Two‐ Versus 8‐Zone Lung Ultrasound in Heart Failure: Analysis of a Large Data Set Using a Deep Learning Algorithm

Scanning protocols for lung ultrasound often include 8 or more lung zones, which may limit real-world clinical use. We sought to compare a 2-zone, anterior-superior thoracic ultrasound protocol for B-line artifact detection with an 8-zone approach in patients with known or suspected heart failure us...

Full description

Saved in:
Bibliographic Details
Published inJournal of ultrasound in medicine Vol. 42; no. 10; pp. 2349 - 2356
Main Authors Baloescu, Cristiana, Chen, Alvin, Varasteh, Alexander, Toporek, Grzegorz, McNamara, Robert L., Raju, Balasundar, Moore, Chris
Format Journal Article
LanguageEnglish
Published England 01.10.2023
Subjects
Online AccessGet full text
ISSN0278-4297
1550-9613
1550-9613
DOI10.1002/jum.16262

Cover

Abstract Scanning protocols for lung ultrasound often include 8 or more lung zones, which may limit real-world clinical use. We sought to compare a 2-zone, anterior-superior thoracic ultrasound protocol for B-line artifact detection with an 8-zone approach in patients with known or suspected heart failure using a deep learning (DL) algorithm. Adult patients with suspected heart failure and B-lines on initial lung ultrasound were enrolled in a prospective observational study. Subjects received daily ultrasounds with a hand-held ultrasound system using an 8-zone protocol (right and left anterior/lateral and superior/inferior). A previously published deep learning algorithm that rates severity of B-lines on a 0-4 scale was adapted for use on hand-held ultrasound full video loops. Average severities for 8 and 2 zones were calculated utilizing DL ratings. Bland-Altman plot analyses were used to assess agreement and identify bias between 2- and 8-zone scores for both primary (all patients, 5728 videos, 205 subjects) and subgroup (confirmed diagnosis of heart failure or pulmonary edema, 4464 videos, 147 subjects) analyses. Bland-Altman plot analyses revealed excellent agreement for both primary and subgroup analyses. The absolute difference on the 4-point scale between 8- and 2-zone average scores was not significant for the primary dataset (0.03; 95% CI -0.01 to 0.07) or the subgroup (0.01; 95% CI -0.04 to 0.06). Utilization of a 2-zone, anterior-superior thoracic ultrasound protocol provided similar severity information to an 8-zone approach for a dataset of subjects with known or suspected heart failure.
AbstractList Scanning protocols for lung ultrasound often include 8 or more lung zones, which may limit real-world clinical use. We sought to compare a 2-zone, anterior-superior thoracic ultrasound protocol for B-line artifact detection with an 8-zone approach in patients with known or suspected heart failure using a deep learning (DL) algorithm. Adult patients with suspected heart failure and B-lines on initial lung ultrasound were enrolled in a prospective observational study. Subjects received daily ultrasounds with a hand-held ultrasound system using an 8-zone protocol (right and left anterior/lateral and superior/inferior). A previously published deep learning algorithm that rates severity of B-lines on a 0-4 scale was adapted for use on hand-held ultrasound full video loops. Average severities for 8 and 2 zones were calculated utilizing DL ratings. Bland-Altman plot analyses were used to assess agreement and identify bias between 2- and 8-zone scores for both primary (all patients, 5728 videos, 205 subjects) and subgroup (confirmed diagnosis of heart failure or pulmonary edema, 4464 videos, 147 subjects) analyses. Bland-Altman plot analyses revealed excellent agreement for both primary and subgroup analyses. The absolute difference on the 4-point scale between 8- and 2-zone average scores was not significant for the primary dataset (0.03; 95% CI -0.01 to 0.07) or the subgroup (0.01; 95% CI -0.04 to 0.06). Utilization of a 2-zone, anterior-superior thoracic ultrasound protocol provided similar severity information to an 8-zone approach for a dataset of subjects with known or suspected heart failure.
Scanning protocols for lung ultrasound often include 8 or more lung zones, which may limit real-world clinical use. We sought to compare a 2-zone, anterior-superior thoracic ultrasound protocol for B-line artifact detection with an 8-zone approach in patients with known or suspected heart failure using a deep learning (DL) algorithm.OBJECTIVEScanning protocols for lung ultrasound often include 8 or more lung zones, which may limit real-world clinical use. We sought to compare a 2-zone, anterior-superior thoracic ultrasound protocol for B-line artifact detection with an 8-zone approach in patients with known or suspected heart failure using a deep learning (DL) algorithm.Adult patients with suspected heart failure and B-lines on initial lung ultrasound were enrolled in a prospective observational study. Subjects received daily ultrasounds with a hand-held ultrasound system using an 8-zone protocol (right and left anterior/lateral and superior/inferior). A previously published deep learning algorithm that rates severity of B-lines on a 0-4 scale was adapted for use on hand-held ultrasound full video loops. Average severities for 8 and 2 zones were calculated utilizing DL ratings. Bland-Altman plot analyses were used to assess agreement and identify bias between 2- and 8-zone scores for both primary (all patients, 5728 videos, 205 subjects) and subgroup (confirmed diagnosis of heart failure or pulmonary edema, 4464 videos, 147 subjects) analyses.METHODSAdult patients with suspected heart failure and B-lines on initial lung ultrasound were enrolled in a prospective observational study. Subjects received daily ultrasounds with a hand-held ultrasound system using an 8-zone protocol (right and left anterior/lateral and superior/inferior). A previously published deep learning algorithm that rates severity of B-lines on a 0-4 scale was adapted for use on hand-held ultrasound full video loops. Average severities for 8 and 2 zones were calculated utilizing DL ratings. Bland-Altman plot analyses were used to assess agreement and identify bias between 2- and 8-zone scores for both primary (all patients, 5728 videos, 205 subjects) and subgroup (confirmed diagnosis of heart failure or pulmonary edema, 4464 videos, 147 subjects) analyses.Bland-Altman plot analyses revealed excellent agreement for both primary and subgroup analyses. The absolute difference on the 4-point scale between 8- and 2-zone average scores was not significant for the primary dataset (0.03; 95% CI -0.01 to 0.07) or the subgroup (0.01; 95% CI -0.04 to 0.06).RESULTSBland-Altman plot analyses revealed excellent agreement for both primary and subgroup analyses. The absolute difference on the 4-point scale between 8- and 2-zone average scores was not significant for the primary dataset (0.03; 95% CI -0.01 to 0.07) or the subgroup (0.01; 95% CI -0.04 to 0.06).Utilization of a 2-zone, anterior-superior thoracic ultrasound protocol provided similar severity information to an 8-zone approach for a dataset of subjects with known or suspected heart failure.CONCLUSIONUtilization of a 2-zone, anterior-superior thoracic ultrasound protocol provided similar severity information to an 8-zone approach for a dataset of subjects with known or suspected heart failure.
Author McNamara, Robert L.
Baloescu, Cristiana
Raju, Balasundar
Toporek, Grzegorz
Chen, Alvin
Moore, Chris
Varasteh, Alexander
Author_xml – sequence: 1
  givenname: Cristiana
  orcidid: 0000-0001-7012-1260
  surname: Baloescu
  fullname: Baloescu, Cristiana
  organization: Department of Emergency Medicine Yale University School of Medicine New Haven Connecticut 06519 USA
– sequence: 2
  givenname: Alvin
  surname: Chen
  fullname: Chen, Alvin
  organization: Philips Research North America Cambridge Massachusetts 02141 USA
– sequence: 3
  givenname: Alexander
  surname: Varasteh
  fullname: Varasteh, Alexander
  organization: Department of Emergency Medicine Yale University School of Medicine New Haven Connecticut 06519 USA, Department of Emergency Medicine Washington University School of Medicine St. Louis Missouri 63110 USA
– sequence: 4
  givenname: Grzegorz
  surname: Toporek
  fullname: Toporek, Grzegorz
  organization: Philips Research North America Cambridge Massachusetts 02141 USA, Inari Medical Cambridge Massachusetts 02139 USA
– sequence: 5
  givenname: Robert L.
  surname: McNamara
  fullname: McNamara, Robert L.
  organization: Division of Cardiology, Department of Internal Medicine Yale University School of Medicine New Haven Connecticut 06520 USA
– sequence: 6
  givenname: Balasundar
  surname: Raju
  fullname: Raju, Balasundar
  organization: Philips Research North America Cambridge Massachusetts 02141 USA
– sequence: 7
  givenname: Chris
  orcidid: 0000-0002-6972-2787
  surname: Moore
  fullname: Moore, Chris
  organization: Department of Emergency Medicine Yale University School of Medicine New Haven Connecticut 06519 USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37255051$$D View this record in MEDLINE/PubMed
BookMark eNptkb1OwzAUhS0EgvIz8ALIIwwB24kbh61qgSJFYoAysESXxClGiV38I9SNR-AZeRJcKAyI6d4rfedI95xdtKmNlggdUnJKCWFnz6E_pUM2ZBtoQDknSTGk6SYaEJaLJGNFvoN2nXuOKKF5to120pxFjNMBCnev5uPtHd9L64LDIu4P0RyXQc_xrPMWnAm6wUrjqQTr8SWoLlh5jkcauqVTDpsWAy7BziWegAd8Kz2eORX1gCdSLnAZhXp1j7q5sco_9ftoq4XOyYP13EOzy4u78TQpb66ux6MyqZngPmEFEAYgBci0yVq2eisTaQPAi1bkRPCmTXlTsLqoMwqEFi1p2ryogYtHDlm6h46_fRfWvATpfNUrV8uuAy1NcBUTLDqSlAwjerRGw2Mvm2phVQ92Wf1EFYGTb6C2xjkr21-EkmpVQxVrqL5qiOzZH7ZWHrwyOgaqun8Un5Wiiso
CitedBy_id crossref_primary_10_1001_jamacardio_2024_4991
crossref_primary_10_1007_s11739_024_03627_2
crossref_primary_10_1186_s13089_024_00391_4
crossref_primary_10_1186_s12947_025_00338_2
Cites_doi 10.11152/mu-1573
10.1053/j.ajkd.2019.11.014
10.1002/ejhf.839
10.1093/eurheartj/ehw164
10.1111/acem.13118
10.1016/j.ajem.2006.02.013
10.1007/s40477-020-00458-7
10.1002/jum.15285
10.1007/s00134-021-06463-6
10.1177/2048872614551505
10.1164/ajrccm.156.5.96-07096
10.1001/jama.2015.19394
10.1378/chest.07-2800
10.1186/s12245-018-0181-z
10.1111/j.1553-2712.2008.00347.x
10.1186/1476-7120-9-6
10.1007/s00134-020-06004-7
10.1016/j.jcrc.2015.08.021
10.1109/TUFFC.2020.3002249
10.1002/jum.15284
10.1186/s13054-015-0756-5
10.21037/jtd.2016.04.55
ContentType Journal Article
Copyright 2023 American Institute of Ultrasound in Medicine.
Copyright_xml – notice: 2023 American Institute of Ultrasound in Medicine.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/jum.16262
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1550-9613
EndPage 2356
ExternalDocumentID 37255051
10_1002_jum_16262
Genre Journal Article
GrantInformation_xml – fundername: Philips Research Americas
GroupedDBID ---
.55
.GJ
0R~
18M
1KJ
1OB
1OC
33P
34G
39C
53G
5GY
5RE
5VS
6PF
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAWTL
AAYCA
AAYXX
AAZKR
ABCUV
ABDPE
ABDQB
ABJNI
ABLJU
ABOCM
ABQWH
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXQS
ADBBV
ADBTR
ADKYN
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
C45
CITATION
DCZOG
DU5
EBS
EJD
F5P
H13
HDBZQ
HGLYW
KQ8
LATKE
LEEKS
LH4
LOXES
LUTES
LYRES
MEWTI
N4W
O9-
OVD
P2P
P2W
RHI
ROL
RS9
SAMSI
SUPJJ
TEORI
TUL
TWZ
USG
WIH
WIJ
WIK
WOHZO
WXSBR
X7M
ZGI
ZVN
ZXP
ZZTAW
NPM
7X8
ID FETCH-LOGICAL-c285t-29a02aae8ae3d4f29613483daa59f87085df35d92c9c41a019f0df79ca58b5a43
ISSN 0278-4297
1550-9613
IngestDate Wed Oct 01 14:00:02 EDT 2025
Mon Jul 21 05:44:09 EDT 2025
Wed Oct 01 04:57:33 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords heart failure
B-lines
machine learning
point-of-care ultrasound
lung ultrasound
artificial intelligence
Language English
License 2023 American Institute of Ultrasound in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-29a02aae8ae3d4f29613483daa59f87085df35d92c9c41a019f0df79ca58b5a43
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-6972-2787
0000-0001-7012-1260
PMID 37255051
PQID 2821340306
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2821340306
pubmed_primary_37255051
crossref_primary_10_1002_jum_16262
crossref_citationtrail_10_1002_jum_16262
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of ultrasound in medicine
PublicationTitleAlternate J Ultrasound Med
PublicationYear 2023
References e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_23_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – ident: e_1_2_7_7_1
  doi: 10.11152/mu-1573
– ident: e_1_2_7_22_1
  doi: 10.1053/j.ajkd.2019.11.014
– ident: e_1_2_7_14_1
  doi: 10.1002/ejhf.839
– ident: e_1_2_7_5_1
  doi: 10.1093/eurheartj/ehw164
– ident: e_1_2_7_6_1
  doi: 10.1111/acem.13118
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ajem.2006.02.013
– ident: e_1_2_7_9_1
  doi: 10.1007/s40477-020-00458-7
– ident: e_1_2_7_16_1
  doi: 10.1002/jum.15285
– ident: e_1_2_7_20_1
  doi: 10.1007/s00134-021-06463-6
– ident: e_1_2_7_18_1
  doi: 10.1177/2048872614551505
– ident: e_1_2_7_12_1
  doi: 10.1164/ajrccm.156.5.96-07096
– ident: e_1_2_7_11_1
  doi: 10.1001/jama.2015.19394
– ident: e_1_2_7_2_1
  doi: 10.1378/chest.07-2800
– ident: e_1_2_7_3_1
  doi: 10.1186/s12245-018-0181-z
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1553-2712.2008.00347.x
– ident: e_1_2_7_4_1
  doi: 10.1186/1476-7120-9-6
– ident: e_1_2_7_19_1
  doi: 10.1007/s00134-020-06004-7
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jcrc.2015.08.021
– ident: e_1_2_7_10_1
  doi: 10.1109/TUFFC.2020.3002249
– ident: e_1_2_7_17_1
  doi: 10.1002/jum.15284
– ident: e_1_2_7_21_1
  doi: 10.1186/s13054-015-0756-5
– ident: e_1_2_7_8_1
  doi: 10.21037/jtd.2016.04.55
SSID ssj0020174
Score 2.3986561
Snippet Scanning protocols for lung ultrasound often include 8 or more lung zones, which may limit real-world clinical use. We sought to compare a 2-zone,...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2349
Title Two‐ Versus 8‐Zone Lung Ultrasound in Heart Failure: Analysis of a Large Data Set Using a Deep Learning Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/37255051
https://www.proquest.com/docview/2821340306
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1550-9613
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020174
  issn: 0278-4297
  databaseCode: KQ8
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIgXBONWbjKIB6QoI7HjNOGtQkwTbEhIK5p4iY4dZyt0zdQkIPWJn8AP4tfwSziOc2npJg1eosiK7bTny7nY53wm5IXK0lBI4bsgOXMDiQErokK7vmJxOkKVGGtTKHzwIdybBO-OxNFg8Gsla6kq5Y5anltX8j9SxTaUq6mS_QfJdoNiA96jfPGKEsbr5WT8Pe-SFRyz8lUVTtS1fM7RgdzHj9mZzMoFFOYAJaemtsKhnF2Ymox0uzDYE5OAs29ywxENJaAiKR2bUwComPRZy8Z67Ixnx_liWp6cXuDcVmszbmzgwyzXharqVdpGy_QZQ029yHj2bdoh9xPgcKU-WavJ6VfIMYjQX23JzdLU3CxXFzNYnxbX6jyGQS2aSGuDdaOThefGoS1ZbZV2wFbB6a2qYG45UBtzzrglLt8wFZZ69kt1uuNjUMd6e9jmAPxlJrvkRUv0zBLsmtRdr5CrDG2KOTjk_cduDws9K8sB3v6kltfKY6-6Wde9oQtCnNrVObxFbjZipGMLuNtkoOfb5PpBI8Rtcq1OG1bFHVIhAn__-Ekt9miE9wZ11KCO9qij0zmtUUcb1L2mLeZonlGgNeaowRxFzNEac9hsMEdbzNEOc3fJZPft4Zs9tznIw1UsEqXLYvAYgI5A8zTImBFmEPEUQMQZqoZIpBkXacxUrAIfUEFkXpqNYgUikgICfo9szfHtHxDKJahQcXTCMwhiKbF_CBiWpNgcyJAPycv2D01Uw3JvDluZJRtiG5Ln3aNnltrlvIeetVJJUPGa3TSY67wqEhYZMkQTcg_JfSuubhg-Yiby9x9eZopH5Eb_KTwmW-Wi0k_Q0y3l0xpQfwBen6oJ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90+Versus+8%E2%80%90Zone+Lung+Ultrasound+in+Heart+Failure%3A+Analysis+of+a+Large+Data+Set+Using+a+Deep+Learning+Algorithm&rft.jtitle=Journal+of+ultrasound+in+medicine&rft.au=Baloescu%2C+Cristiana&rft.au=Chen%2C+Alvin&rft.au=Varasteh%2C+Alexander&rft.au=Toporek%2C+Grzegorz&rft.date=2023-10-01&rft.issn=0278-4297&rft.eissn=1550-9613&rft.volume=42&rft.issue=10&rft.spage=2349&rft.epage=2356&rft_id=info:doi/10.1002%2Fjum.16262&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jum_16262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-4297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-4297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-4297&client=summon