Bayesian network-guided sparse regression with flexible varying effects

In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 80; no. 4
Main Authors Ren, Yangfan, Peterson, Christine B, Vannucci, Marina
Format Journal Article
LanguageEnglish
Published England Oxford University Press 03.10.2024
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1093/biomtc/ujae111

Cover

Abstract In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the predictors, which are the features utilized in the outcome prediction model, and the subject-level covariates, which modulate the effects of the predictors on the outcome. We construct a varying coefficients modeling framework where we infer a network among the predictor variables and utilize this network information to encourage the selection of related predictors. We employ variable selection spike-and-slab priors that enable the selection of both network-linked predictor variables and covariates that modify the predictor effects. We demonstrate through simulation studies that our method outperforms existing alternative methods in terms of both feature selection and predictive accuracy. We illustrate VERGE with an application to characterizing the influence of gut microbiome features on obesity, where we identify a set of microbial taxa and their ecological dependence relations. We allow subject-level covariates, including sex and dietary intake variables to modify the coefficients of the microbiome predictors, providing additional insight into the interplay between these factors.
AbstractList In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the predictors, which are the features utilized in the outcome prediction model, and the subject-level covariates, which modulate the effects of the predictors on the outcome. We construct a varying coefficients modeling framework where we infer a network among the predictor variables and utilize this network information to encourage the selection of related predictors. We employ variable selection spike-and-slab priors that enable the selection of both network-linked predictor variables and covariates that modify the predictor effects. We demonstrate through simulation studies that our method outperforms existing alternative methods in terms of both feature selection and predictive accuracy. We illustrate VERGE with an application to characterizing the influence of gut microbiome features on obesity, where we identify a set of microbial taxa and their ecological dependence relations. We allow subject-level covariates, including sex and dietary intake variables to modify the coefficients of the microbiome predictors, providing additional insight into the interplay between these factors.
In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the predictors, which are the features utilized in the outcome prediction model, and the subject-level covariates, which modulate the effects of the predictors on the outcome. We construct a varying coefficients modeling framework where we infer a network among the predictor variables and utilize this network information to encourage the selection of related predictors. We employ variable selection spike-and-slab priors that enable the selection of both network-linked predictor variables and covariates that modify the predictor effects. We demonstrate through simulation studies that our method outperforms existing alternative methods in terms of both feature selection and predictive accuracy. We illustrate VERGE with an application to characterizing the influence of gut microbiome features on obesity, where we identify a set of microbial taxa and their ecological dependence relations. We allow subject-level covariates, including sex and dietary intake variables to modify the coefficients of the microbiome predictors, providing additional insight into the interplay between these factors.In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the predictors, which are the features utilized in the outcome prediction model, and the subject-level covariates, which modulate the effects of the predictors on the outcome. We construct a varying coefficients modeling framework where we infer a network among the predictor variables and utilize this network information to encourage the selection of related predictors. We employ variable selection spike-and-slab priors that enable the selection of both network-linked predictor variables and covariates that modify the predictor effects. We demonstrate through simulation studies that our method outperforms existing alternative methods in terms of both feature selection and predictive accuracy. We illustrate VERGE with an application to characterizing the influence of gut microbiome features on obesity, where we identify a set of microbial taxa and their ecological dependence relations. We allow subject-level covariates, including sex and dietary intake variables to modify the coefficients of the microbiome predictors, providing additional insight into the interplay between these factors.
Author Ren, Yangfan
Vannucci, Marina
Peterson, Christine B
Author_xml – sequence: 1
  givenname: Yangfan
  surname: Ren
  fullname: Ren, Yangfan
– sequence: 2
  givenname: Christine B
  orcidid: 0000-0003-3316-0468
  surname: Peterson
  fullname: Peterson, Christine B
– sequence: 3
  givenname: Marina
  orcidid: 0000-0002-7360-5321
  surname: Vannucci
  fullname: Vannucci, Marina
  email: marina@rice.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39377518$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PwzAQhi1URD9gZUQZYUjrs5PYGaGCgoTEAhJb5CTn4pLExU4o_fcEpbAyvTrpeU93z5SMGtsgIedA50BTvsiNrdti0W0UAsARmUAcQUgjRkdkQilNQh7B65hMvd_0YxpTdkLGPOVCxCAnZHWj9uiNaoIG25117-G6MyWWgd8q5zFwuHbovbFNsDPtW6Ar_DJ5hcGncnvTrAPUGovWn5JjrSqPZ4eckZe72-flffj4tHpYXj-GBZNRG2rQKheYlDRKBS01lUrkEnQqJWOiUEJpqSAvueLIZawShhS0EH0wKCDnM3I57N06-9Ghb7Pa-AKrSjVoO59xgAhiFvGkRy8OaJfXWGZbZ-r-6Oz3-R6YD0DhrPcO9R8CNPuxmw12s4PdvnA1FGy3_Y_9BnAlfgs
Cites_doi 10.1111/j.2517-6161.1982.tb01195.x
10.1214/009053604000000238
10.1201/9781003089018-1
10.1007/BF01890836
10.1080/10618600.2019.1648271
10.1111/biom.13335
10.1186/s12859-020-03911-w
10.1093/bioinformatics/btn081
10.1214/11-STS354
10.1126/science.1208344
10.1186/s13073-020-00813-7
10.1002/sim.6792
10.1080/01621459.2018.1434529
10.1198/jasa.2010.tm08177
10.1080/01621459.2012.737742
10.1016/j.csda.2015.01.003
10.3390/nu14010012
10.1371/journal.pcbi.1004226
10.1111/j.2517-6161.1993.tb01939.x
10.1214/14-BA916
10.1084/jem.20180448
10.1038/nature18846
10.3390/microorganisms8040573
10.1194/jlr.R036012
10.1111/j.1541-0420.2009.01333.x
10.1038/s41598-018-28126-1
10.1038/nature05414
10.1002/bimj.202000312
10.1093/biomet/asu031
10.1080/10618600.2019.1575744
10.1093/jaoac/93.1.221
10.1214/009053606000000281
10.1038/s41467-019-10440-5
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/biomtc/ujae111
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
ExternalDocumentID 39377518
10_1093_biomtc_ujae111
10.1093/biomtc/ujae111
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-2113602
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEQDE
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGORE
AGQPQ
AGTJU
AHGBF
AHMBA
AIAGR
AIHAF
AIURR
AIWBW
AJAOE
AJBDE
AJBYB
AJNCP
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
ESTFP
H13
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c284t-f1fab7e6d04970df08a7b81f988227ca7af8a1bd3a3e385a62e01f772e021c1b3
ISSN 0006-341X
1541-0420
IngestDate Mon Sep 29 06:30:39 EDT 2025
Thu Apr 03 07:07:54 EDT 2025
Thu Oct 16 04:37:07 EDT 2025
Mon Jun 30 08:34:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Gaussian process prior
Bayesian variable selection
varying coefficient model
spike-and-slab prior
graphical model
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c284t-f1fab7e6d04970df08a7b81f988227ca7af8a1bd3a3e385a62e01f772e021c1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3316-0468
0000-0002-7360-5321
PMID 39377518
PQID 3114152436
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3114152436
pubmed_primary_39377518
crossref_primary_10_1093_biomtc_ujae111
oup_primary_10_1093_biomtc_ujae111
PublicationCentury 2000
PublicationDate 2024-Oct-03
PublicationDateYYYYMMDD 2024-10-03
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hastie (2025100720014387200_bib9) 1993; 55
Barbieri (2025100720014387200_bib2) 2004; 32
Li (2025100720014387200_bib16) 2019; 28
Sonnenburg (2025100720014387200_bib31) 2016; 535
Wang (2025100720014387200_bib37) 2015; 10
Bürgin (2025100720014387200_bib3) 2015; 86
Lin (2025100720014387200_bib17) 2014; 101
McCleary (2025100720014387200_bib19) 2010; 93
Pinart (2025100720014387200_bib26) 2021; 14
Vacca (2025100720014387200_bib34) 2020; 8
Aitchison (2025100720014387200_bib1) 1982; 44
Den Besten (2025100720014387200_bib5) 2013; 54
Reich (2025100720014387200_bib28) 2010; 66
Leeming (2025100720014387200_bib13) 2021; 13
Min (2025100720014387200_bib21) 2019; 10
Zhang (2025100720014387200_bib39) 2021; 77
Cleveland (2025100720014387200_bib4) 1991; 1
Kuo (2025100720014387200_bib11) 1998; 60
Neal (2025100720014387200_bib22) 1998; 6
Wu (2025100720014387200_bib38) 2011; 334
Ha (2025100720014387200_bib8) 2020; 21
George (2025100720014387200_bib7) 1997; 7
Li (2025100720014387200_bib14) 2008; 24
Marx (2025100720014387200_bib18) 2009
Ni (2025100720014387200_bib23) 2019; 114
Peters (2025100720014387200_bib24) 2018; 8
Kurtz (2025100720014387200_bib12) 2015; 11
Turnbaugh (2025100720014387200_bib33) 2006; 444
Scheipl (2025100720014387200_bib30) 2012; 107
Kim (2025100720014387200_bib10) 2021; 63
Meinshausen (2025100720014387200_bib20) 2006; 34
Peterson (2025100720014387200_bib25) 2016; 35
Durack (2025100720014387200_bib6) 2019; 216
Savitsky (2025100720014387200_bib29) 2011; 26
Wang (2025100720014387200_bib36) 2012; 4
Vannucci (2025100720014387200_bib35) 2021
Tibshirani (2025100720014387200_bib32) 2020; 29
Rasmussen (2025100720014387200_bib27) 2006
Li (2025100720014387200_bib15) 2010; 105
References_xml – volume: 44
  start-page: 139
  year: 1982
  ident: 2025100720014387200_bib1
  article-title: The statistical analysis of compositional data
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1982.tb01195.x
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: 2025100720014387200_bib27
– volume: 32
  start-page: 870
  year: 2004
  ident: 2025100720014387200_bib2
  article-title: Optimal predictive model selection
  publication-title: Annals of Statistics
  doi: 10.1214/009053604000000238
– start-page: 3
  volume-title: Handbook of Bayesian Variable Selection
  year: 2021
  ident: 2025100720014387200_bib35
  article-title: Discrete spike-and-slab priors: models and computational aspects
  doi: 10.1201/9781003089018-1
– volume: 1
  start-page: 47
  year: 1991
  ident: 2025100720014387200_bib4
  article-title: Computational methods for local regression
  publication-title: Statistics and Computing
  doi: 10.1007/BF01890836
– volume: 29
  start-page: 215
  year: 2020
  ident: 2025100720014387200_bib32
  article-title: A pliable lasso
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2019.1648271
– volume: 77
  start-page: 824
  year: 2021
  ident: 2025100720014387200_bib39
  article-title: Bayesian compositional regression with structured priors for microbiome feature selection
  publication-title: Biometrics
  doi: 10.1111/biom.13335
– volume: 21
  start-page: 1
  year: 2020
  ident: 2025100720014387200_bib8
  article-title: Compositional zero-inflated network estimation for microbiome data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-020-03911-w
– volume: 24
  start-page: 1175
  year: 2008
  ident: 2025100720014387200_bib14
  article-title: Network-constrained regularization and variable selection for analysis of genomic data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn081
– volume: 26
  start-page: 130
  year: 2011
  ident: 2025100720014387200_bib29
  article-title: Variable selection for nonparametric Gaussian process priors: models and computational strategies
  publication-title: Statistical Science
  doi: 10.1214/11-STS354
– volume: 334
  start-page: 105
  year: 2011
  ident: 2025100720014387200_bib38
  article-title: Linking long-term dietary patterns with gut microbial enterotypes
  publication-title: Science
  doi: 10.1126/science.1208344
– volume: 4
  start-page: 867
  year: 2012
  ident: 2025100720014387200_bib36
  article-title: Bayesian graphical lasso models and efficient posterior computation
  publication-title: Bayesian Analysis
– volume: 13
  start-page: 1
  year: 2021
  ident: 2025100720014387200_bib13
  article-title: The complexities of the diet-microbiome relationship: advances and perspectives
  publication-title: Genome Medicine
  doi: 10.1186/s13073-020-00813-7
– volume: 35
  start-page: 1017
  year: 2016
  ident: 2025100720014387200_bib25
  article-title: Joint Bayesian variable and graph selection for regression models with network-structured predictors
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.6792
– volume: 114
  start-page: 48
  year: 2019
  ident: 2025100720014387200_bib23
  article-title: Bayesian hierarchical varying-sparsity regression models with application to cancer proteogenomics
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2018.1434529
– volume: 105
  start-page: 1202
  year: 2010
  ident: 2025100720014387200_bib15
  article-title: Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2010.tm08177
– volume: 107
  start-page: 1518
  year: 2012
  ident: 2025100720014387200_bib30
  article-title: Spike-and-slab priors for function selection in structured additive regression models
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2012.737742
– volume: 86
  start-page: 65
  year: 2015
  ident: 2025100720014387200_bib3
  article-title: Tree-based varying coefficient regression for longitudinal ordinal responses
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2015.01.003
– volume: 14
  start-page: 12
  year: 2021
  ident: 2025100720014387200_bib26
  article-title: Gut microbiome composition in obese and non-obese persons: a systematic review and meta-analysis
  publication-title: Nutrients
  doi: 10.3390/nu14010012
– volume: 11
  start-page: e1004226
  year: 2015
  ident: 2025100720014387200_bib12
  article-title: Sparse and compositionally robust inference of microbial ecological networks
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1004226
– volume: 55
  start-page: 757
  year: 1993
  ident: 2025100720014387200_bib9
  article-title: Varying-coefficient models
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.2517-6161.1993.tb01939.x
– volume: 10
  start-page: 351
  year: 2015
  ident: 2025100720014387200_bib37
  article-title: Scaling it up: stochastic search structure learning in graphical models
  publication-title: Bayesian Analysis
  doi: 10.1214/14-BA916
– volume: 216
  start-page: 20
  year: 2019
  ident: 2025100720014387200_bib6
  article-title: The gut microbiome: relationships with disease and opportunities for therapy
  publication-title: Journal of Experimental Medicine
  doi: 10.1084/jem.20180448
– volume: 60
  start-page: 65
  year: 1998
  ident: 2025100720014387200_bib11
  article-title: Variable selection for regression models
  publication-title: Sankhyā: The Indian Journal of Statistics, Series B
– volume: 535
  start-page: 56
  year: 2016
  ident: 2025100720014387200_bib31
  article-title: Diet–microbiota interactions as moderators of human metabolism
  publication-title: Nature
  doi: 10.1038/nature18846
– volume: 8
  start-page: 573
  year: 2020
  ident: 2025100720014387200_bib34
  article-title: The controversial role of human gut Lachnospiraceae
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8040573
– volume: 54
  start-page: 2325
  year: 2013
  ident: 2025100720014387200_bib5
  article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism
  publication-title: Journal of Lipid Research
  doi: 10.1194/jlr.R036012
– volume: 66
  start-page: 772
  year: 2010
  ident: 2025100720014387200_bib28
  article-title: Bayesian variable selection for multivariate spatially varying coefficient regression
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2009.01333.x
– volume: 8
  start-page: 9749
  year: 2018
  ident: 2025100720014387200_bib24
  article-title: A taxonomic signature of obesity in a large study of American adults
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-28126-1
– volume: 444
  start-page: 1027
  year: 2006
  ident: 2025100720014387200_bib33
  article-title: An obesity-associated gut microbiome with increased capacity for energy harvest
  publication-title: Nature
  doi: 10.1038/nature05414
– volume: 63
  start-page: 1254
  year: 2021
  ident: 2025100720014387200_bib10
  article-title: svreg: structural varying-coefficient regression to differentiate how regional brain atrophy affects motor impairment for Huntington disease severity groups
  publication-title: Biometrical Journal
  doi: 10.1002/bimj.202000312
– volume: 6
  start-page: 475
  year: 1998
  ident: 2025100720014387200_bib22
  article-title: Regression and classification using Gaussian process priors
  publication-title: Bayesian Statistics
– volume: 101
  start-page: 785
  year: 2014
  ident: 2025100720014387200_bib17
  article-title: Variable selection in regression with compositional covariates
  publication-title: Biometrika
  doi: 10.1093/biomet/asu031
– volume: 28
  start-page: 747
  year: 2019
  ident: 2025100720014387200_bib16
  article-title: The graphical horseshoe estimator for inverse covariance matrices
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2019.1575744
– start-page: 19
  volume-title: Statistical Modelling and Regression Structures
  year: 2009
  ident: 2025100720014387200_bib18
  article-title: P-spline varying coefficient models for complex data
– volume: 7
  start-page: 339
  year: 1997
  ident: 2025100720014387200_bib7
  article-title: Approaches for Bayesian variable selection
  publication-title: Statistica Sinica
– volume: 93
  start-page: 221
  year: 2010
  ident: 2025100720014387200_bib19
  article-title: Determination of total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: collaborative study
  publication-title: Journal of AOAC International
  doi: 10.1093/jaoac/93.1.221
– volume: 34
  start-page: 1436
  year: 2006
  ident: 2025100720014387200_bib20
  article-title: High-dimensional graphs and variable selection with the lasso
  publication-title: Annals of Statistics
  doi: 10.1214/009053606000000281
– volume: 10
  start-page: 2408
  year: 2019
  ident: 2025100720014387200_bib21
  article-title: Sex-specific association between gut microbiome and fat distribution
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-10440-5
SSID ssj0009502
Score 2.4338608
SecondaryResourceType review_article
Snippet In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Bayes Theorem
Computer Simulation
Gastrointestinal Microbiome
Humans
Models, Statistical
Obesity
Regression Analysis
Title Bayesian network-guided sparse regression with flexible varying effects
URI https://www.ncbi.nlm.nih.gov/pubmed/39377518
https://www.proquest.com/docview/3114152436
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: A8Z
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1541-0420
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: ABDBF
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0006-341X
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3RoEpwQJB-EErRtqraQ7Ul63Vs50haUlQBvSRVerJ27XUEBwP5QIJf3xnv2sZqJGgvVmQl62jnefzGM_MG4EMY4TNW9gWnpzf3U6E58jjDDbJlL9VGeSm9Gjg7D07G_o9Jb1KPkiu6Sxb6S3K_sq_kf6yK59Cu1CX7D5atFsUT-Bnti0e0MB6fZOOBujNFE2Rui7n5dHmRIoNELzGb0zyUqa1yta3anzMSv6ROqVs1K7qbXDFHI7FL7fik2l_XwFvH9Fvl06yGUlHXOy9T9oWnQLpa5W9-UQdykly4diA3o7t8veD5RaGafOgRfcHxzrbJE7PinHOjdiCTg4u_0jtb5SrSFaDx7cPlpTKlq20IYZ__jIfj09N4dDwZfby-4TQjjHLpbmDKM1j30Id3W7B-NPg2GD4QWbY1puXfq0Q65aG96KG7ZIOENBob_4ovCp4x2oYtFyCwI2vtHVgzeRue25Ghd23YPKt0dudt2KBYwUptv4DvJRxYEw7MwoHVcGAEB1bCgTk4MAeHlzAeHo--nnA3J4MnSC4WPBOZ0qEJUoz2wm6adSMV6khkfbzrvDBRocoiJXQqlTQy6qnAM12RYVhlkOAlQstX0MqvcrMLrGdwSSG17qXC16GvkcCoINKKwta-7HfgU7lx8bWVQ4ltGYOM7RbHbos78B739dEvvSu3PUa3RrkqlZur5TyWGKcjtfRl0IHX1h7VWqThSNnCvSf8-g1s1Kjeh9ZitjRvkUYu9IFDzx9nb3gj
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+network-guided+sparse+regression+with+flexible+varying+effects&rft.jtitle=Biometrics&rft.au=Ren%2C+Yangfan&rft.au=Peterson%2C+Christine+B&rft.au=Vannucci%2C+Marina&rft.date=2024-10-03&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=80&rft.issue=4&rft_id=info:doi/10.1093%2Fbiomtc%2Fujae111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon