Estimating radiation source distribution from measured γ-ray energy spectra

Using machine learning, a method was developed to estimate the distribution of radiation sources arranged on a two-dimensional plane with high accuracy from the measured γ-ray energy spectra. A new machine learning method was used to construct a Spectrum Renormalization Filter (SRF) to convert the e...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Simulation in Science and Engineering Vol. 12; no. 1; pp. 233 - 248
Main Authors Suzuki, Kenji, Takase, Tsugiko, Kumada, Yuka, Matsumoto, Masaharu, Yamaguchi, Katsuhiko
Format Journal Article
LanguageEnglish
Published Japan Society for Simulation Technology 2025
Subjects
Online AccessGet full text
ISSN2188-5303
2188-5303
DOI10.15748/jasse.12.233

Cover

Abstract Using machine learning, a method was developed to estimate the distribution of radiation sources arranged on a two-dimensional plane with high accuracy from the measured γ-ray energy spectra. A new machine learning method was used to construct a Spectrum Renormalization Filter (SRF) to convert the experimental data to be verified into a spectrum close to the shape of a simulation. The method using SRF produced more accurate estimation results than a method improving the accuracy of the simulation data used for training the estimation of the radiation sources distribution.
AbstractList Using machine learning, a method was developed to estimate the distribution of radiation sources arranged on a two-dimensional plane with high accuracy from the measured γ-ray energy spectra. A new machine learning method was used to construct a Spectrum Renormalization Filter (SRF) to convert the experimental data to be verified into a spectrum close to the shape of a simulation. The method using SRF produced more accurate estimation results than a method improving the accuracy of the simulation data used for training the estimation of the radiation sources distribution.
Author Kumada, Yuka
Suzuki, Kenji
Yamaguchi, Katsuhiko
Matsumoto, Masaharu
Takase, Tsugiko
Author_xml – sequence: 1
  fullname: Suzuki, Kenji
  organization: Faculty of Symbiotic Systems Science, Fukushima University
– sequence: 1
  fullname: Takase, Tsugiko
  organization: Faculty of Symbiotic Systems Science, Fukushima University
– sequence: 1
  fullname: Kumada, Yuka
  organization: Faculty of Symbiotic Systems Science, Fukushima University
– sequence: 1
  fullname: Matsumoto, Masaharu
  organization: Information Technology Center, Fukushima University
– sequence: 1
  fullname: Yamaguchi, Katsuhiko
  organization: Faculty of Symbiotic Systems Science, Fukushima University
BookMark eNqFkE1qwzAQhUVJoWmaZfe-gF1JI9nOqpSQ_kCgm3YtJGuUOjhykGyKz9V79Ew1SUi762oeM98beO-aTHzrkZBbRjMmC1HebXWMmDGecYALMuWsLFMJFCZ_9BWZx7illALQnIOckvUqdvVOd7XfJEHbelStT2LbhwoTW8cu1KY_7Fxod8kOdewD2uT7Kw16SNBj2AxJ3GPVBX1DLp1uIs5Pc0beH1dvy-d0_fr0snxYpxUvRZc6umAUpTEGC-SLEphwec6syAFKaqWhApmjpoBFITkDa5yQjhngiBa1gBnJjn97v9fDp24atQ9jijAoRtWhDnWoQzGuxjpGQ3o0VKGNMaD7l78_8tvY6Q2eaR26umrwF2Ynx_lSfeig0MMPKhp98Q
Cites_doi 10.15669/pnst.4.76
10.15748/jasse.7.71
10.1016/j.anucene.2018.09.022
10.1002/9783527805600
10.1038/s41598-021-81546-4
10.1080/00223131.2023.2275736
ContentType Journal Article
Copyright 2025 Japan Society for Simulation Technology
Copyright_xml – notice: 2025 Japan Society for Simulation Technology
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.15748/jasse.12.233
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2188-5303
EndPage 248
ExternalDocumentID 10.15748/jasse.12.233
10_15748_jasse_12_233
article_jasse_12_1_12_233_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c284t-f0910e5bbbe7e298314f661d463380d5b04e1f0b73975213dbf45f1b32eedea43
ISSN 2188-5303
IngestDate Tue Aug 19 23:37:06 EDT 2025
Wed Oct 01 06:04:33 EDT 2025
Wed Sep 03 06:30:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c284t-f0910e5bbbe7e298314f661d463380d5b04e1f0b73975213dbf45f1b32eedea43
OpenAccessLink https://www.jstage.jst.go.jp/article/jasse/12/1/12_233/_pdf
PageCount 16
ParticipantIDs unpaywall_primary_10_15748_jasse_12_233
crossref_primary_10_15748_jasse_12_233
jstage_primary_article_jasse_12_1_12_233_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Journal of Advanced Simulation in Science and Engineering
PublicationTitleAlternate JASSE
PublicationYear 2025
Publisher Japan Society for Simulation Technology
Publisher_xml – name: Japan Society for Simulation Technology
References [9] T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, Y. Matsuya, N. Matsuda, Y. Hirata, T. Sekikawa, L. Yao, P.E. Tsai, H.N. Hunter, H. Iwase, Y. Sakaki, K. Sugihara, N. Shigyo, L. Sihver and K. Niita: Recent improvements of the Particle and Heavy Ion Transport code System - PHITS version 3.33, Journal of Nuclear Science and Technology, 61 (2024), 127-135.
[1] IAEA: The Fukushima Daiichi Accident Technical Volume 1/5 Description and Context of the Accident, Vienna, Austria, 2015.
[6] T. Uemura, K. Yamaguchi: Estimation of radiation source distribution using machine learning with γ ray energy spectra, Journal of Advanced Simulation in Science and Engineering, 7 (2020), 71-81.
[7] J. Bogard, D. Downing, R. Coleman, K. Eckerman, J. Turner: Atoms, Radiation, and Radiation Protection fourth edition, Wiley-VCH, Verlag Chemie, 2022.
[8] I. Goodfellow, Y. Bengio A. Courville: DEEP LEARNING, The MIT Press, Cambridge, 2016.
[2] Y. Sanada, T. Sugita, Y. Nishizawa, A. Kondo, T. Torii: The aerial radiation monitoring in Japan after the Fukushima Daiichi nuclear power plant accident, Progress in Nuclear Science and Technology, 4 (2014), 76-80.
[3] Government of Japan: Events and highlights on the progress related to recovery operations at TEPCO’s Fukushima Daiichi Nuclear Power Station, Ministry of Foreign Affairs of Japan, Tokyo, 2023.
[5] S. Sugaya, T. Endo, Y. Akio: Inverse estimation methods of unknown radioactive source for fuel debris search, Annals of Nuclear Energy, 124 (2019), 49-57.
[4] M. Sasaki, Y. Sanada, E. Katengeza, A. Yamamoto: New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks, Scientific Reports, 11 (2021), 1857.
1
2
3
4
5
6
7
8
9
References_xml – reference: [4] M. Sasaki, Y. Sanada, E. Katengeza, A. Yamamoto: New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks, Scientific Reports, 11 (2021), 1857.
– reference: [3] Government of Japan: Events and highlights on the progress related to recovery operations at TEPCO’s Fukushima Daiichi Nuclear Power Station, Ministry of Foreign Affairs of Japan, Tokyo, 2023.
– reference: [5] S. Sugaya, T. Endo, Y. Akio: Inverse estimation methods of unknown radioactive source for fuel debris search, Annals of Nuclear Energy, 124 (2019), 49-57.
– reference: [2] Y. Sanada, T. Sugita, Y. Nishizawa, A. Kondo, T. Torii: The aerial radiation monitoring in Japan after the Fukushima Daiichi nuclear power plant accident, Progress in Nuclear Science and Technology, 4 (2014), 76-80.
– reference: [9] T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, Y. Matsuya, N. Matsuda, Y. Hirata, T. Sekikawa, L. Yao, P.E. Tsai, H.N. Hunter, H. Iwase, Y. Sakaki, K. Sugihara, N. Shigyo, L. Sihver and K. Niita: Recent improvements of the Particle and Heavy Ion Transport code System - PHITS version 3.33, Journal of Nuclear Science and Technology, 61 (2024), 127-135.
– reference: [1] IAEA: The Fukushima Daiichi Accident Technical Volume 1/5 Description and Context of the Accident, Vienna, Austria, 2015.
– reference: [7] J. Bogard, D. Downing, R. Coleman, K. Eckerman, J. Turner: Atoms, Radiation, and Radiation Protection fourth edition, Wiley-VCH, Verlag Chemie, 2022.
– reference: [8] I. Goodfellow, Y. Bengio A. Courville: DEEP LEARNING, The MIT Press, Cambridge, 2016.
– reference: [6] T. Uemura, K. Yamaguchi: Estimation of radiation source distribution using machine learning with γ ray energy spectra, Journal of Advanced Simulation in Science and Engineering, 7 (2020), 71-81.
– ident: 3
– ident: 1
– ident: 2
  doi: 10.15669/pnst.4.76
– ident: 6
  doi: 10.15748/jasse.7.71
– ident: 5
  doi: 10.1016/j.anucene.2018.09.022
– ident: 7
  doi: 10.1002/9783527805600
– ident: 4
  doi: 10.1038/s41598-021-81546-4
– ident: 8
– ident: 9
  doi: 10.1080/00223131.2023.2275736
SSID ssj0003306235
Score 2.2822337
Snippet Using machine learning, a method was developed to estimate the distribution of radiation sources arranged on a two-dimensional plane with high accuracy from...
SourceID unpaywall
crossref
jstage
SourceType Open Access Repository
Index Database
Publisher
StartPage 233
SubjectTerms Co-60
Cs-137
Machine learning
Monte Carlo simulation
radiation source distribution estimation
Title Estimating radiation source distribution from measured γ-ray energy spectra
URI https://www.jstage.jst.go.jp/article/jasse/12/1/12_233/_article/-char/en
https://www.jstage.jst.go.jp/article/jasse/12/1/12_233/_pdf
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Advanced Simulation in Science and Engineering, 2025, Vol.12(1), pp.233-248
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2188-5303
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003306235
  issn: 2188-5303
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKQIIbBAJE-ZMvGFxUgTi2G3MJU9GEKBKik8ZVZNf26Lq2U5sIbW_Cc_AePBPHduIEVtDgJqpc20nO-XL8-djHB6GnXGnGKTeJ5lQnTEmaCJiGJIRYn0VVDP1EcfxhuH_A3h3yw17vW2fXUlWqF9PzrXEl_6NVKAO9uijZf9Bs7BQK4DfoF66gYbheSscj-D4d4_TpgnQQ8iC4493KS0xmFYJIFsEdqAe7e6PdNzRZy7OBCaF_Pt5yLf_EVJt9Ap9mizrbl3OTNGbBud47xxq2i0MLqT01_VzNo_EfyxIktPLJmwZjuZFf5LpqV6bOq5BGG-z_8az1KsxlyP842VRHs_mq66oIAc3BlgGREAmnabBlZktZY4yzC6CrLSulnUE6C8dzXrD_PGfCJx7YbIxz88ZW3XO2fxv_4q5ENx9yHRS-eUGyAppfQVezHEiMW-__KKL7jsJUK_PpW-Nr1Ce4uh5edh_gF8Zz7RhIvzvN4Xq1PJVnX-XJSYfPTG6hm7V68euAqtuoZ5Z30PsWUTgiCgdE4S6isEMUbhCFf3x3aMIBTbhG01108HY02dtP6nwbyRRISplYxx0NV0qZ3GSvBCXMwptrNqRUpJqrlBliU5UDhwXWR7WyjFuiaAZEy0hG76Gd5Wpp7iPMiBUZkRyGUs3ynEiSWatTK6ZAOK0xffSskUlxGo5VKbaKv49EkFisVn9tbS1SV43_uHhFMA999DzK-O83eXDZp3mIbjhcBxfcI7RTrivzGEhpqZ54ePwE8JaUAA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+radiation+source+distribution+from+measured+%CE%B3-ray+energy+spectra&rft.jtitle=Journal+of+Advanced+Simulation+in+Science+and+Engineering&rft.au=Kumada%2C+Yuka&rft.au=Matsumoto%2C+Masaharu&rft.au=Suzuki%2C+Kenji&rft.au=Takase%2C+Tsugiko&rft.date=2025&rft.issn=2188-5303&rft.eissn=2188-5303&rft.volume=12&rft.issue=1&rft.spage=233&rft.epage=248&rft_id=info:doi/10.15748%2Fjasse.12.233&rft.externalDBID=n%2Fa&rft.externalDocID=10_15748_jasse_12_233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2188-5303&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2188-5303&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2188-5303&client=summon