Hand gesture recognition algorithm combining hand-type adaptive algorithm and effective-area ratio for efficient edge computing

Most existing gesture recognition algorithms have low recognition rates under rotation, translation, and scaling of hand images as well as different hand types. We propose a new hand gesture recognition algorithm that combines the hand-type adaptive algorithm and effective-area ratio based on featur...

Full description

Saved in:
Bibliographic Details
Published inJournal of electronic imaging Vol. 30; no. 6; p. 063026
Main Authors Zhang, Qiang, Xiao, Shanlin, Yu, Zhiyi, Zheng, Huanliang, Wang, Peng
Format Journal Article
LanguageEnglish
Published Society of Photo-Optical Instrumentation Engineers 01.11.2021
Subjects
Online AccessGet full text
ISSN1017-9909
1560-229X
DOI10.1117/1.JEI.30.6.063026

Cover

Abstract Most existing gesture recognition algorithms have low recognition rates under rotation, translation, and scaling of hand images as well as different hand types. We propose a new hand gesture recognition algorithm that combines the hand-type adaptive algorithm and effective-area ratio based on feature matching. Samples are divided into several groups according to the subjects’ palm shapes and the algorithm is trained using self-collected data. The user’s hand type is paired with one of the sample libraries by the hand-type adaptive algorithm. To further improve the accuracy, the effective-area ratio of the gesture is calculated based on the minimum bounding rectangle, and the preliminary gesture is recognized by the effective-area ratio feature method. The results of experiments demonstrate that the proposed algorithm could accurately recognize gestures in real time and exhibits good adaptability to different hand types. The overall recognition rate is over 94%. The recognition rate still exceeds 93% when hand gesture images are rotated, translated, or scaled.
AbstractList Most existing gesture recognition algorithms have low recognition rates under rotation, translation, and scaling of hand images as well as different hand types. We propose a new hand gesture recognition algorithm that combines the hand-type adaptive algorithm and effective-area ratio based on feature matching. Samples are divided into several groups according to the subjects’ palm shapes and the algorithm is trained using self-collected data. The user’s hand type is paired with one of the sample libraries by the hand-type adaptive algorithm. To further improve the accuracy, the effective-area ratio of the gesture is calculated based on the minimum bounding rectangle, and the preliminary gesture is recognized by the effective-area ratio feature method. The results of experiments demonstrate that the proposed algorithm could accurately recognize gestures in real time and exhibits good adaptability to different hand types. The overall recognition rate is over 94%. The recognition rate still exceeds 93% when hand gesture images are rotated, translated, or scaled.
Author Wang, Peng
Zheng, Huanliang
Xiao, Shanlin
Yu, Zhiyi
Zhang, Qiang
Author_xml – sequence: 1
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhangqiang_xs@qq.com
  organization: Sun Yat-sen University, School of Microelectronics Science and Technology, Zhuhai, China
– sequence: 2
  givenname: Shanlin
  surname: Xiao
  fullname: Xiao, Shanlin
  email: xiaoshlin@mail.sysu.edu.cn
  organization: Sun Yat-sen University, School of Electronics and Information Technology, Guangzhou, China
– sequence: 3
  givenname: Zhiyi
  orcidid: 0000-0002-8802-0457
  surname: Yu
  fullname: Yu, Zhiyi
  email: yuzhiyi@mail.sysu.edu.cn
  organization: Sun Yat-sen University, School of Electronics and Information Technology, Guangzhou, China
– sequence: 4
  givenname: Huanliang
  surname: Zheng
  fullname: Zheng, Huanliang
  email: zhhliang8@mail2.sysu.edu.cn
  organization: Sun Yat-sen University, School of Electronics and Information Technology, Guangzhou, China
– sequence: 5
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  email: spireqiang@163.com
  organization: Harbin University of Science and Technology, School of Electrical and Electronic Engineering, Harbin, China
BookMark eNp9kM1KAzEURoNU0FYfwF1eYMb8jJnJUqTaSsGNgruQJjfTlDYZMqnQla_uDHUhLrpKSL5zuPebokmIARC6o6SklNb3tHydL0tOSlESwQkTF-iaPghSMCY_J8Od0LqQksgrNO37LSGUNhW9Rt8LHSxuoc-HBDiBiW3w2ceA9a6NyefNHpu4X_vgQ4s3Q7jIxw6wtrrL_gv-xEYROAdmfC90Ao2THlTYxTR-eOMhZAy2hVHZHfKgvEGXTu96uP09Z-jjef7-tChWby_Lp8dVYVhT5QJcI9fG1g6I0FpyW0PFgUnN3FqKuiLWNNwIJohxhmhbNUbWhlkha8YqbvkM1SevSbHvEzhlfB6nCzlpv1OUqLFHRdXQo-JECXXqcSDpP7JLfq_T8SxTnpi-86C28ZDCsNwZ4AeSIone
CitedBy_id crossref_primary_10_1177_00368504221086362
crossref_primary_10_1016_j_procs_2022_12_106
ContentType Journal Article
Copyright 2021 SPIE and IS&T
Copyright_xml – notice: 2021 SPIE and IS&T
DBID AAYXX
CITATION
DOI 10.1117/1.JEI.30.6.063026
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Visual Arts
Engineering
EISSN 1560-229X
EndPage 063026
ExternalDocumentID 10_1117_1_JEI_30_6_063026
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61834005; 61902443
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2017YFA0206200; 2018YFB2202601
GroupedDBID 0R
29K
4.4
5GY
ABPTK
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
D-I
DU5
EBS
F5P
FQ0
G8K
HZ
ITE
M4X
O9-
P2P
RNS
SJN
SPBNH
TAE
ULE
UT2
.DC
0R~
AAJMC
AAYXX
ABDPE
ABJNI
ACGFO
ADMLS
AKROS
CITATION
HZ~
ID FETCH-LOGICAL-c284t-ef89bcd7fe06aa93d7e43e29a2fb96740dc83c6260cfc0ad48c97c2d6972243d3
ISSN 1017-9909
IngestDate Tue Jul 01 01:22:33 EDT 2025
Thu Apr 24 23:02:28 EDT 2025
Wed Jan 05 04:38:29 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords effective-area ratio
gesture recognition
hand-type adaptive
area-perimeter ratio
edge computing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c284t-ef89bcd7fe06aa93d7e43e29a2fb96740dc83c6260cfc0ad48c97c2d6972243d3
ORCID 0000-0002-8802-0457
PageCount 1
ParticipantIDs crossref_citationtrail_10_1117_1_JEI_30_6_063026
spie_journals_10_1117_1_JEI_30_6_063026
crossref_primary_10_1117_1_JEI_30_6_063026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of electronic imaging
PublicationTitleAlternate J. Electron. Imaging
PublicationYear 2021
Publisher Society of Photo-Optical Instrumentation Engineers
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
SSID ssj0011841
Score 2.339036
Snippet Most existing gesture recognition algorithms have low recognition rates under rotation, translation, and scaling of hand images as well as different hand...
SourceID crossref
spie
SourceType Enrichment Source
Index Database
Publisher
StartPage 063026
Title Hand gesture recognition algorithm combining hand-type adaptive algorithm and effective-area ratio for efficient edge computing
URI http://www.dx.doi.org/10.1117/1.JEI.30.6.063026
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1560-229X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011841
  issn: 1017-9909
  databaseCode: ADMLS
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOPAqIlod8QEKiypKN8_KxgqKlokioLVpOkWM7NNJ2uyLJoVwQ_5wZx3FSdosol8hx7FGU-TKel8eEvNSpkiJn0kujhHmhFAJaqvB4kBYs0lEuprgb-ehTPDsND-fRfDT6NdxdUucT-WPjvpL_4Sr0AV9xl-wNOOuIQge0gb9wBQ7D9Z94PEOvNwaIMArgUoEwv3jx7QKs_rNzTBnPzRkQe-gi94zHVSixMhlD_TAk1KZ2QL8nQJPcM9BoK4KbMhOYNIDON5OF3tTdkreu2A5O1inPzSFIa97pzwBK1zsvhfHXHsPTRenA-rUxgZOz8rLs5-t2_qzBoR0N67QIpnb3Xi9ncXGEhZAPBbEN0JS9VN0g302FgMnhwYcJ8yfxBEuGBRtqaf-xxrnMw9bmSbJpBiQy5mdx1pK4RbYCWBj8Mdnaf3f08diFosAENlZ798Y2NA5E3qy9xxXlZlytSj1QVk7uk7uWGXS_hcwDMtLLbXLPWhzUyvNqm9wZlKOEuy9l1bTTqofkJ6KLWnTRAbqogw116KIOXbRD12AYErqKLmrQRQFd1KGLIrqoQ9cjcvr-4OTtzLPHdXgSdJza00XKc6mSQvuxEJypRIdMB1wERc7jJPSVTJlEA1oW0hcqTCVPZKBinoAeyRR7TMbLi6V-QmjElADV3J_qtACLGnRaDg0hQXaAAiv5DvG775xJW8sej1RZZNfyd4e8dlNWbSGXvw1-hczL7L9eXT9y9yZkn5Lb_c_wjIzr741-Djptnb-wqPsNknejug
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hand+gesture+recognition+algorithm+combining+hand-type+adaptive+algorithm+and+effective-area+ratio+for+efficient+edge+computing&rft.jtitle=Journal+of+electronic+imaging&rft.au=Zhang%2C+Qiang&rft.au=Xiao%2C+Shanlin&rft.au=Yu%2C+Zhiyi&rft.au=Zheng%2C+Huanliang&rft.date=2021-11-01&rft.issn=1017-9909&rft.volume=30&rft.issue=6&rft_id=info:doi/10.1117%2F1.JEI.30.6.063026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1117_1_JEI_30_6_063026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-9909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-9909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-9909&client=summon