A general four-parameter non-FSAL embedded Runge–Kutta algorithm of orders 6 and 4 in seven stages
The well-known Dormand–Prince embedded RK 5(4) 7FM algorithm [J. Comput. Appl. Math. 6 (1980) 19] is of the FSAL type and uses seven stages per step. This algorithm has been recommended by Shampine [Math. Comput. 46 (1986) 135] as a candidate for an efficient production RK code. In fact the new MATL...
Saved in:
| Published in | Applied mathematics and computation Vol. 143; no. 2; pp. 259 - 267 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
Elsevier Inc
10.11.2003
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0096-3003 1873-5649 |
| DOI | 10.1016/S0096-3003(02)00358-2 |
Cover
| Abstract | The well-known Dormand–Prince embedded RK 5(4) 7FM algorithm [J. Comput. Appl. Math. 6 (1980) 19] is of the FSAL type and uses seven stages per step. This algorithm has been recommended by Shampine [Math. Comput. 46 (1986) 135] as a candidate for an efficient production RK code. In fact the new MATLAB function ode45 is based on this algorithm. Later on another efficient RK 5(4) 7 embedded algorithm, also having orders 5 and 4, is developed by Sharp and Smart [SIAM J. Sci. Comput. 14 (1993) 338]. The last algorithm uses seven stages per step and it is of the non-FSAL type. The current paper shows that by using seven stages per step a general four-parameter, non-FSAL embedded RK algorithm having orders 6 and 4 may be designed. A special algorithm, called RK 6(4) 7 new is obtained by using suitable choices for the free parameters. This new algorithm together with the RK 5(4) 7FM in [J. Comput. Appl. Math. 6 (1980) 19] and the RK 5(4) 7 in [SIAM J. Sci. Comput. 14 (1993) 338] are applied to some test problems, which have known exact solutions. It is found that the new algorithm is competitive comparing with the algorithms in [J. Comput. Appl. Math. 6 (1980) 19] and in [SIAM J. Sci. Comput. 14 (1993) 338]. |
|---|---|
| AbstractList | The well-known Dormand–Prince embedded RK 5(4) 7FM algorithm [J. Comput. Appl. Math. 6 (1980) 19] is of the FSAL type and uses seven stages per step. This algorithm has been recommended by Shampine [Math. Comput. 46 (1986) 135] as a candidate for an efficient production RK code. In fact the new MATLAB function ode45 is based on this algorithm. Later on another efficient RK 5(4) 7 embedded algorithm, also having orders 5 and 4, is developed by Sharp and Smart [SIAM J. Sci. Comput. 14 (1993) 338]. The last algorithm uses seven stages per step and it is of the non-FSAL type. The current paper shows that by using seven stages per step a general four-parameter, non-FSAL embedded RK algorithm having orders 6 and 4 may be designed. A special algorithm, called RK 6(4) 7 new is obtained by using suitable choices for the free parameters. This new algorithm together with the RK 5(4) 7FM in [J. Comput. Appl. Math. 6 (1980) 19] and the RK 5(4) 7 in [SIAM J. Sci. Comput. 14 (1993) 338] are applied to some test problems, which have known exact solutions. It is found that the new algorithm is competitive comparing with the algorithms in [J. Comput. Appl. Math. 6 (1980) 19] and in [SIAM J. Sci. Comput. 14 (1993) 338]. |
| Author | El-Mikkawy, M.E.A Eisa, M.M.M |
| Author_xml | – sequence: 1 givenname: M.E.A surname: El-Mikkawy fullname: El-Mikkawy, M.E.A email: mikkawy@yahoo.com – sequence: 2 givenname: M.M.M surname: Eisa fullname: Eisa, M.M.M |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14907333$$DView record in Pascal Francis |
| BookMark | eNqFkMFKw0AQhhepYFt9BGEvgh6is7vJJjlJKVbFgmD1vGx2JzGSbspuWvDmO_iGPolpK3p0DvNf_vl_5huRgWsdEnLK4JIBk1cLgFxGAkCcA7_oJckifkCGLEtFlMg4H5Dhr-WIjEJ4A4BUsnhI7IRW6NDrhpbt2kcr7fUSO_S0L4lmi8mc4rJAa9HSp7Wr8Ovj82HddZrqpmp93b0uaVvS1lv0gUqqnaUxrR0NuMF-d7rCcEwOS90EPPnRMXmZ3TxP76L54-39dDKPDM-SLuIZZ0bqvivhJhcpyowJIyCP0aRG5ywuEs1KTDEVYKCMba4NJoXJTAEy42JMzva5Kx2MbkqvnamDWvl6qf27YnEOqehnTJK9z_g2BI_lnwXUFqnaIVVbXgq42iFV2_zr_R32T2xq9CqYGp1BW3s0nbJt_U_CN4c6gAc |
| CODEN | AMHCBQ |
| Cites_doi | 10.1016/0771-050X(80)90013-3 10.1137/0914021 |
| ContentType | Journal Article |
| Copyright | 2002 Elsevier Science Inc. 2003 INIST-CNRS |
| Copyright_xml | – notice: 2002 Elsevier Science Inc. – notice: 2003 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/S0096-3003(02)00358-2 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1873-5649 |
| EndPage | 267 |
| ExternalDocumentID | 14907333 10_1016_S0096_3003_02_00358_2 S0096300302003582 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c285t-2821c6adde52c937e6813c3094ec7ca914b5a1fe7e730c0f4d9ace5bc8cb06823 |
| IEDL.DBID | AIKHN |
| ISSN | 0096-3003 |
| IngestDate | Mon Jul 21 09:15:10 EDT 2025 Wed Oct 01 02:15:10 EDT 2025 Fri Feb 23 02:26:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Order conditions FSAL Initial value problems Embedded Runge–Kutta algorithm Initial condition 1993 Differential equation Initial value problem 1980 Embedding Numerical method Runge Kutta method Vandermonde system Algorithm Exact solution Vandermonde matrix |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c285t-2821c6adde52c937e6813c3094ec7ca914b5a1fe7e730c0f4d9ace5bc8cb06823 |
| PageCount | 9 |
| ParticipantIDs | pascalfrancis_primary_14907333 crossref_primary_10_1016_S0096_3003_02_00358_2 elsevier_sciencedirect_doi_10_1016_S0096_3003_02_00358_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2003-11-10 |
| PublicationDateYYYYMMDD | 2003-11-10 |
| PublicationDate_xml | – month: 11 year: 2003 text: 2003-11-10 day: 10 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2003 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Sharp, Smart (BIB4) 1993; 14 El-Mikkawy (BIB3) 1991; 4 Butcher (BIB1) 1987 Dormand, Prince (BIB2) 1980; 6 M.M.M. Eisa, The Runge–Kutta Embedded Methods. M.Sc. thesis, Mansoura University, Mansoura, Egypt, 1996 Butcher (10.1016/S0096-3003(02)00358-2_BIB1) 1987 10.1016/S0096-3003(02)00358-2_BIB5 Sharp (10.1016/S0096-3003(02)00358-2_BIB4) 1993; 14 Dormand (10.1016/S0096-3003(02)00358-2_BIB2) 1980; 6 El-Mikkawy (10.1016/S0096-3003(02)00358-2_BIB3) 1991; 4 |
| References_xml | – volume: 4 start-page: 95 year: 1991 end-page: 101 ident: BIB3 article-title: Useful studies on Runge–Kutta order conditions up to order six publication-title: Journal of IMCS – volume: 14 start-page: 338 year: 1993 end-page: 348 ident: BIB4 article-title: Explicit Runge–Kutta pairs with one more derivative evaluation than minimum publication-title: SIAM Journal on Scientific Computing – volume: 6 start-page: 19 year: 1980 end-page: 26 ident: BIB2 article-title: A family of embedded Runge–Kutta formula publication-title: Journal of Computational and Applied Mathematics – year: 1987 ident: BIB1 article-title: The Numerical Analysis of Ordinary Differential Equations – reference: M.M.M. Eisa, The Runge–Kutta Embedded Methods. M.Sc. thesis, Mansoura University, Mansoura, Egypt, 1996 – volume: 6 start-page: 19 issue: 1 year: 1980 ident: 10.1016/S0096-3003(02)00358-2_BIB2 article-title: A family of embedded Runge–Kutta formula publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/0771-050X(80)90013-3 – ident: 10.1016/S0096-3003(02)00358-2_BIB5 – volume: 4 start-page: 95 issue: 1 year: 1991 ident: 10.1016/S0096-3003(02)00358-2_BIB3 article-title: Useful studies on Runge–Kutta order conditions up to order six publication-title: Journal of IMCS – volume: 14 start-page: 338 issue: 2 year: 1993 ident: 10.1016/S0096-3003(02)00358-2_BIB4 article-title: Explicit Runge–Kutta pairs with one more derivative evaluation than minimum publication-title: SIAM Journal on Scientific Computing doi: 10.1137/0914021 – year: 1987 ident: 10.1016/S0096-3003(02)00358-2_BIB1 |
| SSID | ssj0007614 |
| Score | 1.6863443 |
| Snippet | The well-known Dormand–Prince embedded RK 5(4) 7FM algorithm [J. Comput. Appl. Math. 6 (1980) 19] is of the FSAL type and uses seven stages per step. This... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 259 |
| SubjectTerms | Embedded Runge–Kutta algorithm Exact sciences and technology FSAL Initial value problems Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Order conditions Ordinary differential equations Sciences and techniques of general use |
| Title | A general four-parameter non-FSAL embedded Runge–Kutta algorithm of orders 6 and 4 in seven stages |
| URI | https://dx.doi.org/10.1016/S0096-3003(02)00358-2 |
| Volume | 143 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKuYAQYhVr5QMHOBgS20mdY1VRFUp7YJG4Rd5SItFFTbgi_oE_5EsYJymFA0LiaiWO9Wy_mVFm3iB0YsFpSBIjCDecu9-MhigtGIkiDRZFs8AWAqb9Qdh94NePwWMNtee1MC6tsuL-ktMLtq5GLio0L6Zp6mp8I6cXxbxC1FMADy-D_RGijpZbV73u4IuQIVIvxZgjl-blsUUhTzlJMXjq0bNiHkJ_M1FrU5kBcEnZ8eKbGepsoPXKf8StcombqGbHW2i1_yW-mm0j08LDUkwaJ_A4cereI5f1giHUJ5271g22I2WBcQy-hbtuP97eey95LrF8Hk5maf40wpMEF6KcGQ6xHBvMcTrGmVN7wuBODm22gx46l_ftLqmaKRBNRZATCK18HTo2C6gGn8SGwmeaQXRndVPLyOcqkH5imxbuvPYSbiKpbQAbp5UXCsp2UR1WafcQ5sZ3wo4QCSnJmVXg8ioacUZFKCQL1D46n-MXT0vNjHiRTAaAxw7w2KNxAXhM95GYoxz_2PwYeP2vVxs_dmXxQR65fpTs4P9zH6KVMnXPJf0doXo-e7HH4ILkqoGWzl_9RnXQPgHYBNWW |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLUqGAAhxFM8iwcGGAyJ7aTOWFVUhbYM0Epslu04pRItVZOuiH_gD_kSrpOUwoCQWK3Esc61j-9Vjo8ROrOQNCRJLAiPOXe_GWOijWAkigzsKIYFNjcw7d6FrT6_fQweK6gxPwvjZJUl9xecnrN12XJVonk1GQ7dGd_I-UUxLzf1FMDDyzygNVeBXb4udB5QpxdWzJETeXlscYyn6CJvPPfoRd4Lob9tUOsTlQJsSXHfxbdNqLmJNsrsEdeLAW6hih1vo7Xul_VquoPiOh4UVtI4gceJ8_YeOc0LhkKfNB_qHWxH2gLfxPgeVrr9eHtvz7JMYfU8eJkOs6cRfklwbsmZ4hCrcYw5Ho5x6ryeMCSTA5vuon7zutdokfIqBWKoCDIChZVvQsdlATWQkdhQ-MwwqO2sqRkV-VwHyk9szcKKN17C40gZG0DYjPZCQdkeWoJR2n2Eeew7W0eog7TizGpIeDWNOKMiFIoF-gBdzvGTk8IxQy6kZAC4dIBLj8occEkPkJijLH-EXgKr__Vq9UdUFh_kkbuNkh3-v-9TtNLqdTuyc3PXPkKrhYjPyf-O0VI2ndkTSEYyXc0n2yeSgNZe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+four-parameter+non-FSAL+embedded+Runge%E2%80%93Kutta+algorithm+of+orders+6+and+4+in+seven+stages&rft.jtitle=Applied+mathematics+and+computation&rft.au=El-Mikkawy%2C+M.E.A&rft.au=Eisa%2C+M.M.M&rft.date=2003-11-10&rft.issn=0096-3003&rft.volume=143&rft.issue=2-3&rft.spage=259&rft.epage=267&rft_id=info:doi/10.1016%2FS0096-3003%2802%2900358-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0096_3003_02_00358_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |