ORBITAL INSTABILITY OF STANDING WAVES FOR THE GENERALIZED 3D NONLOCAL NONLINEAR SCHRODINGER EQUATIONS
The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inne...
Saved in:
Published in | Acta mathematica scientia Vol. 35; no. 5; pp. 1163 - 1188 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0252-9602 1572-9087 |
DOI | 10.1016/S0252-9602(15)30047-3 |
Cover
Abstract | The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inner structure of the equations under consideration to overcome the drawback that nonlocal terms violate the space-scale invariance. We then show the orbital instability of standing waves. The arguments depend upon the conservation laws of the mass and of the energy. |
---|---|
AbstractList | The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inner structure of the equations under consideration to overcome the drawback that nonlocal terms violate the space-scale invariance. We then show the orbital instability of standing waves. The arguments depend upon the conservation laws of the mass and of the energy. The existence and orbital instability of standing waves for the generalized three-dimensional nonlocal nonlinear Schrödinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inner structure of the equations under consideration to overcome the drawback that nonlocal terms violate the space-scale invariance. We then show the orbital instability of standing waves. The arguments depend upon the conservation laws of the mass and of the energy. |
Author | 甘在会 郭柏灵 蒋芯 |
AuthorAffiliation | Center for Applied Mathematics, Tianjin University, Tianjin 300072, China College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068, China Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
Author_xml | – sequence: 1 fullname: 甘在会 郭柏灵 蒋芯 |
BookMark | eNqFkF9PgzAUxRujidv0I5g0PukDWiht4cmwrduaEIjANPrSQCkTo6CwmPjtLduyV5_un9zfPSdnDE6bttEAXNnozkY2vU-RQxzLp8i5scktRshlFj4BI5sws0YeOwWj48k5GPf9OzKcQ90R0HEyFVkQQhGlWTAVocheYLyAZojmIlrC5-CJp3ARJzBbcbjkEU-CULzyOcRzGMVRGM8MPTQi4kEC09kqiQeSJ5A_roNMxFF6Ac6q_KPXl4c6AesFz2YrK4yXwvCWcjx3a5UI5QXTxJjVlFFfscpnLiI5KbTPdOF4nsq9UuWlxxRTRZHn2BCVjVXpFQ7FE0D2f1XX9n2nK_nV1Z959yttJIes5C4rOQQhbSJ3WUlsuIc9p425n1p3sle1bpQu606rrSzb-t8P1wflt7bZfNfN5ihNKXUQJr6P_wAnYXZf |
Cites_doi | 10.1007/BF01403504 10.1002/cpa.3160390103 10.1007/BF01212446 10.1007/BF01626517 10.1515/ans-2014-0314 10.1016/S0252-9602(14)60063-1 10.1007/s00205-013-0612-1 10.1017/S0022377800010588 10.1007/BF00250556 10.3934/dcds.2012.32.827 10.1016/0022-0396(88)90037-X 10.1016/S0252-9602(14)60133-8 10.1007/s00220-008-0456-y 10.1016/0022-1236(87)90044-9 10.1007/BF01208265 10.1080/03605300500299539 10.1016/S0252-9602(13)60101-0 10.1007/BF00250555 10.1002/cpa.3160410602 10.1016/0370-1573(85)90040-7 |
ContentType | Journal Article |
Copyright | 2015 Wuhan Institute of Physics and Mathematics |
Copyright_xml | – notice: 2015 Wuhan Institute of Physics and Mathematics |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1016/S0252-9602(15)30047-3 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Physics |
DocumentTitleAlternate | ORBITAL INSTABILITY OF STANDING WAVES FOR THE GENERALIZED 3D NONLOCAL NONLINEAR SCHRODINGER EQUATIONS |
EISSN | 1572-9087 |
EndPage | 1188 |
ExternalDocumentID | 10_1016_S0252_9602_15_30047_3 S0252960215300473 666203599 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11171241 – fundername: New Century Excellent Talents in University grantid: NCET-12-1058 |
GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 23M 2B. 2C. 2RA 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 5XL 7-5 71M 8P~ 92E 92I 92L 92M 92Q 93N 9D9 9DA AACTN AAEDT AAEDW AAFGU AAHNG AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABAOU ABECU ABFGW ABFNM ABFTV ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABXDB ABXPI ABYKQ ACAOD ACAZW ACBMV ACBRV ACBYP ACDAQ ACGFS ACHSB ACIGE ACIPQ ACMLO ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADBBV ADEZE ADKNI ADMDM ADMUD ADOXG ADTPH ADURQ ADYFF AEBSH AEFTE AEJRE AEKER AENEX AESKC AESTI AEVTX AFKWA AFNRJ AFQWF AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AIAKS AIEXJ AIGVJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF ARUGR AXJTR AXYYD BGNMA BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP CS3 CSCUP CW9 DPUIP EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FEDTE FIRID FNLPD FNPLU FYGXN GBLVA GJIRD HVGLF HZ~ IKXTQ IWAJR J1W JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MHUIS MO0 N9A NPVJJ NQJWS NU0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. PT4 Q-- Q-0 Q38 R-A REI RIG ROL RSV RT1 S.. SDC SDF SDG SDH SES SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SSW SSZ T5K T8Q TCJ TGP TSG U1F U1G U5A U5K UOJIU UTJUX VEKWB VFIZW ZMTXR ~G- ~L9 ~WA AGQEE FIGPU AACDK AAJBT AASML AATTM AAXKI AAYWO AAYXX ABAKF ABBRH ABDBE ABFSG ABJNI ABRTQ ABWVN ACDTI ACLOT ACPIV ACRPL ACSTC ACVFH ADCNI ADNMO AEFQL AEIPS AEMSY AEUPX AEZWR AFBBN AFDZB AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIGIU AIIUN AIXLP AKBMS AKRWK AKYEP ANKPU ATHPR AYFIA CITATION EFKBS HG6 SJYHP ~HD |
ID | FETCH-LOGICAL-c284t-d00ab7e5025e6769c7f97405a5be97eb288ca8dcad87c7cbbaa30abf13cd8b263 |
IEDL.DBID | .~1 |
ISSN | 0252-9602 |
IngestDate | Wed Oct 01 03:09:10 EDT 2025 Fri Feb 23 02:25:03 EST 2024 Wed Feb 14 10:28:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 35Q55 standing waves nonlocal nonlinear Schrödinger equations 35J50 35B35 orbital instability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c284t-d00ab7e5025e6769c7f97405a5be97eb288ca8dcad87c7cbbaa30abf13cd8b263 |
Notes | 42-1227/O nonlocal nonlinear SchrSdinger equations; standing waves; orbital instability Zaihui GAN, Boling GUO, Xin JIANG(1.Center for Applied Mathematics, Tianjin University, Tianjin 300072, China; 2.College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068, China;3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China) The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inner structure of the equations under consideration to overcome the drawback that nonlocal terms violate the space-scale invariance. We then show the orbital instability of standing waves. The arguments depend upon the conservation laws of the mass and of the energy. |
PageCount | 26 |
ParticipantIDs | crossref_primary_10_1016_S0252_9602_15_30047_3 elsevier_sciencedirect_doi_10_1016_S0252_9602_15_30047_3 chongqing_primary_666203599 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Acta mathematica scientia |
PublicationTitleAlternate | Acta Mathematica Scientia |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Weinstein (bib24) 1986; 39 Berestycki, Lions (bib2) 1983; 82 Liu (bib16) 2013; 33B Kono, Skoric, Ter Haar (bib14) 1981; 26 Miao (bib18) 2005 Dendy (bib6) 1990 Miao (bib17) 2004 Jones (bib13) 1988; 71 Gan, Zhang (bib9) 2013; 209 Jiang, Gan (bib12) 2014; 14 Gan, Zhang (bib8) 2012; 32 Zakharov (bib27) 1972; 35 Shatah, Strauss (bib20) 1985; 100 Berestycki, Lions (bib3) 1983; 82 Dai, He (bib5) 2014; 34B Wan, Tang (bib22) 2012; 32B Cazenave, Lions (bib4) 1982; 85 Miao, Zhang (bib19) 2008 Weinstein (bib23) 1983; 87 Laurey (bib15) 1995; 8 Gan, Zhang (bib7) 2008; 283 Zakharov, Musher, Rubenchik (bib28) 1985; 129 Grillakis, Shatah, Strauss (bib11) 1987; 74 Zhang (bib26) 2005; 30 Xu, Fan (bib25) 2014; 34B Berestycki, Cazenave (bib1) 1981; 293 Grillakis (bib10) 1988; 41 Strauss (bib21) 1977; 55 Grillakis (10.1016/S0252-9602(15)30047-3_bib11) 1987; 74 Laurey (10.1016/S0252-9602(15)30047-3_bib15) 1995; 8 Liu (10.1016/S0252-9602(15)30047-3_bib16) 2013; 33B Miao (10.1016/S0252-9602(15)30047-3_bib17) 2004 Dendy (10.1016/S0252-9602(15)30047-3_bib6) 1990 Jones (10.1016/S0252-9602(15)30047-3_bib13) 1988; 71 Kono (10.1016/S0252-9602(15)30047-3_bib14) 1981; 26 Zakharov (10.1016/S0252-9602(15)30047-3_bib27) 1972; 35 Cazenave (10.1016/S0252-9602(15)30047-3_bib4) 1982; 85 Gan (10.1016/S0252-9602(15)30047-3_bib8) 2012; 32 Miao (10.1016/S0252-9602(15)30047-3_bib18) 2005 Dai (10.1016/S0252-9602(15)30047-3_bib5) 2014; 34B Grillakis (10.1016/S0252-9602(15)30047-3_bib10) 1988; 41 Zhang (10.1016/S0252-9602(15)30047-3_bib26) 2005; 30 Berestycki (10.1016/S0252-9602(15)30047-3_bib1) 1981; 293 Zakharov (10.1016/S0252-9602(15)30047-3_bib28) 1985; 129 Wan (10.1016/S0252-9602(15)30047-3_bib22) 2012; 32B Xu (10.1016/S0252-9602(15)30047-3_bib25) 2014; 34B Berestycki (10.1016/S0252-9602(15)30047-3_bib3) 1983; 82 Strauss (10.1016/S0252-9602(15)30047-3_bib21) 1977; 55 Gan (10.1016/S0252-9602(15)30047-3_bib9) 2013; 209 Berestycki (10.1016/S0252-9602(15)30047-3_bib2) 1983; 82 Weinstein (10.1016/S0252-9602(15)30047-3_bib24) 1986; 39 Shatah (10.1016/S0252-9602(15)30047-3_bib20) 1985; 100 Weinstein (10.1016/S0252-9602(15)30047-3_bib23) 1983; 87 Jiang (10.1016/S0252-9602(15)30047-3_bib12) 2014; 14 Gan (10.1016/S0252-9602(15)30047-3_bib7) 2008; 283 Miao (10.1016/S0252-9602(15)30047-3_bib19) 2008 |
References_xml | – year: 1990 ident: bib6 publication-title: Plasma Dynamics – volume: 33B start-page: 1522 year: 2013 end-page: 1530 ident: bib16 article-title: On a class of inhomogeneous energy-critical focusing nonlinear Schrödinger equations publication-title: Acta Math Sci – volume: 82 start-page: 347 year: 1983 end-page: 375 ident: bib3 article-title: Nonlinear scalar field equations, II. Existence of infinitely many solutions publication-title: Arch Rat Mech Anal – year: 2004 ident: bib17 publication-title: Harmonic Analysis and Applications to Partial Differential Equations. Monographs on Modern Pure Mathematics No 89 – volume: 100 start-page: 173 year: 1985 end-page: 190 ident: bib20 article-title: Instability of nonlinear bound states publication-title: Commun Math Phys – volume: 283 start-page: 93 year: 2008 end-page: 125 ident: bib7 article-title: Sharp threshold of global existence and instability of stangding wave for a Davey-Stewartson System publication-title: Commun Math Phys – volume: 26 start-page: 123 year: 1981 end-page: 146 ident: bib14 article-title: Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma publication-title: J Plasma Phys – volume: 32B start-page: 1559 year: 2012 end-page: 1570 ident: bib22 article-title: Existence of solutions for non-periodic superlinear Schrödinger equations without (AR) condition publication-title: Acta Math Sci – volume: 30 start-page: 1429 year: 2005 end-page: 1443 ident: bib26 article-title: Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potentia publication-title: Commun PDE – volume: 209 start-page: 1 year: 2013 end-page: 39 ident: bib9 article-title: Nonlocal nonlinear Schrödinger equations in publication-title: Arch Rational Mech Anal – volume: 55 start-page: 149 year: 1977 end-page: 162 ident: bib21 article-title: Existence of solitary waves in high dimensions publication-title: Commun Math Phys – year: 2008 ident: bib19 publication-title: Harmonic Analysis Method of Partial Differential Equations. Monographs on Modern Pure Mathematics, No 117 – volume: 293 start-page: 489 year: 1981 end-page: 492 ident: bib1 article-title: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéairees publication-title: C R Acad Sci Paris – volume: 87 start-page: 567 year: 1983 end-page: 576 ident: bib23 article-title: Nonlinear Schrödinger equations and sharp interpolation estimates publication-title: Commun Math Phys – volume: 82 start-page: 313 year: 1983 end-page: 345 ident: bib2 article-title: Nonlinear scalar field equations, I. Existence of a ground state publication-title: Arch Rat Mech Anal – volume: 34B start-page: 973 year: 2014 end-page: 994 ident: bib25 article-title: A Riemann-Hilbert approach to the initial-boundary problem for derivative nonlinear Schrödinger equations publication-title: Acta Math Sci – volume: 129 start-page: 285 year: 1985 end-page: 366 ident: bib28 article-title: Hamiltonian approach to the description of nonlinear plasma phenomena publication-title: Physics Reports – volume: 85 start-page: 549 year: 1982 end-page: 561 ident: bib4 article-title: Orbital stability of standing waves for some nonlinear Schrödinger equations publication-title: Commun Math Phys – volume: 39 start-page: 51 year: 1986 end-page: 68 ident: bib24 article-title: Lyapunov stability of ground states of nonlinear dispersive evolution equations publication-title: Commun Pure Appl Math – volume: 32 start-page: 827 year: 2012 end-page: 846 ident: bib8 article-title: Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations publication-title: Dis Cont Dyn Syst – year: 2005 ident: bib18 publication-title: The Modern Method of Nonlinear Wave Equations. Lectures in Contemporary Mathematics, No 2 – volume: 8 start-page: 105 year: 1995 end-page: 130 ident: bib15 article-title: The Cauchy problem for a generalized Zakharov system publication-title: Diff Integral Equ – volume: 74 start-page: 160 year: 1987 end-page: 197 ident: bib11 article-title: Stability theory of solitary waves in the presence of symmetry, I* publication-title: J Funct Anal – volume: 41 start-page: 747 year: 1988 end-page: 774 ident: bib10 article-title: Linearized instability for nonlinear Schrödinger and Klein-Gordon equations publication-title: Comm Pure Appl Math – volume: 14 start-page: 777 year: 2014 end-page: 790 ident: bib12 article-title: Collapse for the generalized three-dimensional nonlocal nonlinear Schrödinger equations publication-title: Adv Nonlinear Stud – volume: 71 start-page: 34 year: 1988 end-page: 62 ident: bib13 article-title: An instability mechanism for radically symmetric standing waves of a nonlinear Schrödinger equation publication-title: J Differential Equations – volume: 35 start-page: 908 year: 1972 end-page: 914 ident: bib27 article-title: The collapse of Langmuir waves publication-title: Soviet Phys, JETP – volume: 34B start-page: 1892 year: 2014 end-page: 1906 ident: bib5 article-title: Nodal bound states with clustered spikes for nonlinear Schrödinger equations publication-title: Acta Math Sci – volume: 85 start-page: 549 year: 1982 ident: 10.1016/S0252-9602(15)30047-3_bib4 article-title: Orbital stability of standing waves for some nonlinear Schrödinger equations publication-title: Commun Math Phys doi: 10.1007/BF01403504 – volume: 39 start-page: 51 year: 1986 ident: 10.1016/S0252-9602(15)30047-3_bib24 article-title: Lyapunov stability of ground states of nonlinear dispersive evolution equations publication-title: Commun Pure Appl Math doi: 10.1002/cpa.3160390103 – volume: 293 start-page: 489 year: 1981 ident: 10.1016/S0252-9602(15)30047-3_bib1 article-title: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéairees publication-title: C R Acad Sci Paris – volume: 100 start-page: 173 year: 1985 ident: 10.1016/S0252-9602(15)30047-3_bib20 article-title: Instability of nonlinear bound states publication-title: Commun Math Phys doi: 10.1007/BF01212446 – year: 2008 ident: 10.1016/S0252-9602(15)30047-3_bib19 – volume: 55 start-page: 149 year: 1977 ident: 10.1016/S0252-9602(15)30047-3_bib21 article-title: Existence of solitary waves in high dimensions publication-title: Commun Math Phys doi: 10.1007/BF01626517 – volume: 14 start-page: 777 year: 2014 ident: 10.1016/S0252-9602(15)30047-3_bib12 article-title: Collapse for the generalized three-dimensional nonlocal nonlinear Schrödinger equations publication-title: Adv Nonlinear Stud doi: 10.1515/ans-2014-0314 – volume: 35 start-page: 908 year: 1972 ident: 10.1016/S0252-9602(15)30047-3_bib27 article-title: The collapse of Langmuir waves publication-title: Soviet Phys, JETP – volume: 34B start-page: 973 issue: 4 year: 2014 ident: 10.1016/S0252-9602(15)30047-3_bib25 article-title: A Riemann-Hilbert approach to the initial-boundary problem for derivative nonlinear Schrödinger equations publication-title: Acta Math Sci doi: 10.1016/S0252-9602(14)60063-1 – volume: 209 start-page: 1 year: 2013 ident: 10.1016/S0252-9602(15)30047-3_bib9 article-title: Nonlocal nonlinear Schrödinger equations in ℝ3 publication-title: Arch Rational Mech Anal doi: 10.1007/s00205-013-0612-1 – volume: 26 start-page: 123 year: 1981 ident: 10.1016/S0252-9602(15)30047-3_bib14 article-title: Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma publication-title: J Plasma Phys doi: 10.1017/S0022377800010588 – year: 2005 ident: 10.1016/S0252-9602(15)30047-3_bib18 – volume: 82 start-page: 347 year: 1983 ident: 10.1016/S0252-9602(15)30047-3_bib3 article-title: Nonlinear scalar field equations, II. Existence of infinitely many solutions publication-title: Arch Rat Mech Anal doi: 10.1007/BF00250556 – volume: 32 start-page: 827 issue: 3 year: 2012 ident: 10.1016/S0252-9602(15)30047-3_bib8 article-title: Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations publication-title: Dis Cont Dyn Syst doi: 10.3934/dcds.2012.32.827 – volume: 71 start-page: 34 year: 1988 ident: 10.1016/S0252-9602(15)30047-3_bib13 article-title: An instability mechanism for radically symmetric standing waves of a nonlinear Schrödinger equation publication-title: J Differential Equations doi: 10.1016/0022-0396(88)90037-X – volume: 34B start-page: 1892 issue: 6 year: 2014 ident: 10.1016/S0252-9602(15)30047-3_bib5 article-title: Nodal bound states with clustered spikes for nonlinear Schrödinger equations publication-title: Acta Math Sci doi: 10.1016/S0252-9602(14)60133-8 – year: 2004 ident: 10.1016/S0252-9602(15)30047-3_bib17 – volume: 283 start-page: 93 year: 2008 ident: 10.1016/S0252-9602(15)30047-3_bib7 article-title: Sharp threshold of global existence and instability of stangding wave for a Davey-Stewartson System publication-title: Commun Math Phys doi: 10.1007/s00220-008-0456-y – volume: 74 start-page: 160 year: 1987 ident: 10.1016/S0252-9602(15)30047-3_bib11 article-title: Stability theory of solitary waves in the presence of symmetry, I* publication-title: J Funct Anal doi: 10.1016/0022-1236(87)90044-9 – volume: 87 start-page: 567 year: 1983 ident: 10.1016/S0252-9602(15)30047-3_bib23 article-title: Nonlinear Schrödinger equations and sharp interpolation estimates publication-title: Commun Math Phys doi: 10.1007/BF01208265 – volume: 30 start-page: 1429 year: 2005 ident: 10.1016/S0252-9602(15)30047-3_bib26 article-title: Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potentia publication-title: Commun PDE doi: 10.1080/03605300500299539 – volume: 8 start-page: 105 issue: 1 year: 1995 ident: 10.1016/S0252-9602(15)30047-3_bib15 article-title: The Cauchy problem for a generalized Zakharov system publication-title: Diff Integral Equ – volume: 33B start-page: 1522 issue: 6 year: 2013 ident: 10.1016/S0252-9602(15)30047-3_bib16 article-title: On a class of inhomogeneous energy-critical focusing nonlinear Schrödinger equations publication-title: Acta Math Sci doi: 10.1016/S0252-9602(13)60101-0 – volume: 82 start-page: 313 year: 1983 ident: 10.1016/S0252-9602(15)30047-3_bib2 article-title: Nonlinear scalar field equations, I. Existence of a ground state publication-title: Arch Rat Mech Anal doi: 10.1007/BF00250555 – year: 1990 ident: 10.1016/S0252-9602(15)30047-3_bib6 – volume: 41 start-page: 747 year: 1988 ident: 10.1016/S0252-9602(15)30047-3_bib10 article-title: Linearized instability for nonlinear Schrödinger and Klein-Gordon equations publication-title: Comm Pure Appl Math doi: 10.1002/cpa.3160410602 – volume: 129 start-page: 285 issue: 5 year: 1985 ident: 10.1016/S0252-9602(15)30047-3_bib28 article-title: Hamiltonian approach to the description of nonlinear plasma phenomena publication-title: Physics Reports doi: 10.1016/0370-1573(85)90040-7 – volume: 32B start-page: 1559 issue: 4 year: 2012 ident: 10.1016/S0252-9602(15)30047-3_bib22 article-title: Existence of solutions for non-periodic superlinear Schrödinger equations without (AR) condition publication-title: Acta Math Sci |
SSID | ssj0016264 |
Score | 1.9918439 |
Snippet | The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining... The existence and orbital instability of standing waves for the generalized three-dimensional nonlocal nonlinear Schrödinger equations is studied. By defining... |
SourceID | crossref elsevier chongqing |
SourceType | Index Database Publisher |
StartPage | 1163 |
SubjectTerms | 35B35 35J50 35Q55 nonlocal nonlinear Schrödinger equations orbital instability standing waves 三维 不稳定性 局部非线性 广义 能量守恒定律 薛定谔方程组 轨道 非线性Schrodinger方程 |
Title | ORBITAL INSTABILITY OF STANDING WAVES FOR THE GENERALIZED 3D NONLOCAL NONLINEAR SCHRODINGER EQUATIONS |
URI | http://lib.cqvip.com/qk/86464X/201505/666203599.html https://dx.doi.org/10.1016/S0252-9602(15)30047-3 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1572-9087 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016264 issn: 0252-9602 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1572-9087 dateEnd: 20181130 omitProxy: true ssIdentifier: ssj0016264 issn: 0252-9602 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1572-9087 dateEnd: 20181130 omitProxy: true ssIdentifier: ssj0016264 issn: 0252-9602 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1572-9087 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016264 issn: 0252-9602 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1572-9087 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016264 issn: 0252-9602 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QjIkefKBGRMkePOihULosW46ESFADHpSEW7O73SIXHgU1evBn-Qf8Y85uW9DEePDWx862mdnOfNPMfAtw7rmUqkho9H6KOXXlU0cK7qJBuFK8IVikTTdyr9_oDuo3QzbMQTvrhTFllanvT3y69dbplWqqzepsPK7eY7T2EH9jzDKsUdwwfhr2L1zTlfdVmUcNAbulkMLBjhm97uJJZrAXL2rs0k7iUMOx8DidjOYYOX6PVd_iT2cPdlLgSFrJu-1DTk8KsJuCSJJ-oosCbPdWRKx4tmkrPNXiAKK7WJoNQsjYAEJbEvtKphHJGlvIi3jWC4IYlqA8GSV01OM3nJyGZDKd2KhnDxCYiphgWhx_foT2tyDR84QyfHEIg87VQ7vrpJssOAoj09IJXVdIrhnqQptyV8UjTDFcJpjUTY55t-8r4YdKhD5XXEkpBEWJqEZV6EuvQY8gj4_Wx0CkISdsICBBMbORteDaDX0aGbJRTuteEUor1QazhEwjwPTJMzSCzSJUMmWvbq5L0NBSgbFUUGOBtVRAi-BnJgl-LJkAo8Hfoif_Fy3BFmImlpSZnUJ-GT_pM8QlS1m2C68MG63r227_CxY83pE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VVgg4sCPK6gMHOISmcV2nR1RRFbpwoEjcLNtxSi_dAcGH8QP8GGMnbUFCHLhlGyeacWbeJDPPAGeBT6mOpUHvp5lX0iH1lOQ-GoRrzcuSxcZ2I7fa5fpD6faRPWagOuuFsWWVqe9PfLrz1umRQqrNwrDXK9xjtA4Qf2PMsqxRnC5BrsTQJ2chd3XTqLfnPxMQszsWKbzeswKLRp5kEHfwvMgu3DgetTQLT4N-d4TB4_dw9S0E1TZhPcWO5Cp5vC3ImP42bKQ4kqRv6WQb1lpzLlbcW3ZFnnqyA_HdWNk1QkjPYkJXFftGBjGZ9baQV_liJgRhLEF50k0YqXvvODiNSH_Qd4HPbSA2lWOCmfH48yNyXwaJGSWs4ZNdeKhdd6p1L11nwdMYnKZe5PtSccNQF8ZWvGoeY5bhM8mUqXBMvcNQyzDSMgq55lopKSlKxEWqo1AFZboHWby12QeiLD9hGTEJitm1rCU3fhTS2PKNcloK8nA4V60YJnwaAjOowDIJVvJwOVP2_OSiCg0tJaylRJEJZylB8xDOTCJ-zBqBAeFv0YP_i57CSr3TaormTbtxCKsIoVhSdXYE2en42RwjTJmqk3QafgG6g-E8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ORBITAL+INSTABILITY+OF+STANDING+WAVES+FOR+THE+GENERALIZED+3D+NONLOCAL+NONLINEAR+SCHRODINGER+EQUATIONS&rft.jtitle=%E6%95%B0%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E6%8A%A5%EF%BC%9AB%E8%BE%91%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E7%94%98%E5%9C%A8%E4%BC%9A+%E9%83%AD%E6%9F%8F%E7%81%B5+%E8%92%8B%E8%8A%AF&rft.date=2015-09-01&rft.issn=0252-9602&rft.eissn=1572-9087&rft.issue=5&rft.spage=1163&rft.epage=1188&rft_id=info:doi/10.1016%2FS0252-9602%2815%2930047-3&rft.externalDocID=666203599 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg |