ORBITAL INSTABILITY OF STANDING WAVES FOR THE GENERALIZED 3D NONLOCAL NONLINEAR SCHRODINGER EQUATIONS

The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inne...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 35; no. 5; pp. 1163 - 1188
Main Author 甘在会 郭柏灵 蒋芯
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2015
Subjects
Online AccessGet full text
ISSN0252-9602
1572-9087
DOI10.1016/S0252-9602(15)30047-3

Cover

Abstract The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inner structure of the equations under consideration to overcome the drawback that nonlocal terms violate the space-scale invariance. We then show the orbital instability of standing waves. The arguments depend upon the conservation laws of the mass and of the energy.
AbstractList The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inner structure of the equations under consideration to overcome the drawback that nonlocal terms violate the space-scale invariance. We then show the orbital instability of standing waves. The arguments depend upon the conservation laws of the mass and of the energy.
The existence and orbital instability of standing waves for the generalized three-dimensional nonlocal nonlinear Schrödinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inner structure of the equations under consideration to overcome the drawback that nonlocal terms violate the space-scale invariance. We then show the orbital instability of standing waves. The arguments depend upon the conservation laws of the mass and of the energy.
Author 甘在会 郭柏灵 蒋芯
AuthorAffiliation Center for Applied Mathematics, Tianjin University, Tianjin 300072, China College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068, China Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Author_xml – sequence: 1
  fullname: 甘在会 郭柏灵 蒋芯
BookMark eNqFkF9PgzAUxRujidv0I5g0PukDWiht4cmwrduaEIjANPrSQCkTo6CwmPjtLduyV5_un9zfPSdnDE6bttEAXNnozkY2vU-RQxzLp8i5scktRshlFj4BI5sws0YeOwWj48k5GPf9OzKcQ90R0HEyFVkQQhGlWTAVocheYLyAZojmIlrC5-CJp3ARJzBbcbjkEU-CULzyOcRzGMVRGM8MPTQi4kEC09kqiQeSJ5A_roNMxFF6Ac6q_KPXl4c6AesFz2YrK4yXwvCWcjx3a5UI5QXTxJjVlFFfscpnLiI5KbTPdOF4nsq9UuWlxxRTRZHn2BCVjVXpFQ7FE0D2f1XX9n2nK_nV1Z959yttJIes5C4rOQQhbSJ3WUlsuIc9p425n1p3sle1bpQu606rrSzb-t8P1wflt7bZfNfN5ihNKXUQJr6P_wAnYXZf
Cites_doi 10.1007/BF01403504
10.1002/cpa.3160390103
10.1007/BF01212446
10.1007/BF01626517
10.1515/ans-2014-0314
10.1016/S0252-9602(14)60063-1
10.1007/s00205-013-0612-1
10.1017/S0022377800010588
10.1007/BF00250556
10.3934/dcds.2012.32.827
10.1016/0022-0396(88)90037-X
10.1016/S0252-9602(14)60133-8
10.1007/s00220-008-0456-y
10.1016/0022-1236(87)90044-9
10.1007/BF01208265
10.1080/03605300500299539
10.1016/S0252-9602(13)60101-0
10.1007/BF00250555
10.1002/cpa.3160410602
10.1016/0370-1573(85)90040-7
ContentType Journal Article
Copyright 2015 Wuhan Institute of Physics and Mathematics
Copyright_xml – notice: 2015 Wuhan Institute of Physics and Mathematics
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1016/S0252-9602(15)30047-3
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
DocumentTitleAlternate ORBITAL INSTABILITY OF STANDING WAVES FOR THE GENERALIZED 3D NONLOCAL NONLINEAR SCHRODINGER EQUATIONS
EISSN 1572-9087
EndPage 1188
ExternalDocumentID 10_1016_S0252_9602_15_30047_3
S0252960215300473
666203599
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11171241
– fundername: New Century Excellent Talents in University
  grantid: NCET-12-1058
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
23M
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABAOU
ABECU
ABFGW
ABFNM
ABFTV
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABXPI
ABYKQ
ACAOD
ACAZW
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADEZE
ADKNI
ADMDM
ADMUD
ADOXG
ADTPH
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIGVJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ARUGR
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CSCUP
CW9
DPUIP
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNLPD
FNPLU
FYGXN
GBLVA
GJIRD
HVGLF
HZ~
IKXTQ
IWAJR
J1W
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
ROL
RSV
RT1
S..
SDC
SDF
SDG
SDH
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SSW
SSZ
T5K
T8Q
TCJ
TGP
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
~G-
~L9
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AATTM
AAXKI
AAYWO
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABRTQ
ABWVN
ACDTI
ACLOT
ACPIV
ACRPL
ACSTC
ACVFH
ADCNI
ADNMO
AEFQL
AEIPS
AEMSY
AEUPX
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIGIU
AIIUN
AIXLP
AKBMS
AKRWK
AKYEP
ANKPU
ATHPR
AYFIA
CITATION
EFKBS
HG6
SJYHP
~HD
ID FETCH-LOGICAL-c284t-d00ab7e5025e6769c7f97405a5be97eb288ca8dcad87c7cbbaa30abf13cd8b263
IEDL.DBID .~1
ISSN 0252-9602
IngestDate Wed Oct 01 03:09:10 EDT 2025
Fri Feb 23 02:25:03 EST 2024
Wed Feb 14 10:28:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 35Q55
standing waves
nonlocal nonlinear Schrödinger equations
35J50
35B35
orbital instability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c284t-d00ab7e5025e6769c7f97405a5be97eb288ca8dcad87c7cbbaa30abf13cd8b263
Notes 42-1227/O
nonlocal nonlinear SchrSdinger equations; standing waves; orbital instability
Zaihui GAN, Boling GUO, Xin JIANG(1.Center for Applied Mathematics, Tianjin University, Tianjin 300072, China; 2.College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068, China;3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China)
The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inner structure of the equations under consideration to overcome the drawback that nonlocal terms violate the space-scale invariance. We then show the orbital instability of standing waves. The arguments depend upon the conservation laws of the mass and of the energy.
PageCount 26
ParticipantIDs crossref_primary_10_1016_S0252_9602_15_30047_3
elsevier_sciencedirect_doi_10_1016_S0252_9602_15_30047_3
chongqing_primary_666203599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Acta mathematica scientia
PublicationTitleAlternate Acta Mathematica Scientia
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Weinstein (bib24) 1986; 39
Berestycki, Lions (bib2) 1983; 82
Liu (bib16) 2013; 33B
Kono, Skoric, Ter Haar (bib14) 1981; 26
Miao (bib18) 2005
Dendy (bib6) 1990
Miao (bib17) 2004
Jones (bib13) 1988; 71
Gan, Zhang (bib9) 2013; 209
Jiang, Gan (bib12) 2014; 14
Gan, Zhang (bib8) 2012; 32
Zakharov (bib27) 1972; 35
Shatah, Strauss (bib20) 1985; 100
Berestycki, Lions (bib3) 1983; 82
Dai, He (bib5) 2014; 34B
Wan, Tang (bib22) 2012; 32B
Cazenave, Lions (bib4) 1982; 85
Miao, Zhang (bib19) 2008
Weinstein (bib23) 1983; 87
Laurey (bib15) 1995; 8
Gan, Zhang (bib7) 2008; 283
Zakharov, Musher, Rubenchik (bib28) 1985; 129
Grillakis, Shatah, Strauss (bib11) 1987; 74
Zhang (bib26) 2005; 30
Xu, Fan (bib25) 2014; 34B
Berestycki, Cazenave (bib1) 1981; 293
Grillakis (bib10) 1988; 41
Strauss (bib21) 1977; 55
Grillakis (10.1016/S0252-9602(15)30047-3_bib11) 1987; 74
Laurey (10.1016/S0252-9602(15)30047-3_bib15) 1995; 8
Liu (10.1016/S0252-9602(15)30047-3_bib16) 2013; 33B
Miao (10.1016/S0252-9602(15)30047-3_bib17) 2004
Dendy (10.1016/S0252-9602(15)30047-3_bib6) 1990
Jones (10.1016/S0252-9602(15)30047-3_bib13) 1988; 71
Kono (10.1016/S0252-9602(15)30047-3_bib14) 1981; 26
Zakharov (10.1016/S0252-9602(15)30047-3_bib27) 1972; 35
Cazenave (10.1016/S0252-9602(15)30047-3_bib4) 1982; 85
Gan (10.1016/S0252-9602(15)30047-3_bib8) 2012; 32
Miao (10.1016/S0252-9602(15)30047-3_bib18) 2005
Dai (10.1016/S0252-9602(15)30047-3_bib5) 2014; 34B
Grillakis (10.1016/S0252-9602(15)30047-3_bib10) 1988; 41
Zhang (10.1016/S0252-9602(15)30047-3_bib26) 2005; 30
Berestycki (10.1016/S0252-9602(15)30047-3_bib1) 1981; 293
Zakharov (10.1016/S0252-9602(15)30047-3_bib28) 1985; 129
Wan (10.1016/S0252-9602(15)30047-3_bib22) 2012; 32B
Xu (10.1016/S0252-9602(15)30047-3_bib25) 2014; 34B
Berestycki (10.1016/S0252-9602(15)30047-3_bib3) 1983; 82
Strauss (10.1016/S0252-9602(15)30047-3_bib21) 1977; 55
Gan (10.1016/S0252-9602(15)30047-3_bib9) 2013; 209
Berestycki (10.1016/S0252-9602(15)30047-3_bib2) 1983; 82
Weinstein (10.1016/S0252-9602(15)30047-3_bib24) 1986; 39
Shatah (10.1016/S0252-9602(15)30047-3_bib20) 1985; 100
Weinstein (10.1016/S0252-9602(15)30047-3_bib23) 1983; 87
Jiang (10.1016/S0252-9602(15)30047-3_bib12) 2014; 14
Gan (10.1016/S0252-9602(15)30047-3_bib7) 2008; 283
Miao (10.1016/S0252-9602(15)30047-3_bib19) 2008
References_xml – year: 1990
  ident: bib6
  publication-title: Plasma Dynamics
– volume: 33B
  start-page: 1522
  year: 2013
  end-page: 1530
  ident: bib16
  article-title: On a class of inhomogeneous energy-critical focusing nonlinear Schrödinger equations
  publication-title: Acta Math Sci
– volume: 82
  start-page: 347
  year: 1983
  end-page: 375
  ident: bib3
  article-title: Nonlinear scalar field equations, II. Existence of infinitely many solutions
  publication-title: Arch Rat Mech Anal
– year: 2004
  ident: bib17
  publication-title: Harmonic Analysis and Applications to Partial Differential Equations. Monographs on Modern Pure Mathematics No 89
– volume: 100
  start-page: 173
  year: 1985
  end-page: 190
  ident: bib20
  article-title: Instability of nonlinear bound states
  publication-title: Commun Math Phys
– volume: 283
  start-page: 93
  year: 2008
  end-page: 125
  ident: bib7
  article-title: Sharp threshold of global existence and instability of stangding wave for a Davey-Stewartson System
  publication-title: Commun Math Phys
– volume: 26
  start-page: 123
  year: 1981
  end-page: 146
  ident: bib14
  article-title: Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma
  publication-title: J Plasma Phys
– volume: 32B
  start-page: 1559
  year: 2012
  end-page: 1570
  ident: bib22
  article-title: Existence of solutions for non-periodic superlinear Schrödinger equations without (AR) condition
  publication-title: Acta Math Sci
– volume: 30
  start-page: 1429
  year: 2005
  end-page: 1443
  ident: bib26
  article-title: Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potentia
  publication-title: Commun PDE
– volume: 209
  start-page: 1
  year: 2013
  end-page: 39
  ident: bib9
  article-title: Nonlocal nonlinear Schrödinger equations in
  publication-title: Arch Rational Mech Anal
– volume: 55
  start-page: 149
  year: 1977
  end-page: 162
  ident: bib21
  article-title: Existence of solitary waves in high dimensions
  publication-title: Commun Math Phys
– year: 2008
  ident: bib19
  publication-title: Harmonic Analysis Method of Partial Differential Equations. Monographs on Modern Pure Mathematics, No 117
– volume: 293
  start-page: 489
  year: 1981
  end-page: 492
  ident: bib1
  article-title: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéairees
  publication-title: C R Acad Sci Paris
– volume: 87
  start-page: 567
  year: 1983
  end-page: 576
  ident: bib23
  article-title: Nonlinear Schrödinger equations and sharp interpolation estimates
  publication-title: Commun Math Phys
– volume: 82
  start-page: 313
  year: 1983
  end-page: 345
  ident: bib2
  article-title: Nonlinear scalar field equations, I. Existence of a ground state
  publication-title: Arch Rat Mech Anal
– volume: 34B
  start-page: 973
  year: 2014
  end-page: 994
  ident: bib25
  article-title: A Riemann-Hilbert approach to the initial-boundary problem for derivative nonlinear Schrödinger equations
  publication-title: Acta Math Sci
– volume: 129
  start-page: 285
  year: 1985
  end-page: 366
  ident: bib28
  article-title: Hamiltonian approach to the description of nonlinear plasma phenomena
  publication-title: Physics Reports
– volume: 85
  start-page: 549
  year: 1982
  end-page: 561
  ident: bib4
  article-title: Orbital stability of standing waves for some nonlinear Schrödinger equations
  publication-title: Commun Math Phys
– volume: 39
  start-page: 51
  year: 1986
  end-page: 68
  ident: bib24
  article-title: Lyapunov stability of ground states of nonlinear dispersive evolution equations
  publication-title: Commun Pure Appl Math
– volume: 32
  start-page: 827
  year: 2012
  end-page: 846
  ident: bib8
  article-title: Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations
  publication-title: Dis Cont Dyn Syst
– year: 2005
  ident: bib18
  publication-title: The Modern Method of Nonlinear Wave Equations. Lectures in Contemporary Mathematics, No 2
– volume: 8
  start-page: 105
  year: 1995
  end-page: 130
  ident: bib15
  article-title: The Cauchy problem for a generalized Zakharov system
  publication-title: Diff Integral Equ
– volume: 74
  start-page: 160
  year: 1987
  end-page: 197
  ident: bib11
  article-title: Stability theory of solitary waves in the presence of symmetry, I*
  publication-title: J Funct Anal
– volume: 41
  start-page: 747
  year: 1988
  end-page: 774
  ident: bib10
  article-title: Linearized instability for nonlinear Schrödinger and Klein-Gordon equations
  publication-title: Comm Pure Appl Math
– volume: 14
  start-page: 777
  year: 2014
  end-page: 790
  ident: bib12
  article-title: Collapse for the generalized three-dimensional nonlocal nonlinear Schrödinger equations
  publication-title: Adv Nonlinear Stud
– volume: 71
  start-page: 34
  year: 1988
  end-page: 62
  ident: bib13
  article-title: An instability mechanism for radically symmetric standing waves of a nonlinear Schrödinger equation
  publication-title: J Differential Equations
– volume: 35
  start-page: 908
  year: 1972
  end-page: 914
  ident: bib27
  article-title: The collapse of Langmuir waves
  publication-title: Soviet Phys, JETP
– volume: 34B
  start-page: 1892
  year: 2014
  end-page: 1906
  ident: bib5
  article-title: Nodal bound states with clustered spikes for nonlinear Schrödinger equations
  publication-title: Acta Math Sci
– volume: 85
  start-page: 549
  year: 1982
  ident: 10.1016/S0252-9602(15)30047-3_bib4
  article-title: Orbital stability of standing waves for some nonlinear Schrödinger equations
  publication-title: Commun Math Phys
  doi: 10.1007/BF01403504
– volume: 39
  start-page: 51
  year: 1986
  ident: 10.1016/S0252-9602(15)30047-3_bib24
  article-title: Lyapunov stability of ground states of nonlinear dispersive evolution equations
  publication-title: Commun Pure Appl Math
  doi: 10.1002/cpa.3160390103
– volume: 293
  start-page: 489
  year: 1981
  ident: 10.1016/S0252-9602(15)30047-3_bib1
  article-title: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéairees
  publication-title: C R Acad Sci Paris
– volume: 100
  start-page: 173
  year: 1985
  ident: 10.1016/S0252-9602(15)30047-3_bib20
  article-title: Instability of nonlinear bound states
  publication-title: Commun Math Phys
  doi: 10.1007/BF01212446
– year: 2008
  ident: 10.1016/S0252-9602(15)30047-3_bib19
– volume: 55
  start-page: 149
  year: 1977
  ident: 10.1016/S0252-9602(15)30047-3_bib21
  article-title: Existence of solitary waves in high dimensions
  publication-title: Commun Math Phys
  doi: 10.1007/BF01626517
– volume: 14
  start-page: 777
  year: 2014
  ident: 10.1016/S0252-9602(15)30047-3_bib12
  article-title: Collapse for the generalized three-dimensional nonlocal nonlinear Schrödinger equations
  publication-title: Adv Nonlinear Stud
  doi: 10.1515/ans-2014-0314
– volume: 35
  start-page: 908
  year: 1972
  ident: 10.1016/S0252-9602(15)30047-3_bib27
  article-title: The collapse of Langmuir waves
  publication-title: Soviet Phys, JETP
– volume: 34B
  start-page: 973
  issue: 4
  year: 2014
  ident: 10.1016/S0252-9602(15)30047-3_bib25
  article-title: A Riemann-Hilbert approach to the initial-boundary problem for derivative nonlinear Schrödinger equations
  publication-title: Acta Math Sci
  doi: 10.1016/S0252-9602(14)60063-1
– volume: 209
  start-page: 1
  year: 2013
  ident: 10.1016/S0252-9602(15)30047-3_bib9
  article-title: Nonlocal nonlinear Schrödinger equations in ℝ3
  publication-title: Arch Rational Mech Anal
  doi: 10.1007/s00205-013-0612-1
– volume: 26
  start-page: 123
  year: 1981
  ident: 10.1016/S0252-9602(15)30047-3_bib14
  article-title: Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma
  publication-title: J Plasma Phys
  doi: 10.1017/S0022377800010588
– year: 2005
  ident: 10.1016/S0252-9602(15)30047-3_bib18
– volume: 82
  start-page: 347
  year: 1983
  ident: 10.1016/S0252-9602(15)30047-3_bib3
  article-title: Nonlinear scalar field equations, II. Existence of infinitely many solutions
  publication-title: Arch Rat Mech Anal
  doi: 10.1007/BF00250556
– volume: 32
  start-page: 827
  issue: 3
  year: 2012
  ident: 10.1016/S0252-9602(15)30047-3_bib8
  article-title: Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations
  publication-title: Dis Cont Dyn Syst
  doi: 10.3934/dcds.2012.32.827
– volume: 71
  start-page: 34
  year: 1988
  ident: 10.1016/S0252-9602(15)30047-3_bib13
  article-title: An instability mechanism for radically symmetric standing waves of a nonlinear Schrödinger equation
  publication-title: J Differential Equations
  doi: 10.1016/0022-0396(88)90037-X
– volume: 34B
  start-page: 1892
  issue: 6
  year: 2014
  ident: 10.1016/S0252-9602(15)30047-3_bib5
  article-title: Nodal bound states with clustered spikes for nonlinear Schrödinger equations
  publication-title: Acta Math Sci
  doi: 10.1016/S0252-9602(14)60133-8
– year: 2004
  ident: 10.1016/S0252-9602(15)30047-3_bib17
– volume: 283
  start-page: 93
  year: 2008
  ident: 10.1016/S0252-9602(15)30047-3_bib7
  article-title: Sharp threshold of global existence and instability of stangding wave for a Davey-Stewartson System
  publication-title: Commun Math Phys
  doi: 10.1007/s00220-008-0456-y
– volume: 74
  start-page: 160
  year: 1987
  ident: 10.1016/S0252-9602(15)30047-3_bib11
  article-title: Stability theory of solitary waves in the presence of symmetry, I*
  publication-title: J Funct Anal
  doi: 10.1016/0022-1236(87)90044-9
– volume: 87
  start-page: 567
  year: 1983
  ident: 10.1016/S0252-9602(15)30047-3_bib23
  article-title: Nonlinear Schrödinger equations and sharp interpolation estimates
  publication-title: Commun Math Phys
  doi: 10.1007/BF01208265
– volume: 30
  start-page: 1429
  year: 2005
  ident: 10.1016/S0252-9602(15)30047-3_bib26
  article-title: Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potentia
  publication-title: Commun PDE
  doi: 10.1080/03605300500299539
– volume: 8
  start-page: 105
  issue: 1
  year: 1995
  ident: 10.1016/S0252-9602(15)30047-3_bib15
  article-title: The Cauchy problem for a generalized Zakharov system
  publication-title: Diff Integral Equ
– volume: 33B
  start-page: 1522
  issue: 6
  year: 2013
  ident: 10.1016/S0252-9602(15)30047-3_bib16
  article-title: On a class of inhomogeneous energy-critical focusing nonlinear Schrödinger equations
  publication-title: Acta Math Sci
  doi: 10.1016/S0252-9602(13)60101-0
– volume: 82
  start-page: 313
  year: 1983
  ident: 10.1016/S0252-9602(15)30047-3_bib2
  article-title: Nonlinear scalar field equations, I. Existence of a ground state
  publication-title: Arch Rat Mech Anal
  doi: 10.1007/BF00250555
– year: 1990
  ident: 10.1016/S0252-9602(15)30047-3_bib6
– volume: 41
  start-page: 747
  year: 1988
  ident: 10.1016/S0252-9602(15)30047-3_bib10
  article-title: Linearized instability for nonlinear Schrödinger and Klein-Gordon equations
  publication-title: Comm Pure Appl Math
  doi: 10.1002/cpa.3160410602
– volume: 129
  start-page: 285
  issue: 5
  year: 1985
  ident: 10.1016/S0252-9602(15)30047-3_bib28
  article-title: Hamiltonian approach to the description of nonlinear plasma phenomena
  publication-title: Physics Reports
  doi: 10.1016/0370-1573(85)90040-7
– volume: 32B
  start-page: 1559
  issue: 4
  year: 2012
  ident: 10.1016/S0252-9602(15)30047-3_bib22
  article-title: Existence of solutions for non-periodic superlinear Schrödinger equations without (AR) condition
  publication-title: Acta Math Sci
SSID ssj0016264
Score 1.9918439
Snippet The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining...
The existence and orbital instability of standing waves for the generalized three-dimensional nonlocal nonlinear Schrödinger equations is studied. By defining...
SourceID crossref
elsevier
chongqing
SourceType Index Database
Publisher
StartPage 1163
SubjectTerms 35B35
35J50
35Q55
nonlocal nonlinear Schrödinger equations
orbital instability
standing waves
三维
不稳定性
局部非线性
广义
能量守恒定律
薛定谔方程组
轨道
非线性Schrodinger方程
Title ORBITAL INSTABILITY OF STANDING WAVES FOR THE GENERALIZED 3D NONLOCAL NONLINEAR SCHRODINGER EQUATIONS
URI http://lib.cqvip.com/qk/86464X/201505/666203599.html
https://dx.doi.org/10.1016/S0252-9602(15)30047-3
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 20181130
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 20181130
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QjIkefKBGRMkePOihULosW46ESFADHpSEW7O73SIXHgU1evBn-Qf8Y85uW9DEePDWx862mdnOfNPMfAtw7rmUqkho9H6KOXXlU0cK7qJBuFK8IVikTTdyr9_oDuo3QzbMQTvrhTFllanvT3y69dbplWqqzepsPK7eY7T2EH9jzDKsUdwwfhr2L1zTlfdVmUcNAbulkMLBjhm97uJJZrAXL2rs0k7iUMOx8DidjOYYOX6PVd_iT2cPdlLgSFrJu-1DTk8KsJuCSJJ-oosCbPdWRKx4tmkrPNXiAKK7WJoNQsjYAEJbEvtKphHJGlvIi3jWC4IYlqA8GSV01OM3nJyGZDKd2KhnDxCYiphgWhx_foT2tyDR84QyfHEIg87VQ7vrpJssOAoj09IJXVdIrhnqQptyV8UjTDFcJpjUTY55t-8r4YdKhD5XXEkpBEWJqEZV6EuvQY8gj4_Wx0CkISdsICBBMbORteDaDX0aGbJRTuteEUor1QazhEwjwPTJMzSCzSJUMmWvbq5L0NBSgbFUUGOBtVRAi-BnJgl-LJkAo8Hfoif_Fy3BFmImlpSZnUJ-GT_pM8QlS1m2C68MG63r227_CxY83pE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VVgg4sCPK6gMHOISmcV2nR1RRFbpwoEjcLNtxSi_dAcGH8QP8GGMnbUFCHLhlGyeacWbeJDPPAGeBT6mOpUHvp5lX0iH1lOQ-GoRrzcuSxcZ2I7fa5fpD6faRPWagOuuFsWWVqe9PfLrz1umRQqrNwrDXK9xjtA4Qf2PMsqxRnC5BrsTQJ2chd3XTqLfnPxMQszsWKbzeswKLRp5kEHfwvMgu3DgetTQLT4N-d4TB4_dw9S0E1TZhPcWO5Cp5vC3ImP42bKQ4kqRv6WQb1lpzLlbcW3ZFnnqyA_HdWNk1QkjPYkJXFftGBjGZ9baQV_liJgRhLEF50k0YqXvvODiNSH_Qd4HPbSA2lWOCmfH48yNyXwaJGSWs4ZNdeKhdd6p1L11nwdMYnKZe5PtSccNQF8ZWvGoeY5bhM8mUqXBMvcNQyzDSMgq55lopKSlKxEWqo1AFZboHWby12QeiLD9hGTEJitm1rCU3fhTS2PKNcloK8nA4V60YJnwaAjOowDIJVvJwOVP2_OSiCg0tJaylRJEJZylB8xDOTCJ-zBqBAeFv0YP_i57CSr3TaormTbtxCKsIoVhSdXYE2en42RwjTJmqk3QafgG6g-E8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ORBITAL+INSTABILITY+OF+STANDING+WAVES+FOR+THE+GENERALIZED+3D+NONLOCAL+NONLINEAR+SCHRODINGER+EQUATIONS&rft.jtitle=%E6%95%B0%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E6%8A%A5%EF%BC%9AB%E8%BE%91%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E7%94%98%E5%9C%A8%E4%BC%9A+%E9%83%AD%E6%9F%8F%E7%81%B5+%E8%92%8B%E8%8A%AF&rft.date=2015-09-01&rft.issn=0252-9602&rft.eissn=1572-9087&rft.issue=5&rft.spage=1163&rft.epage=1188&rft_id=info:doi/10.1016%2FS0252-9602%2815%2930047-3&rft.externalDocID=666203599
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg