Efficient sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm

Bayesian variable selection methods are powerful techniques for fitting sparse high-dimensional linear regression models. However, many are computationally intensive or require restrictive prior distributions on model parameters. A computationally efficient and powerful Bayesian approach is presente...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 207; p. 108146
Main Authors McLain, Alexander C., Zgodic, Anja, Bondell, Howard
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2025
Subjects
Online AccessGet full text
ISSN0167-9473
DOI10.1016/j.csda.2025.108146

Cover

Abstract Bayesian variable selection methods are powerful techniques for fitting sparse high-dimensional linear regression models. However, many are computationally intensive or require restrictive prior distributions on model parameters. A computationally efficient and powerful Bayesian approach is presented for sparse high-dimensional linear regression, requiring only minimal prior assumptions on parameters through plug-in empirical Bayes estimates of hyperparameters. The method employs a Parameter-Expanded Expectation-Conditional-Maximization (PX-ECM) algorithm to estimate maximum a posteriori (MAP) values of parameters via computationally efficient coordinate-wise optimization. The popular two-group approach to multiple testing motivates the E-step, resulting in a PaRtitiOned empirical Bayes Ecm (PROBE) algorithm for sparse high-dimensional linear regression. Both one-at-a-time and all-at-once optimization can be used to complete PROBE. Extensive simulation studies and analyses of cancer cell drug responses are conducted to compare PROBE's empirical properties with those of related methods. Implementation is available through the R package probe.
AbstractList Bayesian variable selection methods are powerful techniques for fitting sparse high-dimensional linear regression models. However, many are computationally intensive or require restrictive prior distributions on model parameters. A computationally efficient and powerful Bayesian approach is presented for sparse high-dimensional linear regression, requiring only minimal prior assumptions on parameters through plug-in empirical Bayes estimates of hyperparameters. The method employs a Parameter-Expanded Expectation-Conditional-Maximization (PX-ECM) algorithm to estimate maximum a posteriori (MAP) values of parameters via computationally efficient coordinate-wise optimization. The popular two-group approach to multiple testing motivates the E-step, resulting in a PaRtitiOned empirical Bayes Ecm (PROBE) algorithm for sparse high-dimensional linear regression. Both one-at-a-time and all-at-once optimization can be used to complete PROBE. Extensive simulation studies and analyses of cancer cell drug responses are conducted to compare PROBE's empirical properties with those of related methods. Implementation is available through the R package probe.
ArticleNumber 108146
Author McLain, Alexander C.
Zgodic, Anja
Bondell, Howard
Author_xml – sequence: 1
  givenname: Alexander C.
  orcidid: 0000-0002-5475-0670
  surname: McLain
  fullname: McLain, Alexander C.
  email: mclaina@mailbox.sc.edu
  organization: Department of Epidemiology and Biostatistics, University of South Carolina, 915 Greene Street, Columbia, SC, 29208, United States of America
– sequence: 2
  givenname: Anja
  surname: Zgodic
  fullname: Zgodic, Anja
  organization: Department of Epidemiology and Biostatistics, University of South Carolina, 915 Greene Street, Columbia, SC, 29208, United States of America
– sequence: 3
  givenname: Howard
  surname: Bondell
  fullname: Bondell, Howard
  organization: School of Mathematics and Statistics, University of Melbourne, 813 Swanston Street, Parkville VIC 3052, Australia
BookMark eNp9kLtOAzEQRV0EiSTwA1QuaTb4tS-JBqLwkIJooLa89mwy0T6CvQHl7_FqqalGunPuSHMWZNb1HRByw9mKM57dHVY2OLMSTKQxKLjKZmQeF3lSqlxekkUIB8aYUHkxJ25T12gRuoGGo_EB6B53-8RhC13AvjMNbbAD46mHnYcwZvQHhz01NPIDDjEAR6E9okcb8UdzhkA36zdqml3vI9pekYvaNAGu_-aSfD5tPtYvyfb9-XX9sE2sKNSQWKtq5dLUSuEkqJQLkVdVVkLKUgYiY4JXrIKikoXktagKp3LISslzXpQ2d3JJbqe7R99_nSAMusVgoWlMB_0paCmUYClnkkdUTKj1fQgean302Bp_1pzpUaM-6FGjHjXqSWMs3U8liE98I3gdRnUWHHqwg3Y9_lf_BV0Zf7g
Cites_doi 10.1093/biomet/asq017
10.1080/01621459.2013.869223
10.1111/rssb.12388
10.1111/1467-9868.00188
10.1093/biomet/85.4.755
10.1080/01621459.1988.10478694
10.1093/biostatistics/kxy035
10.1198/016214507000000167
10.1080/01621459.2020.1847121
10.1080/01621459.2000.10474219
10.1080/01621459.2012.716344
10.1016/j.dsp.2019.01.004
10.1080/10618600.2021.1963263
10.1080/01621459.2016.1260469
10.1093/biomet/80.2.267
10.1111/j.1467-9868.2004.00439.x
10.1080/01621459.1991.10475130
10.1198/016214501753382129
10.1080/01621459.2017.1360778
10.1198/016214507000000545
10.1109/TSP.2008.2005866
10.1080/01621459.2017.1285773
10.1287/moor.1100.0456
10.1093/biomet/44.3-4.533
10.3150/15-BEJ797
10.1080/00401706.1970.10488634
10.1214/10-AOAS388
10.1214/09-BA403
10.18637/jss.v033.i01
10.1214/19-AOS1897
10.1016/S0893-6080(98)00116-6
10.1093/biomet/87.4.731
10.1080/01621459.1993.10476353
10.1214/09-AOS729
10.1038/nature11003
10.1198/016214507000001337
10.1198/016214506000000735
10.1111/j.1467-9469.2007.00585.x
10.1016/j.csda.2013.02.005
10.1214/17-EJS1316
10.1111/1467-9868.00230
10.1111/j.2517-6161.1982.tb01203.x
10.1111/j.2517-6161.1996.tb02080.x
10.1214/15-AOS1334
10.1198/016214501753382273
10.1137/S0895479890179631
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.csda.2025.108146
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_csda_2025_108146
S0167947325000222
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c284t-cc4f4d55c32d3e451227bb69e5050e26021b0be8b3831f2b8d47e69317189c7d3
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Thu Oct 02 21:45:16 EDT 2025
Wed Oct 01 06:44:03 EDT 2025
Sat Mar 08 15:42:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords High-dimensional linear regression
Sparsity
Approximate Bayesian computation
Generalized EM algorithm
Variable selection
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c284t-cc4f4d55c32d3e451227bb69e5050e26021b0be8b3831f2b8d47e69317189c7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5475-0670
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0167947325000222
PQID 3242051031
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3242051031
crossref_primary_10_1016_j_csda_2025_108146
elsevier_sciencedirect_doi_10_1016_j_csda_2025_108146
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Computational statistics & data analysis
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Friedman, Hastie, Tibshirani (br0190) 2010; 33
Bartlett (br0020) 1957; 44
McLain, Zgodic (br0370) 2022
Varadhan, Roland (br0610) 2008; 35
Embrechts, Klüppelberg, Mikosch (br0160) 2013
Liang, Paulo, Molina, Clyde, Berger (br0310) 2008; 103
Blei, Kucukelbir, McAuliffe (br0040) 2017; 112
George, Foster (br0210) 2000; 87
Efron, Tibshirani, Storey, Tusher (br0150) 2001; 96
Murphy, Van der Vaart (br0430) 2000; 95
Breheny, Huang (br0060) 2011; 5
Storey, Taylor, Siegmund (br0570) 2004; 66
Kloek, Lempers (br0290) 1970
Jamshidian, Jennrich (br0250) 2000; 62
Jin, Cai (br0280) 2007; 102
Ostrovnaya, Nicolae (br0460) 2012; 22
Oakes (br0440) 1999; 61
Martin, Mess, Walker (br0340) 2017; 23
Martin, Tang (br0350) 2020; 21
Stephens (br0560) 2017; 18
Gelman, Carlin, Stern, Dunson, Vehtari, Rubin (br0200) 2014
George, McCulloch (br0220) 1993; 88
Meng, Rubin (br0390) 1992
Fan, Li (br0170) 2001; 96
Blanchard, Roquain (br0030) 2009; 10
Hoerl, Kennard (br0240) 1970; 12
Ročková (br0520) 2018; 113
Vehtari, Gelman, Sivula, Jylänki, Tran, Sahai, Blomstedt, Cunningham, Schiminovich, Robert (br0620) 2020; 21
Barretina, Caponigro, Stransky, Venkatesan, Margolin, Kim, Wilson, Lehar, Kryukov, Sonkin (br0010) 2012; 483
Dondelinger, Mukherjee, Initiative (br0120) 2020; 21
Chae, Lin, Dunson (br0110) 2019; 8
Eddelbuettel, Sanderson (br0140) 2014; 71
Liu, Rubin, Wu (br0320) 1998; 85
Carbonetto, Stephens (br0070) 2012; vol. 7
Ji, Dunson, Carin (br0260) 2008; 57
Meng, Rubin (br0380) 1991; 86
Zhang (br0660) 2010; 38
Tipping (br0600) 2001; 1
Jiang, Bogdan, Josse, Majewski, Miasojedow, Ročková, Group (br0270) 2022; 31
Meng, Rubin (br0400) 1993; 80
Carvalho, Polson, Scott (br0080) 2010; 97
Minka, Lafferty (br0410) 2002
Bondell, Reich (br0050) 2012; 107
Faul, Tipping (br0180) 2001; 14
Leventhal, Lewis (br0300) 2010; 35
Mascarenhas (br0360) 1995; 16
Mitchell, Beauchamp (br0420) 1988; 83
Zgodic, Bai, Zhang, McLain (br0640) 2023
Castillo, Schmidt-Hieber, Van der Vaart (br0100) 2015; 43
Ročková, George (br0510) 2018; 113
Castillo, Roquain (br0090) 2020; 48
Hastie, Tibshirani, Wainwright (br0230) 2015
Serra, Mateos, Molina, Katsaggelos (br0540) 2019; 88
Tibshirani (br0590) 1996; 58
Ročková, George (br0530) 2014; 109
O'Hara, Sillanpää (br0450) 2009; 4
Ray, Szabó (br0500) 2022; 117
Sun, Cai (br0580) 2007; 102
van der Pas, Szabó, van der Vaart (br0470) 2017; 11
Silverman (br0550) 1986
van Dyk, Meng, Rubin (br0130) 1995; 5
Qian (br0480) 1999; 12
Louis (br0330) 1982; 44
Zgodic, Bai, Zhang, Wang, Rorden, McLain (br0650) 2024
(br0490) 2020
Wang, Sarkar, Carbonetto, Stephens (br0630) 2020; 82
Zou (br0670) 2006; 101
George (10.1016/j.csda.2025.108146_br0220) 1993; 88
Carbonetto (10.1016/j.csda.2025.108146_br0070) 2012; vol. 7
Tibshirani (10.1016/j.csda.2025.108146_br0590) 1996; 58
Varadhan (10.1016/j.csda.2025.108146_br0610) 2008; 35
Dondelinger (10.1016/j.csda.2025.108146_br0120) 2020; 21
George (10.1016/j.csda.2025.108146_br0210) 2000; 87
Ročková (10.1016/j.csda.2025.108146_br0520) 2018; 113
Ročková (10.1016/j.csda.2025.108146_br0510) 2018; 113
(10.1016/j.csda.2025.108146_br0490) 2020
Serra (10.1016/j.csda.2025.108146_br0540) 2019; 88
Barretina (10.1016/j.csda.2025.108146_br0010) 2012; 483
Fan (10.1016/j.csda.2025.108146_br0170) 2001; 96
Ray (10.1016/j.csda.2025.108146_br0500) 2022; 117
Ostrovnaya (10.1016/j.csda.2025.108146_br0460) 2012; 22
Mascarenhas (10.1016/j.csda.2025.108146_br0360) 1995; 16
van Dyk (10.1016/j.csda.2025.108146_br0130) 1995; 5
Castillo (10.1016/j.csda.2025.108146_br0100) 2015; 43
Meng (10.1016/j.csda.2025.108146_br0390) 1992
Faul (10.1016/j.csda.2025.108146_br0180) 2001; 14
Blei (10.1016/j.csda.2025.108146_br0040) 2017; 112
Zgodic (10.1016/j.csda.2025.108146_br0650)
Kloek (10.1016/j.csda.2025.108146_br0290) 1970
Eddelbuettel (10.1016/j.csda.2025.108146_br0140) 2014; 71
Bartlett (10.1016/j.csda.2025.108146_br0020) 1957; 44
Stephens (10.1016/j.csda.2025.108146_br0560) 2017; 18
McLain (10.1016/j.csda.2025.108146_br0370)
Vehtari (10.1016/j.csda.2025.108146_br0620) 2020; 21
Oakes (10.1016/j.csda.2025.108146_br0440) 1999; 61
Meng (10.1016/j.csda.2025.108146_br0380) 1991; 86
Martin (10.1016/j.csda.2025.108146_br0350) 2020; 21
Mitchell (10.1016/j.csda.2025.108146_br0420) 1988; 83
Leventhal (10.1016/j.csda.2025.108146_br0300) 2010; 35
Murphy (10.1016/j.csda.2025.108146_br0430) 2000; 95
Carvalho (10.1016/j.csda.2025.108146_br0080) 2010; 97
Embrechts (10.1016/j.csda.2025.108146_br0160) 2013
Hastie (10.1016/j.csda.2025.108146_br0230) 2015
Liang (10.1016/j.csda.2025.108146_br0310) 2008; 103
Jamshidian (10.1016/j.csda.2025.108146_br0250) 2000; 62
Hoerl (10.1016/j.csda.2025.108146_br0240) 1970; 12
Jin (10.1016/j.csda.2025.108146_br0280) 2007; 102
Ji (10.1016/j.csda.2025.108146_br0260) 2008; 57
van der Pas (10.1016/j.csda.2025.108146_br0470) 2017; 11
Bondell (10.1016/j.csda.2025.108146_br0050) 2012; 107
Liu (10.1016/j.csda.2025.108146_br0320) 1998; 85
Meng (10.1016/j.csda.2025.108146_br0400) 1993; 80
Blanchard (10.1016/j.csda.2025.108146_br0030) 2009; 10
Wang (10.1016/j.csda.2025.108146_br0630) 2020; 82
Qian (10.1016/j.csda.2025.108146_br0480) 1999; 12
Chae (10.1016/j.csda.2025.108146_br0110) 2019; 8
Louis (10.1016/j.csda.2025.108146_br0330) 1982; 44
Zhang (10.1016/j.csda.2025.108146_br0660) 2010; 38
Efron (10.1016/j.csda.2025.108146_br0150) 2001; 96
Sun (10.1016/j.csda.2025.108146_br0580) 2007; 102
Tipping (10.1016/j.csda.2025.108146_br0600) 2001; 1
Castillo (10.1016/j.csda.2025.108146_br0090) 2020; 48
Friedman (10.1016/j.csda.2025.108146_br0190) 2010; 33
Minka (10.1016/j.csda.2025.108146_br0410) 2002
Storey (10.1016/j.csda.2025.108146_br0570) 2004; 66
Zgodic (10.1016/j.csda.2025.108146_br0640)
Breheny (10.1016/j.csda.2025.108146_br0060) 2011; 5
Ročková (10.1016/j.csda.2025.108146_br0530) 2014; 109
Gelman (10.1016/j.csda.2025.108146_br0200) 2014
Jiang (10.1016/j.csda.2025.108146_br0270) 2022; 31
Silverman (10.1016/j.csda.2025.108146_br0550) 1986
O'Hara (10.1016/j.csda.2025.108146_br0450) 2009; 4
Zou (10.1016/j.csda.2025.108146_br0670) 2006; 101
Martin (10.1016/j.csda.2025.108146_br0340) 2017; 23
References_xml – volume: 71
  start-page: 1054
  year: 2014
  end-page: 1063
  ident: br0140
  article-title: Rcpparmadillo: accelerating r with high-performance c++ linear algebra
  publication-title: Comput. Stat. Data Anal.
– volume: 87
  start-page: 731
  year: 2000
  end-page: 747
  ident: br0210
  article-title: Calibration and empirical Bayes variable selection
  publication-title: Biometrika
– start-page: 352
  year: 2002
  end-page: 359
  ident: br0410
  article-title: Expectation-propagation for the generative aspect model
  publication-title: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence
– volume: 88
  start-page: 116
  year: 2019
  end-page: 129
  ident: br0540
  article-title: Variational em method for blur estimation using the spike-and-slab image prior
  publication-title: Digit. Signal Process.
– year: 2020
  ident: br0490
  article-title: R: A Language and Environment for Statistical Computing
– year: 2023
  ident: br0640
  article-title: Sparse high-dimensional linear mixed modeling with a partitioned empirical Bayes ecm algorithm
– year: 2014
  ident: br0200
  article-title: Bayesian Data Analysis
  publication-title: Texts in Statistical Science Series
– year: 2024
  ident: br0650
  article-title: Quantifying predictive uncertainty of aphasia severity in stroke patients with sparse heteroscedastic Bayesian high-dimensional regression
– volume: 14
  year: 2001
  ident: br0180
  article-title: Analysis of sparse Bayesian learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 117
  start-page: 1270
  year: 2022
  end-page: 1281
  ident: br0500
  article-title: Variational Bayes for high-dimensional linear regression with sparse priors
  publication-title: J. Am. Stat. Assoc.
– volume: 109
  start-page: 828
  year: 2014
  end-page: 846
  ident: br0530
  article-title: Emvs: the em approach to Bayesian variable selection
  publication-title: J. Am. Stat. Assoc.
– volume: 44
  start-page: 226
  year: 1982
  end-page: 233
  ident: br0330
  article-title: Finding the observed information matrix when using the em algorithm
  publication-title: J. R. Stat. Soc., Ser. B, Methodol.
– volume: vol. 7
  start-page: 73
  year: 2012
  end-page: 108
  ident: br0070
  article-title: Scalable Variational Inference for Bayesian Variable Selection in Regression, and Its Accuracy in Genetic Association Studies
  publication-title: Bayesian Analysis
– volume: 95
  start-page: 449
  year: 2000
  end-page: 465
  ident: br0430
  article-title: On profile likelihood
  publication-title: J. Am. Stat. Assoc.
– volume: 102
  start-page: 495
  year: 2007
  end-page: 506
  ident: br0280
  article-title: Estimating the null and the proportional of nonnull effects in large-scale multiple comparisons
  publication-title: J. Am. Stat. Assoc.
– volume: 16
  start-page: 1197
  year: 1995
  end-page: 1209
  ident: br0360
  article-title: On the convergence of the Jacobi method for arbitrary orderings
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 2022
  ident: br0370
  article-title: Fitting high-dimensional linear regression models with probe
– volume: 57
  start-page: 92
  year: 2008
  end-page: 106
  ident: br0260
  article-title: Multitask compressive sensing
  publication-title: IEEE Trans. Signal Process.
– volume: 483
  start-page: 603
  year: 2012
  end-page: 607
  ident: br0010
  article-title: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity
  publication-title: Nature
– volume: 107
  start-page: 1610
  year: 2012
  end-page: 1624
  ident: br0050
  article-title: Consistent high-dimensional Bayesian variable selection via penalized credible regions
  publication-title: J. Am. Stat. Assoc.
– volume: 22
  start-page: 1689
  year: 2012
  end-page: 1716
  ident: br0460
  article-title: Estimating the proportion of true null hypotheses under dependence
  publication-title: Stat. Sin.
– year: 2015
  ident: br0230
  article-title: Statistical Learning with Sparsity: The Lasso and Generalizations
– volume: 35
  start-page: 335
  year: 2008
  end-page: 353
  ident: br0610
  article-title: Simple and globally convergent methods for accelerating the convergence of any EM algorithm
  publication-title: Scand. J. Stat.
– volume: 103
  start-page: 410
  year: 2008
  end-page: 423
  ident: br0310
  article-title: Mixtures of g priors for Bayesian variable selection
  publication-title: J. Am. Stat. Assoc.
– volume: 85
  start-page: 755
  year: 1998
  end-page: 770
  ident: br0320
  article-title: Parameter expansion to accelerate EM: the PX-EM algorithm
  publication-title: Biometrika
– volume: 102
  start-page: 901
  year: 2007
  end-page: 912
  ident: br0580
  article-title: Oracle and adaptive compound decision rules for false discovery rate control
  publication-title: J. Am. Stat. Assoc.
– volume: 82
  start-page: 1273
  year: 2020
  end-page: 1300
  ident: br0630
  article-title: A simple new approach to variable selection in regression, with application to genetic fine mapping
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
– volume: 86
  start-page: 899
  year: 1991
  end-page: 909
  ident: br0380
  article-title: Using em to obtain asymptotic variance-covariance matrices: the sem algorithm
  publication-title: J. Am. Stat. Assoc.
– volume: 97
  start-page: 465
  year: 2010
  end-page: 480
  ident: br0080
  article-title: The horseshoe estimator for sparse signals
  publication-title: Biometrika
– volume: 43
  start-page: 1986
  year: 2015
  end-page: 2018
  ident: br0100
  article-title: Bayesian linear regression with sparse priors
  publication-title: Ann. Stat.
– volume: 38
  start-page: 894
  year: 2010
  end-page: 942
  ident: br0660
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Ann. Stat.
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: br0600
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 113
  start-page: 431
  year: 2018
  end-page: 444
  ident: br0510
  article-title: The spike-and-slab lasso
  publication-title: J. Am. Stat. Assoc.
– volume: 112
  start-page: 859
  year: 2017
  end-page: 877
  ident: br0040
  article-title: Variational inference: a review for statisticians
  publication-title: J. Am. Stat. Assoc.
– volume: 18
  start-page: 275
  year: 2017
  end-page: 294
  ident: br0560
  article-title: False discovery rates: a new deal
  publication-title: Biostatistics
– year: 1986
  ident: br0550
  article-title: Density Estimation for Statistics and Data Analysis
  publication-title: Monographs on Statistics and Applied Probability
– volume: 10
  start-page: 2837
  year: 2009
  end-page: 2871
  ident: br0030
  article-title: Adaptive fdr control under independence and dependence
  publication-title: J. Mach. Learn. Res.
– year: 2013
  ident: br0160
  article-title: Modelling Extremal Events: for Insurance and Finance, vol. 33
– volume: 96
  start-page: 1151
  year: 2001
  end-page: 1160
  ident: br0150
  article-title: Empirical Bayes analysis of a microarray experiment
  publication-title: J. Am. Stat. Assoc.
– volume: 113
  start-page: 1684
  year: 2018
  end-page: 1697
  ident: br0520
  article-title: Particle EM for variable selection
  publication-title: J. Am. Stat. Assoc.
– volume: 5
  start-page: 232
  year: 2011
  end-page: 253
  ident: br0060
  article-title: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
  publication-title: Ann. Appl. Stat.
– volume: 48
  start-page: 2548
  year: 2020
  end-page: 2574
  ident: br0090
  article-title: On spike and slab empirical Bayes multiple testing
  publication-title: Ann. Stat.
– volume: 21
  start-page: 1
  year: 2020
  end-page: 53
  ident: br0620
  article-title: Expectation propagation as a way of life: a framework for Bayesian inference on partitioned data
  publication-title: J. Mach. Learn. Res.
– volume: 35
  start-page: 641
  year: 2010
  end-page: 654
  ident: br0300
  article-title: Randomized methods for linear constraints: convergence rates and conditioning
  publication-title: Math. Oper. Res.
– volume: 4
  start-page: 85
  year: 2009
  end-page: 117
  ident: br0450
  article-title: A review of Bayesian variable selection methods: what, how and which
  publication-title: Bayesian Anal.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: br0590
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc., Ser. B, Methodol.
– volume: 31
  start-page: 113
  year: 2022
  end-page: 137
  ident: br0270
  article-title: Adaptive Bayesian slope: model selection with incomplete data
  publication-title: J. Comput. Graph. Stat.
– volume: 8
  start-page: 621
  year: 2019
  end-page: 653
  ident: br0110
  article-title: Bayesian sparse linear regression with unknown symmetric error
  publication-title: Inf. Inference
– volume: 11
  start-page: 3196
  year: 2017
  end-page: 3225
  ident: br0470
  article-title: Adaptive posterior contraction rates for the horseshoe
  publication-title: Electron. J. Stat.
– volume: 83
  start-page: 1023
  year: 1988
  end-page: 1032
  ident: br0420
  article-title: Bayesian variable selection in linear regression
  publication-title: J. Am. Stat. Assoc.
– volume: 12
  start-page: 145
  year: 1999
  end-page: 151
  ident: br0480
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Netw.
– start-page: 307
  year: 1992
  end-page: 320
  ident: br0390
  article-title: Recent extensions to the EM algorithm (with discussion)
  publication-title: Bayesian Statistics 4
– volume: 5
  start-page: 55
  year: 1995
  end-page: 75
  ident: br0130
  article-title: Maximum likelihood estimation via the ECM algorithm: computing the asymptotic variance
  publication-title: Stat. Sin.
– volume: 23
  start-page: 1822
  year: 2017
  end-page: 1847
  ident: br0340
  article-title: Empirical Bayes posterior concentration in sparse high-dimensional linear models
  publication-title: Bernoulli
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: br0190
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– volume: 21
  start-page: 219
  year: 2020
  end-page: 235
  ident: br0120
  article-title: The joint lasso: high-dimensional regression for group structured data
  publication-title: Biostatistics
– volume: 12
  start-page: 55
  year: 1970
  end-page: 67
  ident: br0240
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
– volume: 21
  start-page: 1
  year: 2020
  end-page: 30
  ident: br0350
  article-title: Empirical priors for prediction in sparse high-dimensional linear regression
  publication-title: J. Mach. Learn. Res.
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  ident: br0170
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
– volume: 80
  start-page: 267
  year: 1993
  end-page: 278
  ident: br0400
  article-title: Maximum likelihood estimation via the ECM algorithm: a general framework
  publication-title: Biometrika
– volume: 88
  start-page: 881
  year: 1993
  end-page: 889
  ident: br0220
  article-title: Variable selection via Gibbs sampling
  publication-title: J. Am. Stat. Assoc.
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: br0670
  article-title: The adaptive lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc.
– year: 1970
  ident: br0290
  article-title: Posterior Probabilities of Alternative Linear Models
– volume: 66
  start-page: 187
  year: 2004
  end-page: 205
  ident: br0570
  article-title: Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
– volume: 44
  start-page: 533
  year: 1957
  end-page: 534
  ident: br0020
  article-title: A comment on D. V. Lindley's statistical paradox
  publication-title: Biometrika
– volume: 62
  start-page: 257
  year: 2000
  end-page: 270
  ident: br0250
  article-title: Standard errors for em estimation
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
– volume: 61
  start-page: 479
  year: 1999
  end-page: 482
  ident: br0440
  article-title: Direct calculation of the information matrix via the em
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
– start-page: 352
  year: 2002
  ident: 10.1016/j.csda.2025.108146_br0410
  article-title: Expectation-propagation for the generative aspect model
– volume: 97
  start-page: 465
  year: 2010
  ident: 10.1016/j.csda.2025.108146_br0080
  article-title: The horseshoe estimator for sparse signals
  publication-title: Biometrika
  doi: 10.1093/biomet/asq017
– volume: 109
  start-page: 828
  year: 2014
  ident: 10.1016/j.csda.2025.108146_br0530
  article-title: Emvs: the em approach to Bayesian variable selection
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2013.869223
– volume: 82
  start-page: 1273
  year: 2020
  ident: 10.1016/j.csda.2025.108146_br0630
  article-title: A simple new approach to variable selection in regression, with application to genetic fine mapping
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
  doi: 10.1111/rssb.12388
– volume: 61
  start-page: 479
  year: 1999
  ident: 10.1016/j.csda.2025.108146_br0440
  article-title: Direct calculation of the information matrix via the em
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
  doi: 10.1111/1467-9868.00188
– volume: 85
  start-page: 755
  year: 1998
  ident: 10.1016/j.csda.2025.108146_br0320
  article-title: Parameter expansion to accelerate EM: the PX-EM algorithm
  publication-title: Biometrika
  doi: 10.1093/biomet/85.4.755
– volume: 83
  start-page: 1023
  year: 1988
  ident: 10.1016/j.csda.2025.108146_br0420
  article-title: Bayesian variable selection in linear regression
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1988.10478694
– volume: 21
  start-page: 219
  year: 2020
  ident: 10.1016/j.csda.2025.108146_br0120
  article-title: The joint lasso: high-dimensional regression for group structured data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxy035
– ident: 10.1016/j.csda.2025.108146_br0370
– start-page: 307
  year: 1992
  ident: 10.1016/j.csda.2025.108146_br0390
  article-title: Recent extensions to the EM algorithm (with discussion)
– volume: 18
  start-page: 275
  year: 2017
  ident: 10.1016/j.csda.2025.108146_br0560
  article-title: False discovery rates: a new deal
  publication-title: Biostatistics
– volume: vol. 7
  start-page: 73
  year: 2012
  ident: 10.1016/j.csda.2025.108146_br0070
  article-title: Scalable Variational Inference for Bayesian Variable Selection in Regression, and Its Accuracy in Genetic Association Studies
– volume: 102
  start-page: 495
  year: 2007
  ident: 10.1016/j.csda.2025.108146_br0280
  article-title: Estimating the null and the proportional of nonnull effects in large-scale multiple comparisons
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214507000000167
– volume: 117
  start-page: 1270
  year: 2022
  ident: 10.1016/j.csda.2025.108146_br0500
  article-title: Variational Bayes for high-dimensional linear regression with sparse priors
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2020.1847121
– volume: 21
  start-page: 1
  year: 2020
  ident: 10.1016/j.csda.2025.108146_br0350
  article-title: Empirical priors for prediction in sparse high-dimensional linear regression
  publication-title: J. Mach. Learn. Res.
– volume: 95
  start-page: 449
  year: 2000
  ident: 10.1016/j.csda.2025.108146_br0430
  article-title: On profile likelihood
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2000.10474219
– ident: 10.1016/j.csda.2025.108146_br0650
– year: 2020
  ident: 10.1016/j.csda.2025.108146_br0490
– volume: 107
  start-page: 1610
  year: 2012
  ident: 10.1016/j.csda.2025.108146_br0050
  article-title: Consistent high-dimensional Bayesian variable selection via penalized credible regions
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2012.716344
– volume: 88
  start-page: 116
  year: 2019
  ident: 10.1016/j.csda.2025.108146_br0540
  article-title: Variational em method for blur estimation using the spike-and-slab image prior
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2019.01.004
– volume: 31
  start-page: 113
  year: 2022
  ident: 10.1016/j.csda.2025.108146_br0270
  article-title: Adaptive Bayesian slope: model selection with incomplete data
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2021.1963263
– volume: 113
  start-page: 431
  year: 2018
  ident: 10.1016/j.csda.2025.108146_br0510
  article-title: The spike-and-slab lasso
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2016.1260469
– volume: 80
  start-page: 267
  year: 1993
  ident: 10.1016/j.csda.2025.108146_br0400
  article-title: Maximum likelihood estimation via the ECM algorithm: a general framework
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.267
– volume: 66
  start-page: 187
  year: 2004
  ident: 10.1016/j.csda.2025.108146_br0570
  article-title: Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
  doi: 10.1111/j.1467-9868.2004.00439.x
– volume: 86
  start-page: 899
  year: 1991
  ident: 10.1016/j.csda.2025.108146_br0380
  article-title: Using em to obtain asymptotic variance-covariance matrices: the sem algorithm
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1991.10475130
– volume: 96
  start-page: 1151
  year: 2001
  ident: 10.1016/j.csda.2025.108146_br0150
  article-title: Empirical Bayes analysis of a microarray experiment
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382129
– volume: 113
  start-page: 1684
  year: 2018
  ident: 10.1016/j.csda.2025.108146_br0520
  article-title: Particle EM for variable selection
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1360778
– volume: 21
  start-page: 1
  year: 2020
  ident: 10.1016/j.csda.2025.108146_br0620
  article-title: Expectation propagation as a way of life: a framework for Bayesian inference on partitioned data
  publication-title: J. Mach. Learn. Res.
– volume: 102
  start-page: 901
  year: 2007
  ident: 10.1016/j.csda.2025.108146_br0580
  article-title: Oracle and adaptive compound decision rules for false discovery rate control
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214507000000545
– volume: 10
  start-page: 2837
  year: 2009
  ident: 10.1016/j.csda.2025.108146_br0030
  article-title: Adaptive fdr control under independence and dependence
  publication-title: J. Mach. Learn. Res.
– volume: 57
  start-page: 92
  year: 2008
  ident: 10.1016/j.csda.2025.108146_br0260
  article-title: Multitask compressive sensing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.2005866
– volume: 112
  start-page: 859
  year: 2017
  ident: 10.1016/j.csda.2025.108146_br0040
  article-title: Variational inference: a review for statisticians
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1285773
– volume: 35
  start-page: 641
  year: 2010
  ident: 10.1016/j.csda.2025.108146_br0300
  article-title: Randomized methods for linear constraints: convergence rates and conditioning
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0456
– volume: 44
  start-page: 533
  year: 1957
  ident: 10.1016/j.csda.2025.108146_br0020
  article-title: A comment on D. V. Lindley's statistical paradox
  publication-title: Biometrika
  doi: 10.1093/biomet/44.3-4.533
– volume: 23
  start-page: 1822
  year: 2017
  ident: 10.1016/j.csda.2025.108146_br0340
  article-title: Empirical Bayes posterior concentration in sparse high-dimensional linear models
  publication-title: Bernoulli
  doi: 10.3150/15-BEJ797
– volume: 12
  start-page: 55
  year: 1970
  ident: 10.1016/j.csda.2025.108146_br0240
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 14
  year: 2001
  ident: 10.1016/j.csda.2025.108146_br0180
  article-title: Analysis of sparse Bayesian learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 5
  start-page: 232
  year: 2011
  ident: 10.1016/j.csda.2025.108146_br0060
  article-title: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/10-AOAS388
– volume: 4
  start-page: 85
  year: 2009
  ident: 10.1016/j.csda.2025.108146_br0450
  article-title: A review of Bayesian variable selection methods: what, how and which
  publication-title: Bayesian Anal.
  doi: 10.1214/09-BA403
– year: 1970
  ident: 10.1016/j.csda.2025.108146_br0290
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.csda.2025.108146_br0190
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– volume: 48
  start-page: 2548
  year: 2020
  ident: 10.1016/j.csda.2025.108146_br0090
  article-title: On spike and slab empirical Bayes multiple testing
  publication-title: Ann. Stat.
  doi: 10.1214/19-AOS1897
– volume: 12
  start-page: 145
  year: 1999
  ident: 10.1016/j.csda.2025.108146_br0480
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00116-6
– volume: 87
  start-page: 731
  year: 2000
  ident: 10.1016/j.csda.2025.108146_br0210
  article-title: Calibration and empirical Bayes variable selection
  publication-title: Biometrika
  doi: 10.1093/biomet/87.4.731
– volume: 88
  start-page: 881
  year: 1993
  ident: 10.1016/j.csda.2025.108146_br0220
  article-title: Variable selection via Gibbs sampling
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476353
– volume: 38
  start-page: 894
  year: 2010
  ident: 10.1016/j.csda.2025.108146_br0660
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
– volume: 483
  start-page: 603
  year: 2012
  ident: 10.1016/j.csda.2025.108146_br0010
  article-title: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity
  publication-title: Nature
  doi: 10.1038/nature11003
– year: 1986
  ident: 10.1016/j.csda.2025.108146_br0550
  article-title: Density Estimation for Statistics and Data Analysis
– volume: 22
  start-page: 1689
  year: 2012
  ident: 10.1016/j.csda.2025.108146_br0460
  article-title: Estimating the proportion of true null hypotheses under dependence
  publication-title: Stat. Sin.
– year: 2013
  ident: 10.1016/j.csda.2025.108146_br0160
– volume: 103
  start-page: 410
  year: 2008
  ident: 10.1016/j.csda.2025.108146_br0310
  article-title: Mixtures of g priors for Bayesian variable selection
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214507000001337
– volume: 101
  start-page: 1418
  year: 2006
  ident: 10.1016/j.csda.2025.108146_br0670
  article-title: The adaptive lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– volume: 1
  start-page: 211
  year: 2001
  ident: 10.1016/j.csda.2025.108146_br0600
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 35
  start-page: 335
  year: 2008
  ident: 10.1016/j.csda.2025.108146_br0610
  article-title: Simple and globally convergent methods for accelerating the convergence of any EM algorithm
  publication-title: Scand. J. Stat.
  doi: 10.1111/j.1467-9469.2007.00585.x
– volume: 8
  start-page: 621
  year: 2019
  ident: 10.1016/j.csda.2025.108146_br0110
  article-title: Bayesian sparse linear regression with unknown symmetric error
  publication-title: Inf. Inference
– volume: 5
  start-page: 55
  year: 1995
  ident: 10.1016/j.csda.2025.108146_br0130
  article-title: Maximum likelihood estimation via the ECM algorithm: computing the asymptotic variance
  publication-title: Stat. Sin.
– volume: 71
  start-page: 1054
  year: 2014
  ident: 10.1016/j.csda.2025.108146_br0140
  article-title: Rcpparmadillo: accelerating r with high-performance c++ linear algebra
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2013.02.005
– volume: 11
  start-page: 3196
  year: 2017
  ident: 10.1016/j.csda.2025.108146_br0470
  article-title: Adaptive posterior contraction rates for the horseshoe
  publication-title: Electron. J. Stat.
  doi: 10.1214/17-EJS1316
– year: 2014
  ident: 10.1016/j.csda.2025.108146_br0200
  article-title: Bayesian Data Analysis
– volume: 62
  start-page: 257
  year: 2000
  ident: 10.1016/j.csda.2025.108146_br0250
  article-title: Standard errors for em estimation
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
  doi: 10.1111/1467-9868.00230
– ident: 10.1016/j.csda.2025.108146_br0640
– volume: 44
  start-page: 226
  year: 1982
  ident: 10.1016/j.csda.2025.108146_br0330
  article-title: Finding the observed information matrix when using the em algorithm
  publication-title: J. R. Stat. Soc., Ser. B, Methodol.
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.csda.2025.108146_br0590
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc., Ser. B, Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– year: 2015
  ident: 10.1016/j.csda.2025.108146_br0230
– volume: 43
  start-page: 1986
  year: 2015
  ident: 10.1016/j.csda.2025.108146_br0100
  article-title: Bayesian linear regression with sparse priors
  publication-title: Ann. Stat.
  doi: 10.1214/15-AOS1334
– volume: 96
  start-page: 1348
  year: 2001
  ident: 10.1016/j.csda.2025.108146_br0170
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 16
  start-page: 1197
  year: 1995
  ident: 10.1016/j.csda.2025.108146_br0360
  article-title: On the convergence of the Jacobi method for arbitrary orderings
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479890179631
SSID ssj0002478
Score 2.4394557
Snippet Bayesian variable selection methods are powerful techniques for fitting sparse high-dimensional linear regression models. However, many are computationally...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 108146
SubjectTerms algorithms
Approximate Bayesian computation
Bayesian theory
data analysis
drugs
Generalized EM algorithm
High-dimensional linear regression
neoplasm cells
regression analysis
Sparsity
Variable selection
Title Efficient sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm
URI https://dx.doi.org/10.1016/j.csda.2025.108146
https://www.proquest.com/docview/3242051031
Volume 207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0167-9473
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002478
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  issn: 0167-9473
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002478
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0167-9473
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002478
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0167-9473
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002478
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0167-9473
  databaseCode: AKRWK
  dateStart: 19830301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAeIryqIzEhkKbxK6bsVStClU7ABXdrDh2qyL6UNIOLHw799oJCIQYmKJEzus6Offc5PiYkCumAeKMCL16ouoe85n2FLBSb8Jx2KWI_dAaaQ-Gjd6I3Y_5uETaxVgYlFXm2O8w3aJ1vqWWR7O2ms1qjyigj5gIA25dXBCHGRM4i8HN-5fMI2AOjdHfG1vnA2ecxivJNHoPBRyldpYE_56cfsC0zT3dPbKbk0bacte1T0pmcUB2Bp-Oq9kh0R3rBQEphAJGpJmhaETsaTTvd8YbFAllnNLUTJ32dUHxIyyN6Qpv2FoWaWrmq5l1DaG38ZvJaKc9oPHrdJlC0_kRGXU7T-2el8-g4CWQdtZekrAJ05wnYaBDwyC5B0KpRmSA99QNlDKBr-rKNBXUqf4kUE3NhGlEwCn8ZpQIHR6T8gLOfkLopKEEcKkQ-ApjSuuYNbmOEihHuFAhiyvkugidXDmjDFkoyF4kBlpioKULdIXwIrryW3dLQPI_97ssukLCe4A_N-KFWW4yicTQ2gP6p_889hnZxjWnxT0n5XW6MRfAONaqah-pKtlq3fV7Q1z2H577Hz1U1cM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFG6WeVAPxp9x_qyJN4Mb0A446rJl6raLW7JbQ2m3zLiNwHbw4t_uey1oNMaDVygUXuF73ytfPwi5ZgogTge-00hkw2EuU44EVupMOC67DGLXN0ba_UGzO2KPYz6ukFa5FgZllQX2W0w3aF1sqRfRrKezWf0ZBfQRC3yPGxcXwOENBj1gBXb7_qXz8JiFYzT4xubFyhkr8kpyheZDHketnWHBv2enHzhtkk9nl-wUrJHe2QvbIxW92Cfb_U_L1fyAqLYxg4AcQgEkslxTdCJ2FLr3W-cNiowyzmimp1b8uqA4C0tjmuIdG88iRfU8nRnbEHofv-mctlt9Gr9Olxk0nR-SUac9bHWd4hcKTgJ5Z-UkCZswxXnie8rXDLK7F0jZjDQQn4aGWsZzZUPqUEKh6k48GSoW6GYEpMINoyRQ_hGpLqD3Y0InTRkAmfKBsDAmlYpZyFWUQD3CA-mzuEZuytCJ1DpliFJC9iIw0AIDLWyga4SX0RXfxlsAlP953FU5FAJeBPy6ES_0cp0LZIbGH9A9-ee5L8lmd9jvid7D4OmUbOEeK8w9I9VVttbnQD9W8sI8Xh-ofdW1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+sparse+high-dimensional+linear+regression+with+a+partitioned+empirical+Bayes+ECM+algorithm&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=McLain%2C+Alexander+C.&rft.au=Zgodic%2C+Anja&rft.au=Bondell%2C+Howard&rft.date=2025-07-01&rft.issn=0167-9473&rft.volume=207&rft.spage=108146&rft_id=info:doi/10.1016%2Fj.csda.2025.108146&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csda_2025_108146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon