Bayesian network-guided sparse regression with flexible varying effects
In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the...
        Saved in:
      
    
          | Published in | Biometrics Vol. 80; no. 4 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Oxford University Press
    
        03.10.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0006-341X 1541-0420 1541-0420  | 
| DOI | 10.1093/biomtc/ujae111 | 
Cover
| Abstract | In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the predictors, which are the features utilized in the outcome prediction model, and the subject-level covariates, which modulate the effects of the predictors on the outcome. We construct a varying coefficients modeling framework where we infer a network among the predictor variables and utilize this network information to encourage the selection of related predictors. We employ variable selection spike-and-slab priors that enable the selection of both network-linked predictor variables and covariates that modify the predictor effects. We demonstrate through simulation studies that our method outperforms existing alternative methods in terms of both feature selection and predictive accuracy. We illustrate VERGE with an application to characterizing the influence of gut microbiome features on obesity, where we identify a set of microbial taxa and their ecological dependence relations. We allow subject-level covariates, including sex and dietary intake variables to modify the coefficients of the microbiome predictors, providing additional insight into the interplay between these factors. | 
    
|---|---|
| AbstractList | In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the predictors, which are the features utilized in the outcome prediction model, and the subject-level covariates, which modulate the effects of the predictors on the outcome. We construct a varying coefficients modeling framework where we infer a network among the predictor variables and utilize this network information to encourage the selection of related predictors. We employ variable selection spike-and-slab priors that enable the selection of both network-linked predictor variables and covariates that modify the predictor effects. We demonstrate through simulation studies that our method outperforms existing alternative methods in terms of both feature selection and predictive accuracy. We illustrate VERGE with an application to characterizing the influence of gut microbiome features on obesity, where we identify a set of microbial taxa and their ecological dependence relations. We allow subject-level covariates, including sex and dietary intake variables to modify the coefficients of the microbiome predictors, providing additional insight into the interplay between these factors. In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the predictors, which are the features utilized in the outcome prediction model, and the subject-level covariates, which modulate the effects of the predictors on the outcome. We construct a varying coefficients modeling framework where we infer a network among the predictor variables and utilize this network information to encourage the selection of related predictors. We employ variable selection spike-and-slab priors that enable the selection of both network-linked predictor variables and covariates that modify the predictor effects. We demonstrate through simulation studies that our method outperforms existing alternative methods in terms of both feature selection and predictive accuracy. We illustrate VERGE with an application to characterizing the influence of gut microbiome features on obesity, where we identify a set of microbial taxa and their ecological dependence relations. We allow subject-level covariates, including sex and dietary intake variables to modify the coefficients of the microbiome predictors, providing additional insight into the interplay between these factors.In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the predictors, which are the features utilized in the outcome prediction model, and the subject-level covariates, which modulate the effects of the predictors on the outcome. We construct a varying coefficients modeling framework where we infer a network among the predictor variables and utilize this network information to encourage the selection of related predictors. We employ variable selection spike-and-slab priors that enable the selection of both network-linked predictor variables and covariates that modify the predictor effects. We demonstrate through simulation studies that our method outperforms existing alternative methods in terms of both feature selection and predictive accuracy. We illustrate VERGE with an application to characterizing the influence of gut microbiome features on obesity, where we identify a set of microbial taxa and their ecological dependence relations. We allow subject-level covariates, including sex and dietary intake variables to modify the coefficients of the microbiome predictors, providing additional insight into the interplay between these factors.  | 
    
| Author | Ren, Yangfan Vannucci, Marina Peterson, Christine B  | 
    
| Author_xml | – sequence: 1 givenname: Yangfan surname: Ren fullname: Ren, Yangfan – sequence: 2 givenname: Christine B orcidid: 0000-0003-3316-0468 surname: Peterson fullname: Peterson, Christine B – sequence: 3 givenname: Marina orcidid: 0000-0002-7360-5321 surname: Vannucci fullname: Vannucci, Marina email: marina@rice.edu  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39377518$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkD1PwzAQhi1URD9gZUQZYUjrs5PYGaGCgoTEAhJb5CTn4pLExU4o_fcEpbAyvTrpeU93z5SMGtsgIedA50BTvsiNrdti0W0UAsARmUAcQUgjRkdkQilNQh7B65hMvd_0YxpTdkLGPOVCxCAnZHWj9uiNaoIG25117-G6MyWWgd8q5zFwuHbovbFNsDPtW6Ar_DJ5hcGncnvTrAPUGovWn5JjrSqPZ4eckZe72-flffj4tHpYXj-GBZNRG2rQKheYlDRKBS01lUrkEnQqJWOiUEJpqSAvueLIZawShhS0EH0wKCDnM3I57N06-9Ghb7Pa-AKrSjVoO59xgAhiFvGkRy8OaJfXWGZbZ-r-6Oz3-R6YD0DhrPcO9R8CNPuxmw12s4PdvnA1FGy3_Y_9BnAlfgs | 
    
| Cites_doi | 10.1111/j.2517-6161.1982.tb01195.x 10.1214/009053604000000238 10.1201/9781003089018-1 10.1007/BF01890836 10.1080/10618600.2019.1648271 10.1111/biom.13335 10.1186/s12859-020-03911-w 10.1093/bioinformatics/btn081 10.1214/11-STS354 10.1126/science.1208344 10.1186/s13073-020-00813-7 10.1002/sim.6792 10.1080/01621459.2018.1434529 10.1198/jasa.2010.tm08177 10.1080/01621459.2012.737742 10.1016/j.csda.2015.01.003 10.3390/nu14010012 10.1371/journal.pcbi.1004226 10.1111/j.2517-6161.1993.tb01939.x 10.1214/14-BA916 10.1084/jem.20180448 10.1038/nature18846 10.3390/microorganisms8040573 10.1194/jlr.R036012 10.1111/j.1541-0420.2009.01333.x 10.1038/s41598-018-28126-1 10.1038/nature05414 10.1002/bimj.202000312 10.1093/biomet/asu031 10.1080/10618600.2019.1575744 10.1093/jaoac/93.1.221 10.1214/009053606000000281 10.1038/s41467-019-10440-5  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.  | 
    
| Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1093/biomtc/ujae111 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics Biology Mathematics  | 
    
| EISSN | 1541-0420 | 
    
| ExternalDocumentID | 39377518 10_1093_biomtc_ujae111 10.1093/biomtc/ujae111  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: National Science Foundation grantid: DMS-2113602  | 
    
| GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEOTA AEQDE AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGORE AGQPQ AGTJU AHGBF AHMBA AIAGR AIHAF AIURR AIWBW AJAOE AJBDE AJBYB AJNCP AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZM PHGZT PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX CITATION ESTFP H13 CGR CUY CVF ECM EIF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c284t-f1fab7e6d04970df08a7b81f988227ca7af8a1bd3a3e385a62e01f772e021c1b3 | 
    
| ISSN | 0006-341X 1541-0420  | 
    
| IngestDate | Mon Sep 29 06:30:39 EDT 2025 Thu Apr 03 07:07:54 EDT 2025 Thu Oct 16 04:37:07 EDT 2025 Mon Jun 30 08:34:41 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Gaussian process prior Bayesian variable selection varying coefficient model spike-and-slab prior graphical model  | 
    
| Language | English | 
    
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.  | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c284t-f1fab7e6d04970df08a7b81f988227ca7af8a1bd3a3e385a62e01f772e021c1b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0003-3316-0468 0000-0002-7360-5321  | 
    
| PMID | 39377518 | 
    
| PQID | 3114152436 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_3114152436 pubmed_primary_39377518 crossref_primary_10_1093_biomtc_ujae111 oup_primary_10_1093_biomtc_ujae111  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-Oct-03 | 
    
| PublicationDateYYYYMMDD | 2024-10-03 | 
    
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct-03 day: 03  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Biometrics | 
    
| PublicationTitleAlternate | Biometrics | 
    
| PublicationYear | 2024 | 
    
| Publisher | Oxford University Press | 
    
| Publisher_xml | – name: Oxford University Press | 
    
| References | Hastie (2025100720014387200_bib9) 1993; 55 Barbieri (2025100720014387200_bib2) 2004; 32 Li (2025100720014387200_bib16) 2019; 28 Sonnenburg (2025100720014387200_bib31) 2016; 535 Wang (2025100720014387200_bib37) 2015; 10 Bürgin (2025100720014387200_bib3) 2015; 86 Lin (2025100720014387200_bib17) 2014; 101 McCleary (2025100720014387200_bib19) 2010; 93 Pinart (2025100720014387200_bib26) 2021; 14 Vacca (2025100720014387200_bib34) 2020; 8 Aitchison (2025100720014387200_bib1) 1982; 44 Den Besten (2025100720014387200_bib5) 2013; 54 Reich (2025100720014387200_bib28) 2010; 66 Leeming (2025100720014387200_bib13) 2021; 13 Min (2025100720014387200_bib21) 2019; 10 Zhang (2025100720014387200_bib39) 2021; 77 Cleveland (2025100720014387200_bib4) 1991; 1 Kuo (2025100720014387200_bib11) 1998; 60 Neal (2025100720014387200_bib22) 1998; 6 Wu (2025100720014387200_bib38) 2011; 334 Ha (2025100720014387200_bib8) 2020; 21 George (2025100720014387200_bib7) 1997; 7 Li (2025100720014387200_bib14) 2008; 24 Marx (2025100720014387200_bib18) 2009 Ni (2025100720014387200_bib23) 2019; 114 Peters (2025100720014387200_bib24) 2018; 8 Kurtz (2025100720014387200_bib12) 2015; 11 Turnbaugh (2025100720014387200_bib33) 2006; 444 Scheipl (2025100720014387200_bib30) 2012; 107 Kim (2025100720014387200_bib10) 2021; 63 Meinshausen (2025100720014387200_bib20) 2006; 34 Peterson (2025100720014387200_bib25) 2016; 35 Durack (2025100720014387200_bib6) 2019; 216 Savitsky (2025100720014387200_bib29) 2011; 26 Wang (2025100720014387200_bib36) 2012; 4 Vannucci (2025100720014387200_bib35) 2021 Tibshirani (2025100720014387200_bib32) 2020; 29 Rasmussen (2025100720014387200_bib27) 2006 Li (2025100720014387200_bib15) 2010; 105  | 
    
| References_xml | – volume: 44 start-page: 139 year: 1982 ident: 2025100720014387200_bib1 article-title: The statistical analysis of compositional data publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1982.tb01195.x – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: 2025100720014387200_bib27 – volume: 32 start-page: 870 year: 2004 ident: 2025100720014387200_bib2 article-title: Optimal predictive model selection publication-title: Annals of Statistics doi: 10.1214/009053604000000238 – start-page: 3 volume-title: Handbook of Bayesian Variable Selection year: 2021 ident: 2025100720014387200_bib35 article-title: Discrete spike-and-slab priors: models and computational aspects doi: 10.1201/9781003089018-1 – volume: 1 start-page: 47 year: 1991 ident: 2025100720014387200_bib4 article-title: Computational methods for local regression publication-title: Statistics and Computing doi: 10.1007/BF01890836 – volume: 29 start-page: 215 year: 2020 ident: 2025100720014387200_bib32 article-title: A pliable lasso publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2019.1648271 – volume: 77 start-page: 824 year: 2021 ident: 2025100720014387200_bib39 article-title: Bayesian compositional regression with structured priors for microbiome feature selection publication-title: Biometrics doi: 10.1111/biom.13335 – volume: 21 start-page: 1 year: 2020 ident: 2025100720014387200_bib8 article-title: Compositional zero-inflated network estimation for microbiome data publication-title: BMC Bioinformatics doi: 10.1186/s12859-020-03911-w – volume: 24 start-page: 1175 year: 2008 ident: 2025100720014387200_bib14 article-title: Network-constrained regularization and variable selection for analysis of genomic data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn081 – volume: 26 start-page: 130 year: 2011 ident: 2025100720014387200_bib29 article-title: Variable selection for nonparametric Gaussian process priors: models and computational strategies publication-title: Statistical Science doi: 10.1214/11-STS354 – volume: 334 start-page: 105 year: 2011 ident: 2025100720014387200_bib38 article-title: Linking long-term dietary patterns with gut microbial enterotypes publication-title: Science doi: 10.1126/science.1208344 – volume: 4 start-page: 867 year: 2012 ident: 2025100720014387200_bib36 article-title: Bayesian graphical lasso models and efficient posterior computation publication-title: Bayesian Analysis – volume: 13 start-page: 1 year: 2021 ident: 2025100720014387200_bib13 article-title: The complexities of the diet-microbiome relationship: advances and perspectives publication-title: Genome Medicine doi: 10.1186/s13073-020-00813-7 – volume: 35 start-page: 1017 year: 2016 ident: 2025100720014387200_bib25 article-title: Joint Bayesian variable and graph selection for regression models with network-structured predictors publication-title: Statistics in Medicine doi: 10.1002/sim.6792 – volume: 114 start-page: 48 year: 2019 ident: 2025100720014387200_bib23 article-title: Bayesian hierarchical varying-sparsity regression models with application to cancer proteogenomics publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2018.1434529 – volume: 105 start-page: 1202 year: 2010 ident: 2025100720014387200_bib15 article-title: Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2010.tm08177 – volume: 107 start-page: 1518 year: 2012 ident: 2025100720014387200_bib30 article-title: Spike-and-slab priors for function selection in structured additive regression models publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2012.737742 – volume: 86 start-page: 65 year: 2015 ident: 2025100720014387200_bib3 article-title: Tree-based varying coefficient regression for longitudinal ordinal responses publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2015.01.003 – volume: 14 start-page: 12 year: 2021 ident: 2025100720014387200_bib26 article-title: Gut microbiome composition in obese and non-obese persons: a systematic review and meta-analysis publication-title: Nutrients doi: 10.3390/nu14010012 – volume: 11 start-page: e1004226 year: 2015 ident: 2025100720014387200_bib12 article-title: Sparse and compositionally robust inference of microbial ecological networks publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1004226 – volume: 55 start-page: 757 year: 1993 ident: 2025100720014387200_bib9 article-title: Varying-coefficient models publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology doi: 10.1111/j.2517-6161.1993.tb01939.x – volume: 10 start-page: 351 year: 2015 ident: 2025100720014387200_bib37 article-title: Scaling it up: stochastic search structure learning in graphical models publication-title: Bayesian Analysis doi: 10.1214/14-BA916 – volume: 216 start-page: 20 year: 2019 ident: 2025100720014387200_bib6 article-title: The gut microbiome: relationships with disease and opportunities for therapy publication-title: Journal of Experimental Medicine doi: 10.1084/jem.20180448 – volume: 60 start-page: 65 year: 1998 ident: 2025100720014387200_bib11 article-title: Variable selection for regression models publication-title: Sankhyā: The Indian Journal of Statistics, Series B – volume: 535 start-page: 56 year: 2016 ident: 2025100720014387200_bib31 article-title: Diet–microbiota interactions as moderators of human metabolism publication-title: Nature doi: 10.1038/nature18846 – volume: 8 start-page: 573 year: 2020 ident: 2025100720014387200_bib34 article-title: The controversial role of human gut Lachnospiraceae publication-title: Microorganisms doi: 10.3390/microorganisms8040573 – volume: 54 start-page: 2325 year: 2013 ident: 2025100720014387200_bib5 article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism publication-title: Journal of Lipid Research doi: 10.1194/jlr.R036012 – volume: 66 start-page: 772 year: 2010 ident: 2025100720014387200_bib28 article-title: Bayesian variable selection for multivariate spatially varying coefficient regression publication-title: Biometrics doi: 10.1111/j.1541-0420.2009.01333.x – volume: 8 start-page: 9749 year: 2018 ident: 2025100720014387200_bib24 article-title: A taxonomic signature of obesity in a large study of American adults publication-title: Scientific Reports doi: 10.1038/s41598-018-28126-1 – volume: 444 start-page: 1027 year: 2006 ident: 2025100720014387200_bib33 article-title: An obesity-associated gut microbiome with increased capacity for energy harvest publication-title: Nature doi: 10.1038/nature05414 – volume: 63 start-page: 1254 year: 2021 ident: 2025100720014387200_bib10 article-title: svreg: structural varying-coefficient regression to differentiate how regional brain atrophy affects motor impairment for Huntington disease severity groups publication-title: Biometrical Journal doi: 10.1002/bimj.202000312 – volume: 6 start-page: 475 year: 1998 ident: 2025100720014387200_bib22 article-title: Regression and classification using Gaussian process priors publication-title: Bayesian Statistics – volume: 101 start-page: 785 year: 2014 ident: 2025100720014387200_bib17 article-title: Variable selection in regression with compositional covariates publication-title: Biometrika doi: 10.1093/biomet/asu031 – volume: 28 start-page: 747 year: 2019 ident: 2025100720014387200_bib16 article-title: The graphical horseshoe estimator for inverse covariance matrices publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2019.1575744 – start-page: 19 volume-title: Statistical Modelling and Regression Structures year: 2009 ident: 2025100720014387200_bib18 article-title: P-spline varying coefficient models for complex data – volume: 7 start-page: 339 year: 1997 ident: 2025100720014387200_bib7 article-title: Approaches for Bayesian variable selection publication-title: Statistica Sinica – volume: 93 start-page: 221 year: 2010 ident: 2025100720014387200_bib19 article-title: Determination of total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: collaborative study publication-title: Journal of AOAC International doi: 10.1093/jaoac/93.1.221 – volume: 34 start-page: 1436 year: 2006 ident: 2025100720014387200_bib20 article-title: High-dimensional graphs and variable selection with the lasso publication-title: Annals of Statistics doi: 10.1214/009053606000000281 – volume: 10 start-page: 2408 year: 2019 ident: 2025100720014387200_bib21 article-title: Sex-specific association between gut microbiome and fat distribution publication-title: Nature Communications doi: 10.1038/s41467-019-10440-5  | 
    
| SSID | ssj0009502 | 
    
| Score | 2.4338608 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has... | 
    
| SourceID | proquest pubmed crossref oup  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| SubjectTerms | Bayes Theorem Computer Simulation Gastrointestinal Microbiome Humans Models, Statistical Obesity Regression Analysis  | 
    
| Title | Bayesian network-guided sparse regression with flexible varying effects | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39377518 https://www.proquest.com/docview/3114152436  | 
    
| Volume | 80 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 1541-0420 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: A8Z dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1541-0420 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: ABDBF dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0006-341X databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3RoEpwQJB-EErRtqraQ7Ul63Vs50haUlQBvSRVerJ27XUEBwP5QIJf3xnv2sZqJGgvVmQl62jnefzGM_MG4EMY4TNW9gWnpzf3U6E58jjDDbJlL9VGeSm9Gjg7D07G_o9Jb1KPkiu6Sxb6S3K_sq_kf6yK59Cu1CX7D5atFsUT-Bnti0e0MB6fZOOBujNFE2Rui7n5dHmRIoNELzGb0zyUqa1yta3anzMSv6ROqVs1K7qbXDFHI7FL7fik2l_XwFvH9Fvl06yGUlHXOy9T9oWnQLpa5W9-UQdykly4diA3o7t8veD5RaGafOgRfcHxzrbJE7PinHOjdiCTg4u_0jtb5SrSFaDx7cPlpTKlq20IYZ__jIfj09N4dDwZfby-4TQjjHLpbmDKM1j30Id3W7B-NPg2GD4QWbY1puXfq0Q65aG96KG7ZIOENBob_4ovCp4x2oYtFyCwI2vtHVgzeRue25Ghd23YPKt0dudt2KBYwUptv4DvJRxYEw7MwoHVcGAEB1bCgTk4MAeHlzAeHo--nnA3J4MnSC4WPBOZ0qEJUoz2wm6adSMV6khkfbzrvDBRocoiJXQqlTQy6qnAM12RYVhlkOAlQstX0MqvcrMLrGdwSSG17qXC16GvkcCoINKKwta-7HfgU7lx8bWVQ4ltGYOM7RbHbos78B739dEvvSu3PUa3RrkqlZur5TyWGKcjtfRl0IHX1h7VWqThSNnCvSf8-g1s1Kjeh9ZitjRvkUYu9IFDzx9nb3gj | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+network-guided+sparse+regression+with+flexible+varying+effects&rft.jtitle=Biometrics&rft.au=Ren%2C+Yangfan&rft.au=Peterson%2C+Christine+B&rft.au=Vannucci%2C+Marina&rft.date=2024-10-03&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=80&rft.issue=4&rft_id=info:doi/10.1093%2Fbiomtc%2Fujae111&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |