | 10.1364/BOE.10.001044 10.1371/journal.pone.0143547 10.1371/journal.pone.0002146 10.1038/s41592-018-0239-0 10.1101/pdb.top072306 10.11648/j.ajesa.20210801.12 10.1109/TASSP.1981.1163711 10.1016/j.optlaseng.2022.107066 10.1364/OE.27.000644 10.1364/OE.27.008612 10.1364/BOE.5.003305 10.1364/OL.36.003987 10.1038/s41598-019-43845-9 10.1364/OE.466075 10.1038/nphoton.2013.187 10.1038/nbt.4106 10.1002/9781118382905 10.1038/s41467-020-15784-x 10.1364/OPTICA.5.000976 10.1364/OPTICA.4.001437 10.1364/OPTICA.5.000458 10.1016/j.optlaseng.2022.107103 10.1109/TMI.2021.3091207 10.1109/TIP.2006.888338 10.1364/OE.25.008398 10.34133/icomputing.0015 10.1364/OE.26.026470 10.3390/s19224913 10.1364/BOE.6.004912  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Royal Microscopical Society. | 
    
| Copyright_xml | – notice: 2023 Royal Microscopical Society. | 
    
| DBID | AAYXX CITATION 7U5 8FD L7M 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1111/jmi.13218 | 
    
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | Technology Research Database CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1365-2818 | 
    
| EndPage | 26 | 
    
| ExternalDocumentID | 10.1111/jmi.13218 10_1111_jmi_13218  | 
    
| GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29L 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 C45 CAG CITATION COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM E3Z EAD EAP EAS EBB EBC EBD EBO EBS EBX EJD EMB EMK EMOBN EPT ESX EX3 F00 F01 F04 F5P FA8 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR RNS ROL RX1 SAMSI SUPJJ SV3 TEORI TH9 TN5 TUS TWZ UB1 V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WIN WOHZO WOW WQJ WVDHM WXSBR X7M XG1 XOL Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT 7U5 8FD L7M 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c285t-29f3428d969f93b884c5a26928bc110438d978091c25b79e3d3e8cdfaa3013f93 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0022-2720 1365-2818  | 
    
| IngestDate | Tue Aug 19 14:55:09 EDT 2025 Thu Jul 10 18:59:50 EDT 2025 Sun Jul 13 04:26:18 EDT 2025 Wed Oct 01 02:02:17 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c285t-29f3428d969f93b884c5a26928bc110438d978091c25b79e3d3e8cdfaa3013f93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-9495-6975 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jmi.13218 | 
    
| PQID | 2869259927 | 
    
| PQPubID | 1086390 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1111_jmi_13218 proquest_miscellaneous_2854968153 proquest_journals_2869259927 crossref_primary_10_1111_jmi_13218  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-10-00 20231001  | 
    
| PublicationDateYYYYMMDD | 2023-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Journal of microscopy (Oxford) | 
    
| PublicationYear | 2023 | 
    
| Publisher | Wiley Subscription Services, Inc | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc | 
    
| References | e_1_2_7_6_1 e_1_2_7_5_1 Wayne R. O. (e_1_2_7_14_1) 2019 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 Ronneberger O. (e_1_2_7_30_1) 2015 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1  | 
    
| References_xml | – ident: e_1_2_7_20_1 doi: 10.1364/BOE.10.001044 – ident: e_1_2_7_5_1 doi: 10.1371/journal.pone.0143547 – ident: e_1_2_7_2_1 doi: 10.1371/journal.pone.0002146 – ident: e_1_2_7_21_1 doi: 10.1038/s41592-018-0239-0 – ident: e_1_2_7_4_1 doi: 10.1101/pdb.top072306 – ident: e_1_2_7_8_1 doi: 10.11648/j.ajesa.20210801.12 – ident: e_1_2_7_31_1 doi: 10.1109/TASSP.1981.1163711 – ident: e_1_2_7_29_1 doi: 10.1016/j.optlaseng.2022.107066 – ident: e_1_2_7_26_1 doi: 10.1364/OE.27.000644 – ident: e_1_2_7_25_1 doi: 10.1364/OE.27.008612 – start-page: 234 volume-title: U‐Net: Convolutional networks for biomedical image segmentation year: 2015 ident: e_1_2_7_30_1 – ident: e_1_2_7_13_1 doi: 10.1364/BOE.5.003305 – ident: e_1_2_7_3_1 doi: 10.1364/OL.36.003987 – ident: e_1_2_7_11_1 doi: 10.1038/s41598-019-43845-9 – ident: e_1_2_7_18_1 doi: 10.1364/OE.466075 – ident: e_1_2_7_16_1 doi: 10.1038/nphoton.2013.187 – ident: e_1_2_7_23_1 doi: 10.1038/nbt.4106 – volume-title: Light and video microscopy year: 2019 ident: e_1_2_7_14_1 – ident: e_1_2_7_15_1 doi: 10.1002/9781118382905 – ident: e_1_2_7_27_1 doi: 10.1038/s41467-020-15784-x – ident: e_1_2_7_17_1 doi: 10.1364/OPTICA.5.000976 – ident: e_1_2_7_19_1 doi: 10.1364/OPTICA.4.001437 – ident: e_1_2_7_22_1 doi: 10.1364/OPTICA.5.000458 – ident: e_1_2_7_10_1 doi: 10.1016/j.optlaseng.2022.107103 – ident: e_1_2_7_28_1 doi: 10.1109/TMI.2021.3091207 – ident: e_1_2_7_32_1 doi: 10.1109/TIP.2006.888338 – ident: e_1_2_7_7_1 doi: 10.1364/OE.25.008398 – ident: e_1_2_7_9_1 doi: 10.34133/icomputing.0015 – ident: e_1_2_7_24_1 doi: 10.1364/OE.26.026470 – ident: e_1_2_7_12_1 doi: 10.3390/s19224913 – ident: e_1_2_7_6_1 doi: 10.1364/BOE.6.004912  | 
    
| SSID | ssj0008580 | 
    
| Score | 2.395106 | 
    
| Snippet | LED array microscopes have the advantages of miniaturisation and low cost. It has been demonstrated that LED array microscopes outperform Köhler illumination... | 
    
| SourceID | unpaywall proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 19 | 
    
| SubjectTerms | Aberration Algorithms Arrays Artificial neural networks Deep learning Illumination Image acquisition Image contrast Image reconstruction Machine learning Microscopes Microscopy Neural networks Numerical aperture Spatial discrimination Spatial resolution Tradeoffs  | 
    
| Title | Contrast‐enhanced, single‐shot LED array microscopy based on Fourier ptychographic algorithm and deep learning | 
    
| URI | https://www.proquest.com/docview/2869259927 https://www.proquest.com/docview/2854968153 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jmi.13218  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 292 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1365-2818 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0008580 issn: 0022-2720 databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0022-2720 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-2818 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008580 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46EZ-8ixMd8fJopyZplzwOdYioiDjQp5omqRtubek6ZD75E_yN_hJP1q5eQBB8bZI26ck55zvJuSC0ByBCMaWoI0zgOkxr5ghXGIdwJYWhIWhtG-B8eeWdtdn5nXtX1Dm1sTB5fojywM1yxlheWwZPdJjL-YPSH6ffrYM5dcSn0YznAhivoJn21XXzfpIj3N4ylpFXoJuK3ELfxn7XSJ8wc24YJXL0LHu9LxqntYAeJnPNHU2e6sMsqKuXH2kc_7GYRTRfoFHczLfPEpoy0TKazetTjlZQanNXpXKQvb--magzdhbYx_Z0oWfg0aATZ_ji9ATLNJUj3Le-fTbKZYStbtQ4jnArL4mHk8zK2XF27K7CsvcYp92s08cy0lgbk-CiesXjKmq3Tm-Pz5yiSIOjCHczh4iQggmjhSdCQQPOmXIl8QThgQJowSg0NTigEkXcoAHk19RwpUMpQbRQGLKGKlEcmXWEDQVxYxijDU2ZCULAnhrEUQiIKSDksFFFOxNC-Umei8MvbZh-1x__vCranJDQL9hx4BMOE3KFIPCO7bIZGMnejsjIxEPbB0xlj4MGqKLdkvS_f2jjT702USVLh2YLkEsW1ACz35BasUc_AOa58zs | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46EZ-8i5Mp8fJopyZplzwOdYio-OBAn2qapNtwa0vXIfPJn-Bv9Jd4snb1AoLga5O0SU_OOd9JzgWhAwARiilFHWEC12FaM0e4wjiEKykMDUFr2wDn6xvvos0u7937os6pjYXJ80OUB26WMyby2jJ4osNczh-V_jiDXh3MqRM-i-Y8F8B4Bc21b26bD9Mc4faWsYy8At1U5Bb6Nva7RvqEmQujKJHjZ9nvf9E4rSX0OJ1r7mjyVB9lQV29_Ejj-I_FLKPFAo3iZr59VtCMiVbRfF6fcryGUpu7KpXD7P31zUTdibPAIbanC30Dj4bdOMNX52dYpqkc44H17bNRLmNsdaPGcYRbeUk8nGRWzk6yY_cUlv1OnPay7gDLSGNtTIKL6hWdddRund-dXjhFkQZHEe5mDhEhBRNGC0-EggacM-VK4gnCAwXQglFoanBAJYq4QQPIr6nhSodSgmihMGQDVaI4MpsIGwrixjBGG5oyE4SAPTWIoxAQU0DIcaOK9qaE8pM8F4df2jCDnj_5eVVUm5LQL9hx6BMOE3KFIPCO3bIZGMnejsjIxCPbB0xlj4MGqKL9kvS_f2jrT71qqJKlI7MNyCULdord-QE4-PJS | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contrast%E2%80%90enhanced%2C+single%E2%80%90shot+LED+array+microscopy+based+on+Fourier+ptychographic+algorithm+and+deep+learning&rft.jtitle=Journal+of+microscopy+%28Oxford%29&rft.au=Wang%2C+Shengping&rft.au=Zhang%2C+Zibang&rft.au=Yao%2C+Manhong&rft.au=Deng%2C+Zihao&rft.date=2023-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-2720&rft.eissn=1365-2818&rft.volume=292&rft.issue=1&rft.spage=19&rft.epage=26&rft_id=info:doi/10.1111%2Fjmi.13218&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2720&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2720&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2720&client=summon |