Covariance Generalized Linear Models: An Approach for Quantifying Uncertainty in Tree Stem Taper Modeling
A natural dependence among diameters measured within-tree is expected in taper data due to the hierarchical structure. The aim of this paper was to introduce the covariance generalized linear model (CGLM) framework in the context of forest biometrics for Pinus taeda stem form modeling. The CGLMs are...
Saved in:
Published in | Forest science Vol. 67; no. 6; pp. 642 - 658 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda
Oxford University Press
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0015-749X 1938-3738 |
DOI | 10.1093/forsci/fxab037 |
Cover
Abstract | A natural dependence among diameters measured within-tree is expected in taper data due to the hierarchical structure. The aim of this paper was to introduce the covariance generalized linear model (CGLM) framework in the context of forest biometrics for Pinus taeda stem form modeling. The CGLMs are based on marginal specification, which requires a definition of the mean and covariance components. The tree stem mean profiles were modeled by a nonlinear segmented model. The covariance matrix was built considering four strategies of linear combinations of known matrices, which expressed the variance or correlations among observations. The first strategy modeled only the variance of the diameters over the stem as a function of covariates, the second modeled correlation among observations, the third was defined based on a random walk model, the fourth was based on a structure similar to a mixed-effect model with a marginal specification, and the fourth was a traditional mixed-effect model. Mean squared error and bias showed that the approaches were similar for describing the mean profile for fitting and validation dataset. However, uncertainties expressed by confidence intervals of the relative diameters were significant and related to the matrix covariance structures of the CGLMs. |
---|---|
AbstractList | A natural dependence among diameters measured within-tree is expected in taper data due to the hierarchical structure. The aim of this paper was to introduce the covariance generalized linear model (CGLM) framework in the context of forest biometrics for Pinus taeda stem form modeling. The CGLMs are based on marginal specification, which requires a definition of the mean and covariance components. The tree stem mean profiles were modeled by a nonlinear segmented model. The covariance matrix was built considering four strategies of linear combinations of known matrices, which expressed the variance or correlations among observations. The first strategy modeled only the variance of the diameters over the stem as a function of covariates, the second modeled correlation among observations, the third was defined based on a random walk model, the fourth was based on a structure similar to a mixed-effect model with a marginal specification, and the fourth was a traditional mixed-effect model. Mean squared error and bias showed that the approaches were similar for describing the mean profile for fitting and validation dataset. However, uncertainties expressed by confidence intervals of the relative diameters were significant and related to the matrix covariance structures of the CGLMs. |
Author | Machado, Sebastião do Amaral Bonat, Wagner Hugo Pelissari, Allan Libanio Fiorentin, Luan Demarco Téo, Saulo Jorge |
Author_xml | – sequence: 1 givenname: Luan Demarco orcidid: 0000-0003-1884-9849 surname: Fiorentin fullname: Fiorentin, Luan Demarco organization: Federal University of Paraná, Curitiba, Brazil – sequence: 2 givenname: Wagner Hugo orcidid: 0000-0002-0349-7054 surname: Bonat fullname: Bonat, Wagner Hugo organization: Federal University of Paraná, Curitiba, Brazil – sequence: 3 givenname: Allan Libanio orcidid: 0000-0002-0915-0238 surname: Pelissari fullname: Pelissari, Allan Libanio organization: Federal University of Paraná, Curitiba, Brazil – sequence: 4 givenname: Sebastião do Amaral orcidid: 0000-0003-1010-4623 surname: Machado fullname: Machado, Sebastião do Amaral organization: Federal University of Paraná, Curitiba, Brazil – sequence: 5 givenname: Saulo Jorge orcidid: 0000-0003-4279-2635 surname: Téo fullname: Téo, Saulo Jorge organization: University of Western Santa Catarina, Xanxerê, Santa Catarina, Brazil |
BookMark | eNp9kE1PAjEURRuDiYBuXTdxPdCvoa07QhRNMMYIibvJm84bLYEOtoMRf71jYO3qbc679-YMSC80AQm55mzEmZXjuonJ-XH9DSWT-oz0uZUmk1qaHukzxvNMK_t2QQYprRljRjLRJ37WfEH0EBzSOQaMsPE_WNGFDwiRPjUVbtItnQY63e1iA-6Ddj30ZQ-h9fXBh3e66n5jCz60B-oDXUZE-trili5hh6eIjrsk5zVsEl6d7pCs7u-Ws4ds8Tx_nE0XmRNGtVnllNNcaCUMaDPJtWVaSOuk4rpUAlgpkFW2cjmzoCDnqoYqFwI0guFlLYfk5pjbzf3cY2qLdbOPoasspJBGd1JE_h8lJsxYYfPO3JCMjpSLTUoR62IX_RbioeCs-JNeHKUXJ-nyFwVAeL8 |
Cites_doi | 10.1139/x11-095 10.1007/s10342-009-0300-8 10.17221/135/2016-JFS 10.5558/tfc80507-4 10.1007/978-90-481-3170-9 10.18637/jss.v084.i04 10.1139/x06-008 10.1093/forestry/cpx039 10.1139/cjfr-2017-0131 10.5849/forsci.12-164 10.1111/biom.12118 10.1111/rssc.12145 10.1007/s10342-016-0985-4 10.1007/s13253-017-0284-7 10.5849/FS-2016-087 10.5849/forsci.12-141 10.1007/s13595-016-0538-5 10.1139/x97-011 10.1093/forestry/cpp026 10.1139/x05-305 10.1093/forsci/fxy015 10.1177/0962280212445834 10.1139/cjfr-2016-0018 10.1007/s13595-013-0313-9 10.1016/j.foreco.2020.118065 10.1139/cjfr-2014-0276 10.1016/j.foreco.2006.04.028 10.5849/forsci.14-008 10.1007/s10342-013-0715-0 |
ContentType | Journal Article |
Copyright | Copyright Oxford University Press Dec 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the Society of American Foresters. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: Copyright Oxford University Press Dec 2021 – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society of American Foresters. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7X2 7XB 88I 8AF 8FE 8FG 8FH 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO GNUQQ GUQSH HCIFZ L6V M0K M2O M2P M7S MBDVC PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U S0X SOI |
DOI | 10.1093/forsci/fxab037 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Engineering Collection Agricultural Science Database Research Library Science Database Engineering Database Research Library (Corporate) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic SIRS Editorial Environment Abstracts |
DatabaseTitle | CrossRef Agricultural Science Database Research Library Prep ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial elibrary ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Technology Collection ProQuest SciTech Collection Ecology Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database CrossRef Ecology Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISSN | 1938-3738 |
EndPage | 658 |
ExternalDocumentID | 10_1093_forsci_fxab037 |
GroupedDBID | 0R~ 29H 48X 5GY 7X2 7XC 88I 8AF 8FE 8FG 8FH 8FW 8G5 8R4 8R5 AAHBH AAIMJ AAPQZ AAPXW AARHZ AASML AAUAY AAVAP AAYXX ABAKF ABBRH ABCQX ABDBE ABEFU ABEJV ABGNP ABJCF ABJNI ABMNT ABPQP ABPTD ABUWG ABVGC ABWST ABXVV ABXZS ACAOD ACGFO ACGFS ACGOD ACIHN ACIWK ACNCT ACPRK ACUTJ ADBBV ADGKP ADGZP ADNBA ADQBN ADRTK ADVEK AEAQA AEFQL AELWJ AENEX AETBJ AEUYN AFDZB AFFZL AFGWE AFKRA AFOFC AFRAH AFYAG AGINJ AGQXC AHGBF AIGIU AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALXQX ANTER ARIXL ATCPS AZQEC BAYMD BCRHZ BCU BEC BENPR BES BEYMZ BGLVJ BHPHI BKSAR BLC BPHCQ BSWAC CCPQU CDBKE CITATION DAKXR DWQXO EBS ECGQY ELUNK FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GNUQQ GUQSH H13 HCIFZ JXSIZ KBUDW KOP KSI KSN L6V L7B LK5 M0K M2O M2P M2Q M7R M7S ML0 NLBLG NOMLY O9- ODMLO OJZSN OK1 P2P PAFKI PATMY PCBAR PHGZM PHGZT PQQKQ PRG PROAC PTHSS PYCSY Q2X RUSNO S0X SJFOW TCN WH7 Y6R YAYTL YKOAZ YV5 YXANX ZO4 ~KM 3V. 7SN 7ST 7XB 8FK ABRTQ C1K MBDVC NU- PKEHL PQEST PQGLB PQUKI PRINS Q9U SOI PUEGO |
ID | FETCH-LOGICAL-c284t-dc4c7127428a78657907239c3417b42a0b2e0d9dc509a4a514fad522a7ea81bf3 |
IEDL.DBID | 8FG |
ISSN | 0015-749X |
IngestDate | Sat Aug 23 12:27:47 EDT 2025 Fri Jul 25 10:41:17 EDT 2025 Tue Jul 01 02:41:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c284t-dc4c7127428a78657907239c3417b42a0b2e0d9dc509a4a514fad522a7ea81bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1010-4623 0000-0002-0349-7054 0000-0003-4279-2635 0000-0002-0915-0238 0000-0003-1884-9849 |
PQID | 2608929537 |
PQPubID | 47511 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3238793825 proquest_journals_2608929537 crossref_primary_10_1093_forsci_fxab037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bethesda |
PublicationPlace_xml | – name: Bethesda |
PublicationTitle | Forest science |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | MacFarlane (2021120111430964800_CIT0028) 2016; 46 Westfall (2021120111430964800_CIT0043) 2010; 56 Fortin (2021120111430964800_CIT0016) 2013; 59 Liu (2021120111430964800_CIT0027) 2020; 464 Berger (2021120111430964800_CIT0004) 2014; 60 Lee (2021120111430964800_CIT0023) 2004; 19 Manso (2021120111430964800_CIT0030) 2018; 64 Verbeke (2021120111430964800_CIT0042) 2014; 23 Kozak (2021120111430964800_CIT0020) 2004; 80 McRoberts (2021120111430964800_CIT0032) 2014; 60 Diéguez-Aranda (2021120111430964800_CIT0012) 2006; 36 Bose (2021120111430964800_CIT0009) 2018; 427 Lappi (2021120111430964800_CIT0022) 2006; 36 Sabatia (2021120111430964800_CIT0037) 2015; 61 Arias-Rodil (2021120111430964800_CIT0001) 2015; 10 Kozak (2021120111430964800_CIT0019) 1997; 27 Heidarsson (2021120111430964800_CIT0018) 2011; 24 Bonat (2021120111430964800_CIT0005) 2017; 13 Fiorentin (2021120111430964800_CIT0014) 2020; 5 Fortin (2021120111430964800_CIT0015) 2016; 73 Stoklosa (2021120111430964800_CIT0040) 2014; 70 Sharma (2021120111430964800_CIT0039) 2017; 63 Gómez-García (2021120111430964800_CIT0017) 2013; 70 Bonat (2021120111430964800_CIT0006) 2018; 84 Bonat (2021120111430964800_CIT0008) 2017; 22 Tenzin (2021120111430964800_CIT0041) 2017; 90 Li (2021120111430964800_CIT0026) 2009; 67 R Core Team (2021120111430964800_CIT0034) 2019 Burkhart (2021120111430964800_CIT0010) 2012 Faraway (2021120111430964800_CIT0013) 2016 Max (2021120111430964800_CIT0031) 1976; 22 Robinson (2021120111430964800_CIT0035) 2011; 41 Sabatia (2021120111430964800_CIT0036) 2016; 46 Castedo-dorado (2021120111430964800_CIT0046) 2006; 229 Leites (2021120111430964800_CIT0024) 2003; 50 Pinheiro (2021120111430964800_CIT0033) 2013 Westfall (2021120111430964800_CIT0044) 2016; 135 Arias-Rodil (2021120111430964800_CIT0002) 2017; 63 Cao (2021120111430964800_CIT0011) 2015; 61 MacPhee (2021120111430964800_CIT0029) 2018; 91 Seki (2021120111430964800_CIT0038) 2017; 47 Yang (2021120111430964800_CIT0045) 2009; 82 Arias-Rodil (2021120111430964800_CIT0003) 2015; 45 Lejeune (2021120111430964800_CIT0025) 2009; 128 Bonat (2021120111430964800_CIT0007) 2016; 65 Kublin (2021120111430964800_CIT0021) 2013; 132 |
References_xml | – volume-title: R: A language and environment for statistical computing. year: 2019 ident: 2021120111430964800_CIT0034 – volume: 41 start-page: 1909 issue: 10 year: 2011 ident: 2021120111430964800_CIT0035 article-title: Fitting forestry model using generalized additive taper models: A taper model example publication-title: Can. J. For. Res. doi: 10.1139/x11-095 – volume: 427 start-page: 355 year: 2018 ident: 2021120111430964800_CIT0009 article-title: Tree-level growth and survival following commercial thinning of four major softwood species in North America publication-title: For. Econ. Manage. – volume: 128 start-page: 505 issue: 5 year: 2009 ident: 2021120111430964800_CIT0025 article-title: A simple stem taper model with mixed effects for boreal black spruce publication-title: Eur. J. For. Res. doi: 10.1007/s10342-009-0300-8 – volume: 24 start-page: 3 year: 2011 ident: 2021120111430964800_CIT0018 article-title: Taper functions for lodgepole pine (Pinus contorta) and Siberian larch (Larix sibirica) in Iceland publication-title: ICEL Agric. Sci. – year: 2013 ident: 2021120111430964800_CIT0033 – volume: 63 start-page: 227 issue: 5 year: 2017 ident: 2021120111430964800_CIT0039 article-title: Modelling individual tree diameter growth for Norway spruce in the Czech Republic using a generalized algebraic difference approach publication-title: J. For. Sci. doi: 10.17221/135/2016-JFS – volume: 80 start-page: 507 issue: 4 year: 2004 ident: 2021120111430964800_CIT0020 article-title: My last words on taper equations publication-title: For. Chron. doi: 10.5558/tfc80507-4 – start-page: 457 volume-title: Modeling forest trees and stands. year: 2012 ident: 2021120111430964800_CIT0010 doi: 10.1007/978-90-481-3170-9 – volume: 61 issue: 3 year: 2015 ident: 2021120111430964800_CIT0037 article-title: On the use of upper stem diameters to localize a segmented taper equation to new trees publication-title: For. Sci. – volume: 59 issue: 3 year: 2013 ident: 2021120111430964800_CIT0016 article-title: Volume and error variance estimation using integrated stem taper models publication-title: For. Sci. – volume: 46 issue: 14 year: 2016 ident: 2021120111430964800_CIT0036 article-title: Use of upper stem diameters in a polynomial taper equation for New Zealand radiata pine: An evaluation publication-title: New Zea. J. For. Sci. – volume: 84 issue: 4 year: 2018 ident: 2021120111430964800_CIT0006 article-title: Multiple response variables regression models in R: The mcglm package publication-title: J. Stat. Softw. doi: 10.18637/jss.v084.i04 – volume: 36 start-page: 1190 issue: 5 year: 2006 ident: 2021120111430964800_CIT0012 article-title: Compatible taper function for Scots pine plantations in northwestern Spain publication-title: Can. J. For. Res. doi: 10.1139/x06-008 – volume: 91 start-page: 132 issue: 1 year: 2018 ident: 2021120111430964800_CIT0029 article-title: Comparison of approaches for estimating individual tree height-diameter relationships in the Acadian Forest region publication-title: Forestry doi: 10.1093/forestry/cpx039 – volume: 47 start-page: 1441 issue: 11 year: 2017 ident: 2021120111430964800_CIT0038 article-title: Dominant height growth and dynamic site index models for Crimean pine in the Kastamonu-Taşköprü region of Turkey publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2017-0131 – volume: 60 start-page: 14 issue: 1 year: 2014 ident: 2021120111430964800_CIT0004 article-title: Effects of measurement errors on individual tree stem volume estimates for the Austrian National Forest Inventory publication-title: For. Sci. doi: 10.5849/forsci.12-164 – volume: 90 start-page: 367 issue: 3 year: 2017 ident: 2021120111430964800_CIT0041 article-title: Individual tree basal area increment models for broadleaved forests in Bhutan publication-title: Forestry – volume: 70 start-page: 110 issue: 1 year: 2014 ident: 2021120111430964800_CIT0040 article-title: Fast forward selection for generalized estimating equations with a large number of predictor variables publication-title: Biometrics doi: 10.1111/biom.12118 – volume: 13 start-page: 1 issue: 2 year: 2017 ident: 2021120111430964800_CIT0005 article-title: Modelling mixed types of outcomes in additive genetic models publication-title: Int. J. Biol. – volume: 65 start-page: 649 issue: 5 year: 2016 ident: 2021120111430964800_CIT0007 article-title: Multivariate covariance generalized linear models publication-title: J. R. Stat. Soc. Ser. C: Appl. Stat. doi: 10.1111/rssc.12145 – volume: 5 start-page: 121 issue: 1 year: 2020 ident: 2021120111430964800_CIT0014 article-title: Modelagem marginal conjunta da altura e volume para Araucaria angustifolia publication-title: Biol. Sci. J. – volume: 135 start-page: 937 issue: 5 year: 2016 ident: 2021120111430964800_CIT0044 article-title: Effects of uncertainty in upper-stem diameter information on tree volume estimates publication-title: Eur. J. For. Res. doi: 10.1007/s10342-016-0985-4 – volume: 22 start-page: 446 issue: 4 year: 2017 ident: 2021120111430964800_CIT0008 article-title: Modelling the covariance structure in marginal multivariate count models: Hunting in Bioko Island publication-title: J. Agric. Biol. Environ. Stat doi: 10.1007/s13253-017-0284-7 – volume: 67 start-page: 21 year: 2009 ident: 2021120111430964800_CIT0026 article-title: Development and evaluation of regional taper and volume equations for the primary conifer species in the Acadian region of North America publication-title: Ann. For. Sci. – start-page: 399 volume-title: Extending the linear model with R: Generalized linear, mixed effects and nonparametric regression models year: 2016 ident: 2021120111430964800_CIT0013 – volume: 56 start-page: 515 issue: 6 year: 2010 ident: 2021120111430964800_CIT0043 article-title: Taper models for commercial tree species in the northeastern United States publication-title: For. Sci. – volume: 63 start-page: 250 issue: 3 year: 2017 ident: 2021120111430964800_CIT0002 article-title: Effects of measurement error in total tree height and upper-stem diameter on stem volume prediction publication-title: For. Sci. doi: 10.5849/FS-2016-087 – volume: 60 start-page: 34 issue: 1 year: 2014 ident: 2021120111430964800_CIT0032 article-title: Effects of uncertainty in model predictions of individual tree volume on large area volume estimates publication-title: For. Sci. doi: 10.5849/forsci.12-141 – volume: 73 start-page: 871 issue: 4 year: 2016 ident: 2021120111430964800_CIT0015 article-title: Uncertainty assessment of large-scale forest growth predictions based on a transition-matrix model in Catalonia publication-title: Ann. For. Sci. doi: 10.1007/s13595-016-0538-5 – volume: 27 start-page: 619 issue: 5 year: 1997 ident: 2021120111430964800_CIT0019 article-title: Effects of multicollinearity and autocorrelation on the variable-exponent taper functions publication-title: Can. J. For. Res. doi: 10.1139/x97-011 – volume: 82 start-page: 541 issue: 5 year: 2009 ident: 2021120111430964800_CIT0045 article-title: Development of a tree-specific stem profile model for white spruce: A nonlinear mixed model approach with a generalized covariance structure publication-title: Forestry doi: 10.1093/forestry/cpp026 – volume: 36 start-page: 1017 issue: 4 year: 2006 ident: 2021120111430964800_CIT0022 article-title: A multivariate, nonparametric stem-curve prediction method publication-title: Can. J. For. Res. doi: 10.1139/x05-305 – volume: 22 start-page: 283 issue: 3 year: 1976 ident: 2021120111430964800_CIT0031 article-title: Segmented polynomial regression applied to taper equations publication-title: For. Sci. – volume: 64 start-page: 461 issue: 5 year: 2018 ident: 2021120111430964800_CIT0030 article-title: Simultaneous prediction of plot-level and tree-level harvest occurrences with correlated random effects publication-title: For. Sci. doi: 10.1093/forsci/fxy015 – volume: 23 start-page: 42 issue: 1 year: 2014 ident: 2021120111430964800_CIT0042 article-title: The analysis of multivariate longitudinal data: A review publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280212445834 – volume: 46 start-page: 804 issue: 6 year: 2016 ident: 2021120111430964800_CIT0028 article-title: A new method for capturing stem taper variation for trees of diverse morphological types publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2016-0018 – volume: 70 start-page: 707 issue: 7 year: 2013 ident: 2021120111430964800_CIT0017 article-title: Selection of mixed-effects parameters in a variable-exponent taper equation for birch trees in northwestern Spain publication-title: Ann. For. Sci. doi: 10.1007/s13595-013-0313-9 – volume: 19 start-page: 219 issue: 2 year: 2004 ident: 2021120111430964800_CIT0023 article-title: Conditional and marginal models: Another view publication-title: Sta. Sci. – volume: 10 issue: 2 year: 2015 ident: 2021120111430964800_CIT0001 article-title: Fitting and calibrating a multilevel mixed-effects stem taper model for maritime pine in NW Spain publication-title: Plos One – volume: 50 start-page: 204 issue: 2 year: 2003 ident: 2021120111430964800_CIT0024 article-title: Improving taper equations of loblolly pine with crown dimensions in a mixed-effects modeling framework publication-title: For. Sci. – volume: 464 year: 2020 ident: 2021120111430964800_CIT0027 article-title: Incorporating climate effects in Larix gmelinii improves stem taper models in the Greater Khingan Mountains of Inner Mongolia, northeast China publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2020.118065 – volume: 45 start-page: 647 year: 2015 ident: 2021120111430964800_CIT0003 article-title: Modeling and localizing a stem taper function for Pinus radiata in Spain publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2014-0276 – volume: 229 start-page: 202 issue: 3 year: 2006 ident: 2021120111430964800_CIT0046 article-title: A generalized height-diameter model including random components for radiata pine plantations in northwestern Spain publication-title: For. Eco. Man doi: 10.1016/j.foreco.2006.04.028 – volume: 61 start-page: 213 issue: 2 year: 2015 ident: 2021120111430964800_CIT0011 article-title: Evaluation of methods for calibrating a tree taper equation publication-title: For. Sci. doi: 10.5849/forsci.14-008 – volume: 132 start-page: 983 year: 2013 ident: 2021120111430964800_CIT0021 article-title: Flexible stem taper and volume prediction method based on mixed-effects B-spline regression publication-title: Eur. J. For. Res. doi: 10.1007/s10342-013-0715-0 |
SSID | ssj0008302 |
Score | 2.3017058 |
Snippet | A natural dependence among diameters measured within-tree is expected in taper data due to the hierarchical structure. The aim of this paper was to introduce... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 642 |
SubjectTerms | Biometrics Confidence intervals Covariance matrix Datasets Diameters Forest management Generalized linear models Mathematical analysis Pine trees Quantitative genetics Random walk Specifications Statistical models Stems Structural hierarchy Tapering Uncertainty Variables Variance |
Title | Covariance Generalized Linear Models: An Approach for Quantifying Uncertainty in Tree Stem Taper Modeling |
URI | https://www.proquest.com/docview/2608929537 https://www.proquest.com/docview/3238793825 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA66gfgi_sTpHHkQfArr0qRpfZE5Nofg8McGeytpksJAu7l1ov71XtpsKojPbUq5XO77Lrnch9B52kqoooEmBtgwYSEzBFiGIDKQKjWpT03RJOluEPRH7HbMx27DbeHKKlcxsQjUeqrsHnkTeHcIUM59cTV7JVY1yp6uOgmNTVRtUcBae1O8d7OOxLa3VRmJOREsGq-bNvpNYIQAMc30XSae1UD_CUq_Y3IBNL1dtOMYIm6XU7qHNky2j7ashKbVZTtAk870DRJcO1vYNY2efBqNIasEr8VW3Ox5cYnbGW67fuEYfgM_LKWtC7K3mvAIxhaVAPkHnmR4ODcGP-XmBQ_lzLhPwHuHaNTrDjt94gQTiAKUyYlWTImWPXwNpQgDLiDzpX6kAKlEwqj0Emo8HWkFLEEyCVwplRoImBRGAn1N_SNUyaaZOUY4VTJi3NMJjziDwdKXzOhAcxMpcD6vhi5WFotnZV-MuDzP9uPStrGzbQ3VVwaN3fpYxN-z-edjH4gEBA7IXk_-H32KtqktMinqS-qoks-X5gxYQp40CldooOp1d3D_-AVwycA_ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS-RAEC7UhdUXcQ_xXPvBZZ-aid2dSxAZXMfxhMUZmLfY6a7AwG5mdOL5o_yNVufwgMU3n5NqQuVL1Vfp6voANrOtVBgRWI7EhrmKFHJiGSHXgTYZZlJgOSTp9Czo9tXRwB9MwWNzFsa1VTYxsQzUdmTcP_IW8e6IUrkvw93xJXeqUW53tZHQqGBxjPe3VLJNdg5_0_v9KURnv7fX5bWqADcUigtujTLhltuhjHQYBX5I5aGQsaFwHqZKaC8V6NnYGkqlWmkiFJm2xFJ0iJo4XiZp3Wn4pKSUroUw6hw8R343S6uK_D4PVTx4HhIpW8RAKaW1sjudek5z_XUSfJsDysTWWYD5mpGydgWhLzCF-Vf47CQ7nQ7cNxjujW6ooHboYPWQ6uEDWkZVLLmDOTG1v5Nt1s5Zu55Pzugx2J9r7fqQ3Ckq1ifbsvOguGfDnPWuENl5gf9YT4-xXoLu-w79D3HlIszkoxyXgGVGx8r3bOrHviJjLbVCG1gfY0Ng95bhV-OxZFzN4Uiq_XOZVL5Nat8uw1rj0KT-HifJC3r-e1kScaFARdXyyvvWGzDb7Z2eJCeHZ8erMCdcg0vZ27IGM8XVNa4TQynSHyUsGFx8NA6fANNA-nE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED6xIqG9IDaYxug2P4B4shocJ26QEOqAih9bxbZW6lvm2Bep0kgLDRvsT-Sv4pw4bEgTbzwntqzL-b7v4vN9AJv5TiaMiC1HYsNcdiVyYhmK61ibHPNQYNUk6csgPh7J03E0XoC75i6MK6tsYmIVqO3UuH_kHeLdXYLyKFSd3JdFnB_292eX3ClIuZPWRk5De5kFu1e1G_OXPM7w9jelc_O9k0P69ltC9I-GB8fcKw5wQ2G65NZIo3bc6WVXq24cKUodRZgYCvUqk0IHmcDAJtYQzGqpiWzk2hKD0Qo18b88pHlfwKIi1KdEcPHT0eD82wMuuE5bNS5EXMlk_NBCMuwQPyXA6-Q3OgucIvu_EPkYISrY66_AsuerrFc72CtYwOI1LDlBT6cStwqTg-kvSred7zDfwnryBy2jHJcMwpzU2s_5LusVrOe7lzNaBvt6rV2VkrtjxUY0tqpLKG_ZpGDDK0T2vcQLNtQz9FPQe2swehZjvoFWMS3wLbDc6ERGgc2iJJI0WIdaoo1thImhrRCsw3ZjsXRWd-lI69P1MK1tm3rbrkO7MWjqd-s8_etb_30cEq2hMEa59LunR3-EJfLJ9PPJ4GwDXgpX_VIVvrShVV5d43uiL2X2wfsFgx_P7Yr30akFWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covariance+Generalized+Linear+Models%3A+An+Approach+for+Quantifying+Uncertainty+in+Tree+Stem+Taper+Modeling&rft.jtitle=Forest+science&rft.au=Fiorentin%2C+Luan+Demarco&rft.au=Bonat%2C+Wagner+Hugo&rft.au=Pelissari%2C+Allan+Libanio&rft.au=Machado%2C+Sebasti%C3%A2o+do+Amaral&rft.date=2021-12-01&rft.pub=Oxford+University+Press&rft.issn=0015-749X&rft.eissn=1938-3738&rft.volume=67&rft.issue=6&rft.spage=642&rft.epage=658&rft_id=info:doi/10.1093%2Fforsci%2Ffxab037&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-749X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-749X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-749X&client=summon |