Estimating radiation source distribution from measured γ-ray energy spectra
Using machine learning, a method was developed to estimate the distribution of radiation sources arranged on a two-dimensional plane with high accuracy from the measured γ-ray energy spectra. A new machine learning method was used to construct a Spectrum Renormalization Filter (SRF) to convert the e...
Saved in:
Published in | Journal of Advanced Simulation in Science and Engineering Vol. 12; no. 1; pp. 233 - 248 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Japan Society for Simulation Technology
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2188-5303 2188-5303 |
DOI | 10.15748/jasse.12.233 |
Cover
Abstract | Using machine learning, a method was developed to estimate the distribution of radiation sources arranged on a two-dimensional plane with high accuracy from the measured γ-ray energy spectra. A new machine learning method was used to construct a Spectrum Renormalization Filter (SRF) to convert the experimental data to be verified into a spectrum close to the shape of a simulation. The method using SRF produced more accurate estimation results than a method improving the accuracy of the simulation data used for training the estimation of the radiation sources distribution. |
---|---|
AbstractList | Using machine learning, a method was developed to estimate the distribution of radiation sources arranged on a two-dimensional plane with high accuracy from the measured γ-ray energy spectra. A new machine learning method was used to construct a Spectrum Renormalization Filter (SRF) to convert the experimental data to be verified into a spectrum close to the shape of a simulation. The method using SRF produced more accurate estimation results than a method improving the accuracy of the simulation data used for training the estimation of the radiation sources distribution. |
Author | Kumada, Yuka Suzuki, Kenji Yamaguchi, Katsuhiko Matsumoto, Masaharu Takase, Tsugiko |
Author_xml | – sequence: 1 fullname: Suzuki, Kenji organization: Faculty of Symbiotic Systems Science, Fukushima University – sequence: 1 fullname: Takase, Tsugiko organization: Faculty of Symbiotic Systems Science, Fukushima University – sequence: 1 fullname: Kumada, Yuka organization: Faculty of Symbiotic Systems Science, Fukushima University – sequence: 1 fullname: Matsumoto, Masaharu organization: Information Technology Center, Fukushima University – sequence: 1 fullname: Yamaguchi, Katsuhiko organization: Faculty of Symbiotic Systems Science, Fukushima University |
BookMark | eNqFkE1qwzAQhUVJoWmaZfe-gF1JI9nOqpSQ_kCgm3YtJGuUOjhykGyKz9V79Ew1SUi762oeM98beO-aTHzrkZBbRjMmC1HebXWMmDGecYALMuWsLFMJFCZ_9BWZx7illALQnIOckvUqdvVOd7XfJEHbelStT2LbhwoTW8cu1KY_7Fxod8kOdewD2uT7Kw16SNBj2AxJ3GPVBX1DLp1uIs5Pc0beH1dvy-d0_fr0snxYpxUvRZc6umAUpTEGC-SLEphwec6syAFKaqWhApmjpoBFITkDa5yQjhngiBa1gBnJjn97v9fDp24atQ9jijAoRtWhDnWoQzGuxjpGQ3o0VKGNMaD7l78_8tvY6Q2eaR26umrwF2Ynx_lSfeig0MMPKhp98Q |
Cites_doi | 10.15669/pnst.4.76 10.15748/jasse.7.71 10.1016/j.anucene.2018.09.022 10.1002/9783527805600 10.1038/s41598-021-81546-4 10.1080/00223131.2023.2275736 |
ContentType | Journal Article |
Copyright | 2025 Japan Society for Simulation Technology |
Copyright_xml | – notice: 2025 Japan Society for Simulation Technology |
DBID | AAYXX CITATION ADTOC UNPAY |
DOI | 10.15748/jasse.12.233 |
DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2188-5303 |
EndPage | 248 |
ExternalDocumentID | 10.15748/jasse.12.233 10_15748_jasse_12_233 article_jasse_12_1_12_233_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT AAYXX CITATION ADTOC UNPAY |
ID | FETCH-LOGICAL-c284t-f0910e5bbbe7e298314f661d463380d5b04e1f0b73975213dbf45f1b32eedea43 |
ISSN | 2188-5303 |
IngestDate | Tue Aug 19 23:37:06 EDT 2025 Wed Oct 01 06:04:33 EDT 2025 Wed Sep 03 06:30:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c284t-f0910e5bbbe7e298314f661d463380d5b04e1f0b73975213dbf45f1b32eedea43 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jasse/12/1/12_233/_pdf |
PageCount | 16 |
ParticipantIDs | unpaywall_primary_10_15748_jasse_12_233 crossref_primary_10_15748_jasse_12_233 jstage_primary_article_jasse_12_1_12_233_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Advanced Simulation in Science and Engineering |
PublicationTitleAlternate | JASSE |
PublicationYear | 2025 |
Publisher | Japan Society for Simulation Technology |
Publisher_xml | – name: Japan Society for Simulation Technology |
References | [9] T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, Y. Matsuya, N. Matsuda, Y. Hirata, T. Sekikawa, L. Yao, P.E. Tsai, H.N. Hunter, H. Iwase, Y. Sakaki, K. Sugihara, N. Shigyo, L. Sihver and K. Niita: Recent improvements of the Particle and Heavy Ion Transport code System - PHITS version 3.33, Journal of Nuclear Science and Technology, 61 (2024), 127-135. [1] IAEA: The Fukushima Daiichi Accident Technical Volume 1/5 Description and Context of the Accident, Vienna, Austria, 2015. [6] T. Uemura, K. Yamaguchi: Estimation of radiation source distribution using machine learning with γ ray energy spectra, Journal of Advanced Simulation in Science and Engineering, 7 (2020), 71-81. [7] J. Bogard, D. Downing, R. Coleman, K. Eckerman, J. Turner: Atoms, Radiation, and Radiation Protection fourth edition, Wiley-VCH, Verlag Chemie, 2022. [8] I. Goodfellow, Y. Bengio A. Courville: DEEP LEARNING, The MIT Press, Cambridge, 2016. [2] Y. Sanada, T. Sugita, Y. Nishizawa, A. Kondo, T. Torii: The aerial radiation monitoring in Japan after the Fukushima Daiichi nuclear power plant accident, Progress in Nuclear Science and Technology, 4 (2014), 76-80. [3] Government of Japan: Events and highlights on the progress related to recovery operations at TEPCO’s Fukushima Daiichi Nuclear Power Station, Ministry of Foreign Affairs of Japan, Tokyo, 2023. [5] S. Sugaya, T. Endo, Y. Akio: Inverse estimation methods of unknown radioactive source for fuel debris search, Annals of Nuclear Energy, 124 (2019), 49-57. [4] M. Sasaki, Y. Sanada, E. Katengeza, A. Yamamoto: New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks, Scientific Reports, 11 (2021), 1857. 1 2 3 4 5 6 7 8 9 |
References_xml | – reference: [4] M. Sasaki, Y. Sanada, E. Katengeza, A. Yamamoto: New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks, Scientific Reports, 11 (2021), 1857. – reference: [3] Government of Japan: Events and highlights on the progress related to recovery operations at TEPCO’s Fukushima Daiichi Nuclear Power Station, Ministry of Foreign Affairs of Japan, Tokyo, 2023. – reference: [5] S. Sugaya, T. Endo, Y. Akio: Inverse estimation methods of unknown radioactive source for fuel debris search, Annals of Nuclear Energy, 124 (2019), 49-57. – reference: [2] Y. Sanada, T. Sugita, Y. Nishizawa, A. Kondo, T. Torii: The aerial radiation monitoring in Japan after the Fukushima Daiichi nuclear power plant accident, Progress in Nuclear Science and Technology, 4 (2014), 76-80. – reference: [9] T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, Y. Matsuya, N. Matsuda, Y. Hirata, T. Sekikawa, L. Yao, P.E. Tsai, H.N. Hunter, H. Iwase, Y. Sakaki, K. Sugihara, N. Shigyo, L. Sihver and K. Niita: Recent improvements of the Particle and Heavy Ion Transport code System - PHITS version 3.33, Journal of Nuclear Science and Technology, 61 (2024), 127-135. – reference: [1] IAEA: The Fukushima Daiichi Accident Technical Volume 1/5 Description and Context of the Accident, Vienna, Austria, 2015. – reference: [7] J. Bogard, D. Downing, R. Coleman, K. Eckerman, J. Turner: Atoms, Radiation, and Radiation Protection fourth edition, Wiley-VCH, Verlag Chemie, 2022. – reference: [8] I. Goodfellow, Y. Bengio A. Courville: DEEP LEARNING, The MIT Press, Cambridge, 2016. – reference: [6] T. Uemura, K. Yamaguchi: Estimation of radiation source distribution using machine learning with γ ray energy spectra, Journal of Advanced Simulation in Science and Engineering, 7 (2020), 71-81. – ident: 3 – ident: 1 – ident: 2 doi: 10.15669/pnst.4.76 – ident: 6 doi: 10.15748/jasse.7.71 – ident: 5 doi: 10.1016/j.anucene.2018.09.022 – ident: 7 doi: 10.1002/9783527805600 – ident: 4 doi: 10.1038/s41598-021-81546-4 – ident: 8 – ident: 9 doi: 10.1080/00223131.2023.2275736 |
SSID | ssj0003306235 |
Score | 2.2822337 |
Snippet | Using machine learning, a method was developed to estimate the distribution of radiation sources arranged on a two-dimensional plane with high accuracy from... |
SourceID | unpaywall crossref jstage |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 233 |
SubjectTerms | Co-60 Cs-137 Machine learning Monte Carlo simulation radiation source distribution estimation |
Title | Estimating radiation source distribution from measured γ-ray energy spectra |
URI | https://www.jstage.jst.go.jp/article/jasse/12/1/12_233/_article/-char/en https://www.jstage.jst.go.jp/article/jasse/12/1/12_233/_pdf |
UnpaywallVersion | publishedVersion |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Advanced Simulation in Science and Engineering, 2025, Vol.12(1), pp.233-248 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2188-5303 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003306235 issn: 2188-5303 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKQIIbBAJE-ZMvGFxUgTi2G3MJU9GEKBKik8ZVZNf26Lq2U5sIbW_Cc_AePBPHduIEVtDgJqpc20nO-XL8-djHB6GnXGnGKTeJ5lQnTEmaCJiGJIRYn0VVDP1EcfxhuH_A3h3yw17vW2fXUlWqF9PzrXEl_6NVKAO9uijZf9Bs7BQK4DfoF66gYbheSscj-D4d4_TpgnQQ8iC4493KS0xmFYJIFsEdqAe7e6PdNzRZy7OBCaF_Pt5yLf_EVJt9Ap9mizrbl3OTNGbBud47xxq2i0MLqT01_VzNo_EfyxIktPLJmwZjuZFf5LpqV6bOq5BGG-z_8az1KsxlyP842VRHs_mq66oIAc3BlgGREAmnabBlZktZY4yzC6CrLSulnUE6C8dzXrD_PGfCJx7YbIxz88ZW3XO2fxv_4q5ENx9yHRS-eUGyAppfQVezHEiMW-__KKL7jsJUK_PpW-Nr1Ce4uh5edh_gF8Zz7RhIvzvN4Xq1PJVnX-XJSYfPTG6hm7V68euAqtuoZ5Z30PsWUTgiCgdE4S6isEMUbhCFf3x3aMIBTbhG01108HY02dtP6nwbyRRISplYxx0NV0qZ3GSvBCXMwptrNqRUpJqrlBliU5UDhwXWR7WyjFuiaAZEy0hG76Gd5Wpp7iPMiBUZkRyGUs3ynEiSWatTK6ZAOK0xffSskUlxGo5VKbaKv49EkFisVn9tbS1SV43_uHhFMA999DzK-O83eXDZp3mIbjhcBxfcI7RTrivzGEhpqZ54ePwE8JaUAA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+radiation+source+distribution+from+measured+%CE%B3-ray+energy+spectra&rft.jtitle=Journal+of+Advanced+Simulation+in+Science+and+Engineering&rft.au=Kumada%2C+Yuka&rft.au=Matsumoto%2C+Masaharu&rft.au=Suzuki%2C+Kenji&rft.au=Takase%2C+Tsugiko&rft.date=2025&rft.issn=2188-5303&rft.eissn=2188-5303&rft.volume=12&rft.issue=1&rft.spage=233&rft.epage=248&rft_id=info:doi/10.15748%2Fjasse.12.233&rft.externalDBID=n%2Fa&rft.externalDocID=10_15748_jasse_12_233 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2188-5303&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2188-5303&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2188-5303&client=summon |