Efficient sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm
Bayesian variable selection methods are powerful techniques for fitting sparse high-dimensional linear regression models. However, many are computationally intensive or require restrictive prior distributions on model parameters. A computationally efficient and powerful Bayesian approach is presente...
        Saved in:
      
    
          | Published in | Computational statistics & data analysis Vol. 207; p. 108146 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.07.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0167-9473 | 
| DOI | 10.1016/j.csda.2025.108146 | 
Cover
| Abstract | Bayesian variable selection methods are powerful techniques for fitting sparse high-dimensional linear regression models. However, many are computationally intensive or require restrictive prior distributions on model parameters. A computationally efficient and powerful Bayesian approach is presented for sparse high-dimensional linear regression, requiring only minimal prior assumptions on parameters through plug-in empirical Bayes estimates of hyperparameters. The method employs a Parameter-Expanded Expectation-Conditional-Maximization (PX-ECM) algorithm to estimate maximum a posteriori (MAP) values of parameters via computationally efficient coordinate-wise optimization. The popular two-group approach to multiple testing motivates the E-step, resulting in a PaRtitiOned empirical Bayes Ecm (PROBE) algorithm for sparse high-dimensional linear regression. Both one-at-a-time and all-at-once optimization can be used to complete PROBE. Extensive simulation studies and analyses of cancer cell drug responses are conducted to compare PROBE's empirical properties with those of related methods. Implementation is available through the R package probe. | 
    
|---|---|
| AbstractList | Bayesian variable selection methods are powerful techniques for fitting sparse high-dimensional linear regression models. However, many are computationally intensive or require restrictive prior distributions on model parameters. A computationally efficient and powerful Bayesian approach is presented for sparse high-dimensional linear regression, requiring only minimal prior assumptions on parameters through plug-in empirical Bayes estimates of hyperparameters. The method employs a Parameter-Expanded Expectation-Conditional-Maximization (PX-ECM) algorithm to estimate maximum a posteriori (MAP) values of parameters via computationally efficient coordinate-wise optimization. The popular two-group approach to multiple testing motivates the E-step, resulting in a PaRtitiOned empirical Bayes Ecm (PROBE) algorithm for sparse high-dimensional linear regression. Both one-at-a-time and all-at-once optimization can be used to complete PROBE. Extensive simulation studies and analyses of cancer cell drug responses are conducted to compare PROBE's empirical properties with those of related methods. Implementation is available through the R package probe. | 
    
| ArticleNumber | 108146 | 
    
| Author | McLain, Alexander C. Zgodic, Anja Bondell, Howard  | 
    
| Author_xml | – sequence: 1 givenname: Alexander C. orcidid: 0000-0002-5475-0670 surname: McLain fullname: McLain, Alexander C. email: mclaina@mailbox.sc.edu organization: Department of Epidemiology and Biostatistics, University of South Carolina, 915 Greene Street, Columbia, SC, 29208, United States of America – sequence: 2 givenname: Anja surname: Zgodic fullname: Zgodic, Anja organization: Department of Epidemiology and Biostatistics, University of South Carolina, 915 Greene Street, Columbia, SC, 29208, United States of America – sequence: 3 givenname: Howard surname: Bondell fullname: Bondell, Howard organization: School of Mathematics and Statistics, University of Melbourne, 813 Swanston Street, Parkville VIC 3052, Australia  | 
    
| BookMark | eNp9kLtOAzEQRV0EiSTwA1QuaTb4tS-JBqLwkIJooLa89mwy0T6CvQHl7_FqqalGunPuSHMWZNb1HRByw9mKM57dHVY2OLMSTKQxKLjKZmQeF3lSqlxekkUIB8aYUHkxJ25T12gRuoGGo_EB6B53-8RhC13AvjMNbbAD46mHnYcwZvQHhz01NPIDDjEAR6E9okcb8UdzhkA36zdqml3vI9pekYvaNAGu_-aSfD5tPtYvyfb9-XX9sE2sKNSQWKtq5dLUSuEkqJQLkVdVVkLKUgYiY4JXrIKikoXktagKp3LISslzXpQ2d3JJbqe7R99_nSAMusVgoWlMB_0paCmUYClnkkdUTKj1fQgean302Bp_1pzpUaM-6FGjHjXqSWMs3U8liE98I3gdRnUWHHqwg3Y9_lf_BV0Zf7g | 
    
| Cites_doi | 10.1093/biomet/asq017 10.1080/01621459.2013.869223 10.1111/rssb.12388 10.1111/1467-9868.00188 10.1093/biomet/85.4.755 10.1080/01621459.1988.10478694 10.1093/biostatistics/kxy035 10.1198/016214507000000167 10.1080/01621459.2020.1847121 10.1080/01621459.2000.10474219 10.1080/01621459.2012.716344 10.1016/j.dsp.2019.01.004 10.1080/10618600.2021.1963263 10.1080/01621459.2016.1260469 10.1093/biomet/80.2.267 10.1111/j.1467-9868.2004.00439.x 10.1080/01621459.1991.10475130 10.1198/016214501753382129 10.1080/01621459.2017.1360778 10.1198/016214507000000545 10.1109/TSP.2008.2005866 10.1080/01621459.2017.1285773 10.1287/moor.1100.0456 10.1093/biomet/44.3-4.533 10.3150/15-BEJ797 10.1080/00401706.1970.10488634 10.1214/10-AOAS388 10.1214/09-BA403 10.18637/jss.v033.i01 10.1214/19-AOS1897 10.1016/S0893-6080(98)00116-6 10.1093/biomet/87.4.731 10.1080/01621459.1993.10476353 10.1214/09-AOS729 10.1038/nature11003 10.1198/016214507000001337 10.1198/016214506000000735 10.1111/j.1467-9469.2007.00585.x 10.1016/j.csda.2013.02.005 10.1214/17-EJS1316 10.1111/1467-9868.00230 10.1111/j.2517-6161.1982.tb01203.x 10.1111/j.2517-6161.1996.tb02080.x 10.1214/15-AOS1334 10.1198/016214501753382273 10.1137/S0895479890179631  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 The Authors | 
    
| Copyright_xml | – notice: 2025 The Authors | 
    
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.csda.2025.108146 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| ExternalDocumentID | 10_1016_j_csda_2025_108146 S0167947325000222  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABTAH ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI ADXHL AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c284t-cc4f4d55c32d3e451227bb69e5050e26021b0be8b3831f2b8d47e69317189c7d3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0167-9473 | 
    
| IngestDate | Thu Oct 02 21:45:16 EDT 2025 Wed Oct 01 06:44:03 EDT 2025 Sat Mar 08 15:42:17 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | High-dimensional linear regression Sparsity Approximate Bayesian computation Generalized EM algorithm Variable selection  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY-NC license. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c284t-cc4f4d55c32d3e451227bb69e5050e26021b0be8b3831f2b8d47e69317189c7d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-5475-0670 | 
    
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0167947325000222 | 
    
| PQID | 3242051031 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_3242051031 crossref_primary_10_1016_j_csda_2025_108146 elsevier_sciencedirect_doi_10_1016_j_csda_2025_108146  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2025 2025-07-00 20250701  | 
    
| PublicationDateYYYYMMDD | 2025-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2025 text: July 2025  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Computational statistics & data analysis | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Friedman, Hastie, Tibshirani (br0190) 2010; 33 Bartlett (br0020) 1957; 44 McLain, Zgodic (br0370) 2022 Varadhan, Roland (br0610) 2008; 35 Embrechts, Klüppelberg, Mikosch (br0160) 2013 Liang, Paulo, Molina, Clyde, Berger (br0310) 2008; 103 Blei, Kucukelbir, McAuliffe (br0040) 2017; 112 George, Foster (br0210) 2000; 87 Efron, Tibshirani, Storey, Tusher (br0150) 2001; 96 Murphy, Van der Vaart (br0430) 2000; 95 Breheny, Huang (br0060) 2011; 5 Storey, Taylor, Siegmund (br0570) 2004; 66 Kloek, Lempers (br0290) 1970 Jamshidian, Jennrich (br0250) 2000; 62 Jin, Cai (br0280) 2007; 102 Ostrovnaya, Nicolae (br0460) 2012; 22 Oakes (br0440) 1999; 61 Martin, Mess, Walker (br0340) 2017; 23 Martin, Tang (br0350) 2020; 21 Stephens (br0560) 2017; 18 Gelman, Carlin, Stern, Dunson, Vehtari, Rubin (br0200) 2014 George, McCulloch (br0220) 1993; 88 Meng, Rubin (br0390) 1992 Fan, Li (br0170) 2001; 96 Blanchard, Roquain (br0030) 2009; 10 Hoerl, Kennard (br0240) 1970; 12 Ročková (br0520) 2018; 113 Vehtari, Gelman, Sivula, Jylänki, Tran, Sahai, Blomstedt, Cunningham, Schiminovich, Robert (br0620) 2020; 21 Barretina, Caponigro, Stransky, Venkatesan, Margolin, Kim, Wilson, Lehar, Kryukov, Sonkin (br0010) 2012; 483 Dondelinger, Mukherjee, Initiative (br0120) 2020; 21 Chae, Lin, Dunson (br0110) 2019; 8 Eddelbuettel, Sanderson (br0140) 2014; 71 Liu, Rubin, Wu (br0320) 1998; 85 Carbonetto, Stephens (br0070) 2012; vol. 7 Ji, Dunson, Carin (br0260) 2008; 57 Meng, Rubin (br0380) 1991; 86 Zhang (br0660) 2010; 38 Tipping (br0600) 2001; 1 Jiang, Bogdan, Josse, Majewski, Miasojedow, Ročková, Group (br0270) 2022; 31 Meng, Rubin (br0400) 1993; 80 Carvalho, Polson, Scott (br0080) 2010; 97 Minka, Lafferty (br0410) 2002 Bondell, Reich (br0050) 2012; 107 Faul, Tipping (br0180) 2001; 14 Leventhal, Lewis (br0300) 2010; 35 Mascarenhas (br0360) 1995; 16 Mitchell, Beauchamp (br0420) 1988; 83 Zgodic, Bai, Zhang, McLain (br0640) 2023 Castillo, Schmidt-Hieber, Van der Vaart (br0100) 2015; 43 Ročková, George (br0510) 2018; 113 Castillo, Roquain (br0090) 2020; 48 Hastie, Tibshirani, Wainwright (br0230) 2015 Serra, Mateos, Molina, Katsaggelos (br0540) 2019; 88 Tibshirani (br0590) 1996; 58 Ročková, George (br0530) 2014; 109 O'Hara, Sillanpää (br0450) 2009; 4 Ray, Szabó (br0500) 2022; 117 Sun, Cai (br0580) 2007; 102 van der Pas, Szabó, van der Vaart (br0470) 2017; 11 Silverman (br0550) 1986 van Dyk, Meng, Rubin (br0130) 1995; 5 Qian (br0480) 1999; 12 Louis (br0330) 1982; 44 Zgodic, Bai, Zhang, Wang, Rorden, McLain (br0650) 2024 (br0490) 2020 Wang, Sarkar, Carbonetto, Stephens (br0630) 2020; 82 Zou (br0670) 2006; 101 George (10.1016/j.csda.2025.108146_br0220) 1993; 88 Carbonetto (10.1016/j.csda.2025.108146_br0070) 2012; vol. 7 Tibshirani (10.1016/j.csda.2025.108146_br0590) 1996; 58 Varadhan (10.1016/j.csda.2025.108146_br0610) 2008; 35 Dondelinger (10.1016/j.csda.2025.108146_br0120) 2020; 21 George (10.1016/j.csda.2025.108146_br0210) 2000; 87 Ročková (10.1016/j.csda.2025.108146_br0520) 2018; 113 Ročková (10.1016/j.csda.2025.108146_br0510) 2018; 113 (10.1016/j.csda.2025.108146_br0490) 2020 Serra (10.1016/j.csda.2025.108146_br0540) 2019; 88 Barretina (10.1016/j.csda.2025.108146_br0010) 2012; 483 Fan (10.1016/j.csda.2025.108146_br0170) 2001; 96 Ray (10.1016/j.csda.2025.108146_br0500) 2022; 117 Ostrovnaya (10.1016/j.csda.2025.108146_br0460) 2012; 22 Mascarenhas (10.1016/j.csda.2025.108146_br0360) 1995; 16 van Dyk (10.1016/j.csda.2025.108146_br0130) 1995; 5 Castillo (10.1016/j.csda.2025.108146_br0100) 2015; 43 Meng (10.1016/j.csda.2025.108146_br0390) 1992 Faul (10.1016/j.csda.2025.108146_br0180) 2001; 14 Blei (10.1016/j.csda.2025.108146_br0040) 2017; 112 Zgodic (10.1016/j.csda.2025.108146_br0650) Kloek (10.1016/j.csda.2025.108146_br0290) 1970 Eddelbuettel (10.1016/j.csda.2025.108146_br0140) 2014; 71 Bartlett (10.1016/j.csda.2025.108146_br0020) 1957; 44 Stephens (10.1016/j.csda.2025.108146_br0560) 2017; 18 McLain (10.1016/j.csda.2025.108146_br0370) Vehtari (10.1016/j.csda.2025.108146_br0620) 2020; 21 Oakes (10.1016/j.csda.2025.108146_br0440) 1999; 61 Meng (10.1016/j.csda.2025.108146_br0380) 1991; 86 Martin (10.1016/j.csda.2025.108146_br0350) 2020; 21 Mitchell (10.1016/j.csda.2025.108146_br0420) 1988; 83 Leventhal (10.1016/j.csda.2025.108146_br0300) 2010; 35 Murphy (10.1016/j.csda.2025.108146_br0430) 2000; 95 Carvalho (10.1016/j.csda.2025.108146_br0080) 2010; 97 Embrechts (10.1016/j.csda.2025.108146_br0160) 2013 Hastie (10.1016/j.csda.2025.108146_br0230) 2015 Liang (10.1016/j.csda.2025.108146_br0310) 2008; 103 Jamshidian (10.1016/j.csda.2025.108146_br0250) 2000; 62 Hoerl (10.1016/j.csda.2025.108146_br0240) 1970; 12 Jin (10.1016/j.csda.2025.108146_br0280) 2007; 102 Ji (10.1016/j.csda.2025.108146_br0260) 2008; 57 van der Pas (10.1016/j.csda.2025.108146_br0470) 2017; 11 Bondell (10.1016/j.csda.2025.108146_br0050) 2012; 107 Liu (10.1016/j.csda.2025.108146_br0320) 1998; 85 Meng (10.1016/j.csda.2025.108146_br0400) 1993; 80 Blanchard (10.1016/j.csda.2025.108146_br0030) 2009; 10 Wang (10.1016/j.csda.2025.108146_br0630) 2020; 82 Qian (10.1016/j.csda.2025.108146_br0480) 1999; 12 Chae (10.1016/j.csda.2025.108146_br0110) 2019; 8 Louis (10.1016/j.csda.2025.108146_br0330) 1982; 44 Zhang (10.1016/j.csda.2025.108146_br0660) 2010; 38 Efron (10.1016/j.csda.2025.108146_br0150) 2001; 96 Sun (10.1016/j.csda.2025.108146_br0580) 2007; 102 Tipping (10.1016/j.csda.2025.108146_br0600) 2001; 1 Castillo (10.1016/j.csda.2025.108146_br0090) 2020; 48 Friedman (10.1016/j.csda.2025.108146_br0190) 2010; 33 Minka (10.1016/j.csda.2025.108146_br0410) 2002 Storey (10.1016/j.csda.2025.108146_br0570) 2004; 66 Zgodic (10.1016/j.csda.2025.108146_br0640) Breheny (10.1016/j.csda.2025.108146_br0060) 2011; 5 Ročková (10.1016/j.csda.2025.108146_br0530) 2014; 109 Gelman (10.1016/j.csda.2025.108146_br0200) 2014 Jiang (10.1016/j.csda.2025.108146_br0270) 2022; 31 Silverman (10.1016/j.csda.2025.108146_br0550) 1986 O'Hara (10.1016/j.csda.2025.108146_br0450) 2009; 4 Zou (10.1016/j.csda.2025.108146_br0670) 2006; 101 Martin (10.1016/j.csda.2025.108146_br0340) 2017; 23  | 
    
| References_xml | – volume: 71 start-page: 1054 year: 2014 end-page: 1063 ident: br0140 article-title: Rcpparmadillo: accelerating r with high-performance c++ linear algebra publication-title: Comput. Stat. Data Anal. – volume: 87 start-page: 731 year: 2000 end-page: 747 ident: br0210 article-title: Calibration and empirical Bayes variable selection publication-title: Biometrika – start-page: 352 year: 2002 end-page: 359 ident: br0410 article-title: Expectation-propagation for the generative aspect model publication-title: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence – volume: 88 start-page: 116 year: 2019 end-page: 129 ident: br0540 article-title: Variational em method for blur estimation using the spike-and-slab image prior publication-title: Digit. Signal Process. – year: 2020 ident: br0490 article-title: R: A Language and Environment for Statistical Computing – year: 2023 ident: br0640 article-title: Sparse high-dimensional linear mixed modeling with a partitioned empirical Bayes ecm algorithm – year: 2014 ident: br0200 article-title: Bayesian Data Analysis publication-title: Texts in Statistical Science Series – year: 2024 ident: br0650 article-title: Quantifying predictive uncertainty of aphasia severity in stroke patients with sparse heteroscedastic Bayesian high-dimensional regression – volume: 14 year: 2001 ident: br0180 article-title: Analysis of sparse Bayesian learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 117 start-page: 1270 year: 2022 end-page: 1281 ident: br0500 article-title: Variational Bayes for high-dimensional linear regression with sparse priors publication-title: J. Am. Stat. Assoc. – volume: 109 start-page: 828 year: 2014 end-page: 846 ident: br0530 article-title: Emvs: the em approach to Bayesian variable selection publication-title: J. Am. Stat. Assoc. – volume: 44 start-page: 226 year: 1982 end-page: 233 ident: br0330 article-title: Finding the observed information matrix when using the em algorithm publication-title: J. R. Stat. Soc., Ser. B, Methodol. – volume: vol. 7 start-page: 73 year: 2012 end-page: 108 ident: br0070 article-title: Scalable Variational Inference for Bayesian Variable Selection in Regression, and Its Accuracy in Genetic Association Studies publication-title: Bayesian Analysis – volume: 95 start-page: 449 year: 2000 end-page: 465 ident: br0430 article-title: On profile likelihood publication-title: J. Am. Stat. Assoc. – volume: 102 start-page: 495 year: 2007 end-page: 506 ident: br0280 article-title: Estimating the null and the proportional of nonnull effects in large-scale multiple comparisons publication-title: J. Am. Stat. Assoc. – volume: 16 start-page: 1197 year: 1995 end-page: 1209 ident: br0360 article-title: On the convergence of the Jacobi method for arbitrary orderings publication-title: SIAM J. Matrix Anal. Appl. – year: 2022 ident: br0370 article-title: Fitting high-dimensional linear regression models with probe – volume: 57 start-page: 92 year: 2008 end-page: 106 ident: br0260 article-title: Multitask compressive sensing publication-title: IEEE Trans. Signal Process. – volume: 483 start-page: 603 year: 2012 end-page: 607 ident: br0010 article-title: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature – volume: 107 start-page: 1610 year: 2012 end-page: 1624 ident: br0050 article-title: Consistent high-dimensional Bayesian variable selection via penalized credible regions publication-title: J. Am. Stat. Assoc. – volume: 22 start-page: 1689 year: 2012 end-page: 1716 ident: br0460 article-title: Estimating the proportion of true null hypotheses under dependence publication-title: Stat. Sin. – year: 2015 ident: br0230 article-title: Statistical Learning with Sparsity: The Lasso and Generalizations – volume: 35 start-page: 335 year: 2008 end-page: 353 ident: br0610 article-title: Simple and globally convergent methods for accelerating the convergence of any EM algorithm publication-title: Scand. J. Stat. – volume: 103 start-page: 410 year: 2008 end-page: 423 ident: br0310 article-title: Mixtures of g priors for Bayesian variable selection publication-title: J. Am. Stat. Assoc. – volume: 85 start-page: 755 year: 1998 end-page: 770 ident: br0320 article-title: Parameter expansion to accelerate EM: the PX-EM algorithm publication-title: Biometrika – volume: 102 start-page: 901 year: 2007 end-page: 912 ident: br0580 article-title: Oracle and adaptive compound decision rules for false discovery rate control publication-title: J. Am. Stat. Assoc. – volume: 82 start-page: 1273 year: 2020 end-page: 1300 ident: br0630 article-title: A simple new approach to variable selection in regression, with application to genetic fine mapping publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. – volume: 86 start-page: 899 year: 1991 end-page: 909 ident: br0380 article-title: Using em to obtain asymptotic variance-covariance matrices: the sem algorithm publication-title: J. Am. Stat. Assoc. – volume: 97 start-page: 465 year: 2010 end-page: 480 ident: br0080 article-title: The horseshoe estimator for sparse signals publication-title: Biometrika – volume: 43 start-page: 1986 year: 2015 end-page: 2018 ident: br0100 article-title: Bayesian linear regression with sparse priors publication-title: Ann. Stat. – volume: 38 start-page: 894 year: 2010 end-page: 942 ident: br0660 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Ann. Stat. – volume: 1 start-page: 211 year: 2001 end-page: 244 ident: br0600 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 113 start-page: 431 year: 2018 end-page: 444 ident: br0510 article-title: The spike-and-slab lasso publication-title: J. Am. Stat. Assoc. – volume: 112 start-page: 859 year: 2017 end-page: 877 ident: br0040 article-title: Variational inference: a review for statisticians publication-title: J. Am. Stat. Assoc. – volume: 18 start-page: 275 year: 2017 end-page: 294 ident: br0560 article-title: False discovery rates: a new deal publication-title: Biostatistics – year: 1986 ident: br0550 article-title: Density Estimation for Statistics and Data Analysis publication-title: Monographs on Statistics and Applied Probability – volume: 10 start-page: 2837 year: 2009 end-page: 2871 ident: br0030 article-title: Adaptive fdr control under independence and dependence publication-title: J. Mach. Learn. Res. – year: 2013 ident: br0160 article-title: Modelling Extremal Events: for Insurance and Finance, vol. 33 – volume: 96 start-page: 1151 year: 2001 end-page: 1160 ident: br0150 article-title: Empirical Bayes analysis of a microarray experiment publication-title: J. Am. Stat. Assoc. – volume: 113 start-page: 1684 year: 2018 end-page: 1697 ident: br0520 article-title: Particle EM for variable selection publication-title: J. Am. Stat. Assoc. – volume: 5 start-page: 232 year: 2011 end-page: 253 ident: br0060 article-title: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection publication-title: Ann. Appl. Stat. – volume: 48 start-page: 2548 year: 2020 end-page: 2574 ident: br0090 article-title: On spike and slab empirical Bayes multiple testing publication-title: Ann. Stat. – volume: 21 start-page: 1 year: 2020 end-page: 53 ident: br0620 article-title: Expectation propagation as a way of life: a framework for Bayesian inference on partitioned data publication-title: J. Mach. Learn. Res. – volume: 35 start-page: 641 year: 2010 end-page: 654 ident: br0300 article-title: Randomized methods for linear constraints: convergence rates and conditioning publication-title: Math. Oper. Res. – volume: 4 start-page: 85 year: 2009 end-page: 117 ident: br0450 article-title: A review of Bayesian variable selection methods: what, how and which publication-title: Bayesian Anal. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: br0590 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc., Ser. B, Methodol. – volume: 31 start-page: 113 year: 2022 end-page: 137 ident: br0270 article-title: Adaptive Bayesian slope: model selection with incomplete data publication-title: J. Comput. Graph. Stat. – volume: 8 start-page: 621 year: 2019 end-page: 653 ident: br0110 article-title: Bayesian sparse linear regression with unknown symmetric error publication-title: Inf. Inference – volume: 11 start-page: 3196 year: 2017 end-page: 3225 ident: br0470 article-title: Adaptive posterior contraction rates for the horseshoe publication-title: Electron. J. Stat. – volume: 83 start-page: 1023 year: 1988 end-page: 1032 ident: br0420 article-title: Bayesian variable selection in linear regression publication-title: J. Am. Stat. Assoc. – volume: 12 start-page: 145 year: 1999 end-page: 151 ident: br0480 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw. – start-page: 307 year: 1992 end-page: 320 ident: br0390 article-title: Recent extensions to the EM algorithm (with discussion) publication-title: Bayesian Statistics 4 – volume: 5 start-page: 55 year: 1995 end-page: 75 ident: br0130 article-title: Maximum likelihood estimation via the ECM algorithm: computing the asymptotic variance publication-title: Stat. Sin. – volume: 23 start-page: 1822 year: 2017 end-page: 1847 ident: br0340 article-title: Empirical Bayes posterior concentration in sparse high-dimensional linear models publication-title: Bernoulli – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: br0190 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. – volume: 21 start-page: 219 year: 2020 end-page: 235 ident: br0120 article-title: The joint lasso: high-dimensional regression for group structured data publication-title: Biostatistics – volume: 12 start-page: 55 year: 1970 end-page: 67 ident: br0240 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics – volume: 21 start-page: 1 year: 2020 end-page: 30 ident: br0350 article-title: Empirical priors for prediction in sparse high-dimensional linear regression publication-title: J. Mach. Learn. Res. – volume: 96 start-page: 1348 year: 2001 end-page: 1360 ident: br0170 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. – volume: 80 start-page: 267 year: 1993 end-page: 278 ident: br0400 article-title: Maximum likelihood estimation via the ECM algorithm: a general framework publication-title: Biometrika – volume: 88 start-page: 881 year: 1993 end-page: 889 ident: br0220 article-title: Variable selection via Gibbs sampling publication-title: J. Am. Stat. Assoc. – volume: 101 start-page: 1418 year: 2006 end-page: 1429 ident: br0670 article-title: The adaptive lasso and its oracle properties publication-title: J. Am. Stat. Assoc. – year: 1970 ident: br0290 article-title: Posterior Probabilities of Alternative Linear Models – volume: 66 start-page: 187 year: 2004 end-page: 205 ident: br0570 article-title: Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. – volume: 44 start-page: 533 year: 1957 end-page: 534 ident: br0020 article-title: A comment on D. V. Lindley's statistical paradox publication-title: Biometrika – volume: 62 start-page: 257 year: 2000 end-page: 270 ident: br0250 article-title: Standard errors for em estimation publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. – volume: 61 start-page: 479 year: 1999 end-page: 482 ident: br0440 article-title: Direct calculation of the information matrix via the em publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. – start-page: 352 year: 2002 ident: 10.1016/j.csda.2025.108146_br0410 article-title: Expectation-propagation for the generative aspect model – volume: 97 start-page: 465 year: 2010 ident: 10.1016/j.csda.2025.108146_br0080 article-title: The horseshoe estimator for sparse signals publication-title: Biometrika doi: 10.1093/biomet/asq017 – volume: 109 start-page: 828 year: 2014 ident: 10.1016/j.csda.2025.108146_br0530 article-title: Emvs: the em approach to Bayesian variable selection publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2013.869223 – volume: 82 start-page: 1273 year: 2020 ident: 10.1016/j.csda.2025.108146_br0630 article-title: A simple new approach to variable selection in regression, with application to genetic fine mapping publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. doi: 10.1111/rssb.12388 – volume: 61 start-page: 479 year: 1999 ident: 10.1016/j.csda.2025.108146_br0440 article-title: Direct calculation of the information matrix via the em publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. doi: 10.1111/1467-9868.00188 – volume: 85 start-page: 755 year: 1998 ident: 10.1016/j.csda.2025.108146_br0320 article-title: Parameter expansion to accelerate EM: the PX-EM algorithm publication-title: Biometrika doi: 10.1093/biomet/85.4.755 – volume: 83 start-page: 1023 year: 1988 ident: 10.1016/j.csda.2025.108146_br0420 article-title: Bayesian variable selection in linear regression publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1988.10478694 – volume: 21 start-page: 219 year: 2020 ident: 10.1016/j.csda.2025.108146_br0120 article-title: The joint lasso: high-dimensional regression for group structured data publication-title: Biostatistics doi: 10.1093/biostatistics/kxy035 – ident: 10.1016/j.csda.2025.108146_br0370 – start-page: 307 year: 1992 ident: 10.1016/j.csda.2025.108146_br0390 article-title: Recent extensions to the EM algorithm (with discussion) – volume: 18 start-page: 275 year: 2017 ident: 10.1016/j.csda.2025.108146_br0560 article-title: False discovery rates: a new deal publication-title: Biostatistics – volume: vol. 7 start-page: 73 year: 2012 ident: 10.1016/j.csda.2025.108146_br0070 article-title: Scalable Variational Inference for Bayesian Variable Selection in Regression, and Its Accuracy in Genetic Association Studies – volume: 102 start-page: 495 year: 2007 ident: 10.1016/j.csda.2025.108146_br0280 article-title: Estimating the null and the proportional of nonnull effects in large-scale multiple comparisons publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214507000000167 – volume: 117 start-page: 1270 year: 2022 ident: 10.1016/j.csda.2025.108146_br0500 article-title: Variational Bayes for high-dimensional linear regression with sparse priors publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2020.1847121 – volume: 21 start-page: 1 year: 2020 ident: 10.1016/j.csda.2025.108146_br0350 article-title: Empirical priors for prediction in sparse high-dimensional linear regression publication-title: J. Mach. Learn. Res. – volume: 95 start-page: 449 year: 2000 ident: 10.1016/j.csda.2025.108146_br0430 article-title: On profile likelihood publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2000.10474219 – ident: 10.1016/j.csda.2025.108146_br0650 – year: 2020 ident: 10.1016/j.csda.2025.108146_br0490 – volume: 107 start-page: 1610 year: 2012 ident: 10.1016/j.csda.2025.108146_br0050 article-title: Consistent high-dimensional Bayesian variable selection via penalized credible regions publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2012.716344 – volume: 88 start-page: 116 year: 2019 ident: 10.1016/j.csda.2025.108146_br0540 article-title: Variational em method for blur estimation using the spike-and-slab image prior publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2019.01.004 – volume: 31 start-page: 113 year: 2022 ident: 10.1016/j.csda.2025.108146_br0270 article-title: Adaptive Bayesian slope: model selection with incomplete data publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2021.1963263 – volume: 113 start-page: 431 year: 2018 ident: 10.1016/j.csda.2025.108146_br0510 article-title: The spike-and-slab lasso publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2016.1260469 – volume: 80 start-page: 267 year: 1993 ident: 10.1016/j.csda.2025.108146_br0400 article-title: Maximum likelihood estimation via the ECM algorithm: a general framework publication-title: Biometrika doi: 10.1093/biomet/80.2.267 – volume: 66 start-page: 187 year: 2004 ident: 10.1016/j.csda.2025.108146_br0570 article-title: Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. doi: 10.1111/j.1467-9868.2004.00439.x – volume: 86 start-page: 899 year: 1991 ident: 10.1016/j.csda.2025.108146_br0380 article-title: Using em to obtain asymptotic variance-covariance matrices: the sem algorithm publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1991.10475130 – volume: 96 start-page: 1151 year: 2001 ident: 10.1016/j.csda.2025.108146_br0150 article-title: Empirical Bayes analysis of a microarray experiment publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382129 – volume: 113 start-page: 1684 year: 2018 ident: 10.1016/j.csda.2025.108146_br0520 article-title: Particle EM for variable selection publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1360778 – volume: 21 start-page: 1 year: 2020 ident: 10.1016/j.csda.2025.108146_br0620 article-title: Expectation propagation as a way of life: a framework for Bayesian inference on partitioned data publication-title: J. Mach. Learn. Res. – volume: 102 start-page: 901 year: 2007 ident: 10.1016/j.csda.2025.108146_br0580 article-title: Oracle and adaptive compound decision rules for false discovery rate control publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214507000000545 – volume: 10 start-page: 2837 year: 2009 ident: 10.1016/j.csda.2025.108146_br0030 article-title: Adaptive fdr control under independence and dependence publication-title: J. Mach. Learn. Res. – volume: 57 start-page: 92 year: 2008 ident: 10.1016/j.csda.2025.108146_br0260 article-title: Multitask compressive sensing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.2005866 – volume: 112 start-page: 859 year: 2017 ident: 10.1016/j.csda.2025.108146_br0040 article-title: Variational inference: a review for statisticians publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1285773 – volume: 35 start-page: 641 year: 2010 ident: 10.1016/j.csda.2025.108146_br0300 article-title: Randomized methods for linear constraints: convergence rates and conditioning publication-title: Math. Oper. Res. doi: 10.1287/moor.1100.0456 – volume: 44 start-page: 533 year: 1957 ident: 10.1016/j.csda.2025.108146_br0020 article-title: A comment on D. V. Lindley's statistical paradox publication-title: Biometrika doi: 10.1093/biomet/44.3-4.533 – volume: 23 start-page: 1822 year: 2017 ident: 10.1016/j.csda.2025.108146_br0340 article-title: Empirical Bayes posterior concentration in sparse high-dimensional linear models publication-title: Bernoulli doi: 10.3150/15-BEJ797 – volume: 12 start-page: 55 year: 1970 ident: 10.1016/j.csda.2025.108146_br0240 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – volume: 14 year: 2001 ident: 10.1016/j.csda.2025.108146_br0180 article-title: Analysis of sparse Bayesian learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 5 start-page: 232 year: 2011 ident: 10.1016/j.csda.2025.108146_br0060 article-title: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection publication-title: Ann. Appl. Stat. doi: 10.1214/10-AOAS388 – volume: 4 start-page: 85 year: 2009 ident: 10.1016/j.csda.2025.108146_br0450 article-title: A review of Bayesian variable selection methods: what, how and which publication-title: Bayesian Anal. doi: 10.1214/09-BA403 – year: 1970 ident: 10.1016/j.csda.2025.108146_br0290 – volume: 33 start-page: 1 year: 2010 ident: 10.1016/j.csda.2025.108146_br0190 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. doi: 10.18637/jss.v033.i01 – volume: 48 start-page: 2548 year: 2020 ident: 10.1016/j.csda.2025.108146_br0090 article-title: On spike and slab empirical Bayes multiple testing publication-title: Ann. Stat. doi: 10.1214/19-AOS1897 – volume: 12 start-page: 145 year: 1999 ident: 10.1016/j.csda.2025.108146_br0480 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00116-6 – volume: 87 start-page: 731 year: 2000 ident: 10.1016/j.csda.2025.108146_br0210 article-title: Calibration and empirical Bayes variable selection publication-title: Biometrika doi: 10.1093/biomet/87.4.731 – volume: 88 start-page: 881 year: 1993 ident: 10.1016/j.csda.2025.108146_br0220 article-title: Variable selection via Gibbs sampling publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10476353 – volume: 38 start-page: 894 year: 2010 ident: 10.1016/j.csda.2025.108146_br0660 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Ann. Stat. doi: 10.1214/09-AOS729 – volume: 483 start-page: 603 year: 2012 ident: 10.1016/j.csda.2025.108146_br0010 article-title: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature doi: 10.1038/nature11003 – year: 1986 ident: 10.1016/j.csda.2025.108146_br0550 article-title: Density Estimation for Statistics and Data Analysis – volume: 22 start-page: 1689 year: 2012 ident: 10.1016/j.csda.2025.108146_br0460 article-title: Estimating the proportion of true null hypotheses under dependence publication-title: Stat. Sin. – year: 2013 ident: 10.1016/j.csda.2025.108146_br0160 – volume: 103 start-page: 410 year: 2008 ident: 10.1016/j.csda.2025.108146_br0310 article-title: Mixtures of g priors for Bayesian variable selection publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214507000001337 – volume: 101 start-page: 1418 year: 2006 ident: 10.1016/j.csda.2025.108146_br0670 article-title: The adaptive lasso and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000000735 – volume: 1 start-page: 211 year: 2001 ident: 10.1016/j.csda.2025.108146_br0600 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 35 start-page: 335 year: 2008 ident: 10.1016/j.csda.2025.108146_br0610 article-title: Simple and globally convergent methods for accelerating the convergence of any EM algorithm publication-title: Scand. J. Stat. doi: 10.1111/j.1467-9469.2007.00585.x – volume: 8 start-page: 621 year: 2019 ident: 10.1016/j.csda.2025.108146_br0110 article-title: Bayesian sparse linear regression with unknown symmetric error publication-title: Inf. Inference – volume: 5 start-page: 55 year: 1995 ident: 10.1016/j.csda.2025.108146_br0130 article-title: Maximum likelihood estimation via the ECM algorithm: computing the asymptotic variance publication-title: Stat. Sin. – volume: 71 start-page: 1054 year: 2014 ident: 10.1016/j.csda.2025.108146_br0140 article-title: Rcpparmadillo: accelerating r with high-performance c++ linear algebra publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2013.02.005 – volume: 11 start-page: 3196 year: 2017 ident: 10.1016/j.csda.2025.108146_br0470 article-title: Adaptive posterior contraction rates for the horseshoe publication-title: Electron. J. Stat. doi: 10.1214/17-EJS1316 – year: 2014 ident: 10.1016/j.csda.2025.108146_br0200 article-title: Bayesian Data Analysis – volume: 62 start-page: 257 year: 2000 ident: 10.1016/j.csda.2025.108146_br0250 article-title: Standard errors for em estimation publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. doi: 10.1111/1467-9868.00230 – ident: 10.1016/j.csda.2025.108146_br0640 – volume: 44 start-page: 226 year: 1982 ident: 10.1016/j.csda.2025.108146_br0330 article-title: Finding the observed information matrix when using the em algorithm publication-title: J. R. Stat. Soc., Ser. B, Methodol. doi: 10.1111/j.2517-6161.1982.tb01203.x – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.csda.2025.108146_br0590 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc., Ser. B, Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – year: 2015 ident: 10.1016/j.csda.2025.108146_br0230 – volume: 43 start-page: 1986 year: 2015 ident: 10.1016/j.csda.2025.108146_br0100 article-title: Bayesian linear regression with sparse priors publication-title: Ann. Stat. doi: 10.1214/15-AOS1334 – volume: 96 start-page: 1348 year: 2001 ident: 10.1016/j.csda.2025.108146_br0170 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – volume: 16 start-page: 1197 year: 1995 ident: 10.1016/j.csda.2025.108146_br0360 article-title: On the convergence of the Jacobi method for arbitrary orderings publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479890179631  | 
    
| SSID | ssj0002478 | 
    
| Score | 2.4394557 | 
    
| Snippet | Bayesian variable selection methods are powerful techniques for fitting sparse high-dimensional linear regression models. However, many are computationally... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 108146 | 
    
| SubjectTerms | algorithms Approximate Bayesian computation Bayesian theory data analysis drugs Generalized EM algorithm High-dimensional linear regression neoplasm cells regression analysis Sparsity Variable selection  | 
    
| Title | Efficient sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.csda.2025.108146 https://www.proquest.com/docview/3242051031  | 
    
| Volume | 207 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0167-9473 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002478 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals issn: 0167-9473 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002478 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0167-9473 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002478 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0167-9473 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002478 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0167-9473 databaseCode: AKRWK dateStart: 19830301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAeIryqIzEhkKbxK6bsVStClU7ABXdrDh2qyL6UNIOLHw799oJCIQYmKJEzus6Offc5PiYkCumAeKMCL16ouoe85n2FLBSb8Jx2KWI_dAaaQ-Gjd6I3Y_5uETaxVgYlFXm2O8w3aJ1vqWWR7O2ms1qjyigj5gIA25dXBCHGRM4i8HN-5fMI2AOjdHfG1vnA2ecxivJNHoPBRyldpYE_56cfsC0zT3dPbKbk0bacte1T0pmcUB2Bp-Oq9kh0R3rBQEphAJGpJmhaETsaTTvd8YbFAllnNLUTJ32dUHxIyyN6Qpv2FoWaWrmq5l1DaG38ZvJaKc9oPHrdJlC0_kRGXU7T-2el8-g4CWQdtZekrAJ05wnYaBDwyC5B0KpRmSA99QNlDKBr-rKNBXUqf4kUE3NhGlEwCn8ZpQIHR6T8gLOfkLopKEEcKkQ-ApjSuuYNbmOEihHuFAhiyvkugidXDmjDFkoyF4kBlpioKULdIXwIrryW3dLQPI_97ssukLCe4A_N-KFWW4yicTQ2gP6p_889hnZxjWnxT0n5XW6MRfAONaqah-pKtlq3fV7Q1z2H577Hz1U1cM | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFG6WeVAPxp9x_qyJN4Mb0A446rJl6raLW7JbQ2m3zLiNwHbw4t_uey1oNMaDVygUXuF73ytfPwi5ZgogTge-00hkw2EuU44EVupMOC67DGLXN0ba_UGzO2KPYz6ukFa5FgZllQX2W0w3aF1sqRfRrKezWf0ZBfQRC3yPGxcXwOENBj1gBXb7_qXz8JiFYzT4xubFyhkr8kpyheZDHketnWHBv2enHzhtkk9nl-wUrJHe2QvbIxW92Cfb_U_L1fyAqLYxg4AcQgEkslxTdCJ2FLr3W-cNiowyzmimp1b8uqA4C0tjmuIdG88iRfU8nRnbEHofv-mctlt9Gr9Olxk0nR-SUac9bHWd4hcKTgJ5Z-UkCZswxXnie8rXDLK7F0jZjDQQn4aGWsZzZUPqUEKh6k48GSoW6GYEpMINoyRQ_hGpLqD3Y0InTRkAmfKBsDAmlYpZyFWUQD3CA-mzuEZuytCJ1DpliFJC9iIw0AIDLWyga4SX0RXfxlsAlP953FU5FAJeBPy6ES_0cp0LZIbGH9A9-ee5L8lmd9jvid7D4OmUbOEeK8w9I9VVttbnQD9W8sI8Xh-ofdW1 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+sparse+high-dimensional+linear+regression+with+a+partitioned+empirical+Bayes+ECM+algorithm&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=McLain%2C+Alexander+C.&rft.au=Zgodic%2C+Anja&rft.au=Bondell%2C+Howard&rft.date=2025-07-01&rft.issn=0167-9473&rft.volume=207&rft.spage=108146&rft_id=info:doi/10.1016%2Fj.csda.2025.108146&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csda_2025_108146 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |