Detection of Image Compositing Based on a Statistical Model for Natural Images

Nowadays, digital images can be easily tampered due to the availability of powerful image processing software. As digital cameras continue to replace their analog counterparts, the importance of authenticating digital images, identifying their sources, and detecting forgeries is increasing. Blind im...

Full description

Saved in:
Bibliographic Details
Published inZi dong hua xue bao Vol. 35; no. 12; pp. 1564 - 1567
Main Authors SUN, Shao-Jie, WU, Qiong, LI, Guo-Hui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2009
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
1874-1029
DOI10.1016/S1874-1029(08)60124-X

Cover

Abstract Nowadays, digital images can be easily tampered due to the availability of powerful image processing software. As digital cameras continue to replace their analog counterparts, the importance of authenticating digital images, identifying their sources, and detecting forgeries is increasing. Blind image forensics is used to analyze an image in the complete absence of any digital watermark or signature. Image compositing is the most common form of digital tampering. Assuming that image compositing operations affect the inherent statistics of the image, we propose an image compositing detection method on based on a statistical model for natural image in the wavelet transform domain. The generalized Gaussian model (CGD) is employed to describe the marginal distribution of wavelet coefficients of images, and the parameters of GGD are obtained using maximumlikelihood estimator. The statistical features include GGD parameters, prediction error, mean, variance, skewness, and kurtosis at each wavelet detail subband. Then, these feature vectors are used to discriminate between natural images and composite images using support vector machine (SVM). To evaluate the performance of our proposed method, we carried out tests on the Columbia Uncompressed Image Splicing Detection Dataset and another advanced dataset, and achieved a detection accuracy of 92 % and 79 %, respectively. The detection performance of our method is better than that of the method using camera response function on the same dataset.
AbstractList Nowadays, digital images can be easily tampered due to the availability of powerful image processing software. As digital cameras continue to replace their analog counterparts, the importance of authenticating digital images, identifying their sources, and detecting forgeries is increasing. Blind image forensics is used to analyze an image in the complete absence of any digital watermark or signature. Image compositing is the most common form of digital tampering. Assuming that image compositing operations affect the inherent statistics of the image, we propose an image compositing detection method on based on a statistical model for natural image in the wavelet transform domain. The generalized Gaussian model (GGD) is employed to describe the marginal distribution of wavelet coefficients of images, and the parameters of GGD are obtained using maximum-likelihood estimator. The statistical features include GGD parameters, prediction error, mean, variance, skewness, and kurtosis at each wavelet detail subband. Then, these feature vectors are used to discriminate between natural images and composite images using support vector machine (SVM). To evaluate the performance of our proposed method, we carried out tests on the Columbia Uncompressed Image Splicing Detection Dataset and another advanced dataset, and achieved a detection accuracy of 92 % and 79 %, respectively. The detection performance of our method is better than that of the method using camera response function on the same dataset.
Nowadays, digital images can be easily tampered due to the availability of powerful image processing software. As digital cameras continue to replace their analog counterparts, the importance of authenticating digital images, identifying their sources, and detecting forgeries is increasing. Blind image forensics is used to analyze an image in the complete absence of any digital watermark or signature. Image compositing is the most common form of digital tampering. Assuming that image compositing operations affect the inherent statistics of the image, we propose an image compositing detection method on based on a statistical model for natural image in the wavelet transform domain. The generalized Gaussian model (CGD) is employed to describe the marginal distribution of wavelet coefficients of images, and the parameters of GGD are obtained using maximumlikelihood estimator. The statistical features include GGD parameters, prediction error, mean, variance, skewness, and kurtosis at each wavelet detail subband. Then, these feature vectors are used to discriminate between natural images and composite images using support vector machine (SVM). To evaluate the performance of our proposed method, we carried out tests on the Columbia Uncompressed Image Splicing Detection Dataset and another advanced dataset, and achieved a detection accuracy of 92 % and 79 %, respectively. The detection performance of our method is better than that of the method using camera response function on the same dataset.
Author SUN Shao-Jie WU Qiong LI Guo-Hui
AuthorAffiliation College of Information System and Management, National University of Defense Technology, Changsha 410073, P. R. China
Author_xml – sequence: 1
  givenname: Shao-Jie
  surname: SUN
  fullname: SUN, Shao-Jie
  email: sshj_mil@126.com
– sequence: 2
  givenname: Qiong
  surname: WU
  fullname: WU, Qiong
  email: wuqiong_nudt@126.com
– sequence: 3
  givenname: Guo-Hui
  surname: LI
  fullname: LI, Guo-Hui
  email: guohli@nudt.edu.cn
BookMark eNqFkUtLAzEQgIMoWB8_QQhe1MNqXrvZxYNofUKtBxW8hWx2UoPbTZukgv_ebSsevHgamJlvhvlmB212vgOEDig5pYQWZ8-0lCKjhFXHpDwpCGUie9tAg9_0JhoQlotM0LzYRvsxuppQKWTFOBmg8TUkMMn5DnuLH6Z6AnjopzMfXXLdBF_pCA3uqxo_J51cTM7oFj_6BlpsfcBjnRahz6zQuIe2rG4j7P_EXfR6e_MyvM9GT3cPw8tRZljJU1ZLyQW1hRUVbwDqWuSyAsFLsDUIQ6lgMi9ICUwCrxvKmLW6KgTRzbJM-C46Ws-dBT9fQExq6qKBttUd-EVUUnBaUiLyvvN83WmCjzGAVcYtD_FdCtq1ihK19KhWHtVSmCKlWnlUbz2d_6FnwU11-PqXu1hz0Ev4dBBUNA46A40LvW7VePfvhMOfze--m8z7X6hamw_rWlCciUL0Uvg3NKOXfA
CitedBy_id crossref_primary_10_1080_19361610_2017_1422367
crossref_primary_10_1080_19361610_2021_1883397
Cites_doi 10.1109/18.761332
10.1109/TIFS.2006.873602
10.1109/83.982822
10.1007/978-3-540-30114-1_10
10.1109/29.45554
ContentType Journal Article
Copyright 2009 The Chinese Association of Automation and The Institute of Automation, Chinese Academy of Sciences
Copyright_xml – notice: 2009 The Chinese Association of Automation and The Institute of Automation, Chinese Academy of Sciences
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/S1874-1029(08)60124-X
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Detection of Image Compositing Based on a Statistical Model for Natural Images
EISSN 1874-1029
EndPage 1567
ExternalDocumentID 10_1016_S1874_1029_08_60124_X
S187410290860124X
32464122
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CDYEO
CJLMK
CQIGP
CS3
CUBFJ
CW9
EBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
EFLBG
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
~HD
ID FETCH-LOGICAL-c283t-b77341f6f493deebb4579e438efbe4c114275608e27e3bd122ffa9640ade4c103
IEDL.DBID .~1
ISSN 0254-4156
1874-1029
IngestDate Sat Sep 27 16:04:39 EDT 2025
Thu Apr 24 22:51:25 EDT 2025
Tue Jul 01 01:29:05 EDT 2025
Fri Feb 23 02:28:46 EST 2024
Fri Nov 25 17:02:19 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords image forensics
maximum-likelihood (ML)
support vector machine (SVM)
Image compositing
generalized Gaussian model (GGD)
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c283t-b77341f6f493deebb4579e438efbe4c114275608e27e3bd122ffa9640ade4c103
Notes Image compositing, generalized Gaussian model(GGD), maximum-likelihood (ML), support vector machine(SVM), image forensics
11-2109/TP
TP391.41
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 743181045
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_743181045
crossref_citationtrail_10_1016_S1874_1029_08_60124_X
crossref_primary_10_1016_S1874_1029_08_60124_X
elsevier_sciencedirect_doi_10_1016_S1874_1029_08_60124_X
chongqing_backfile_32464122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20091201
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 20091201
  day: 01
PublicationDecade 2000
PublicationTitle Zi dong hua xue bao
PublicationTitleAlternate Acta Automatica Sinica
PublicationYear 2009
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Moulin, Liu (bib10) 1999; 45
Popescu A C. Statistical Tools for Digital Forensics [Ph. D. dissertation], Dartmouth College, USA, 2005
Lukas, Fridrich, Goljan (bib6) 2006; 1
Lin, Wang, Tang, Shum (bib5) 2005
Hsu, Chang (bib7) 2006
Mallat (bib9) 1989; 37
Do, Vetterli (bib11) 2002; 11
Chang, Lin (bib13)
Johnson, Farid (bib4) 2005
Hsu, Chang (bib8) 2007
Fridrich, Soukal, Lukas (bib2) 2003
Kay (bib12) 1993
Ng T T, Chang S F. Blind Detection of Digital Photomontage Using Higher Order Statistics, Technical Report #201-2004-1, Columbia University, USA, 2004
10.1016/S1874-1029(08)60124-X_bib1
Hsu (10.1016/S1874-1029(08)60124-X_bib7) 2006
Mallat (10.1016/S1874-1029(08)60124-X_bib9) 1989; 37
10.1016/S1874-1029(08)60124-X_bib3
Johnson (10.1016/S1874-1029(08)60124-X_bib4) 2005
Moulin (10.1016/S1874-1029(08)60124-X_bib10) 1999; 45
Hsu (10.1016/S1874-1029(08)60124-X_bib8) 2007
Do (10.1016/S1874-1029(08)60124-X_bib11) 2002; 11
Kay (10.1016/S1874-1029(08)60124-X_bib12) 1993
Fridrich (10.1016/S1874-1029(08)60124-X_bib2) 2003
Lukas (10.1016/S1874-1029(08)60124-X_bib6) 2006; 1
Chang (10.1016/S1874-1029(08)60124-X_bib13)
Lin (10.1016/S1874-1029(08)60124-X_bib5) 2005
References_xml – start-page: 1
  year: 2003
  end-page: 10
  ident: bib2
  article-title: Detection of copy-move forgery in digital images
  publication-title: Proceedings of Digital Forensic Research Workshop
– reference: Ng T T, Chang S F. Blind Detection of Digital Photomontage Using Higher Order Statistics, Technical Report #201-2004-1, Columbia University, USA, 2004
– volume: 37
  start-page: 2091
  year: 1989
  end-page: 2110
  ident: bib9
  article-title: Multifrequency channel decompositions of images and wavelet models
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
– volume: 45
  start-page: 909
  year: 1999
  end-page: 919
  ident: bib10
  article-title: Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors
  publication-title: IEEE Transactions on Information Theory
– start-page: 1
  year: 2005
  end-page: 10
  ident: bib4
  article-title: Exposing digital forgeries by detecting inconsistencies in lighting
  publication-title: Proceedings of the 7th Workshop on Multimedia and Security
– reference: Popescu A C. Statistical Tools for Digital Forensics [Ph. D. dissertation], Dartmouth College, USA, 2005
– start-page: 549
  year: 2006
  end-page: 552
  ident: bib7
  article-title: Detecting image splicing using geometry invariants and camera
  publication-title: Proceedings of IEEE International Conference on Multimedia and Expo
– volume: 11
  start-page: 146
  year: 2002
  end-page: 158
  ident: bib11
  article-title: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance
  publication-title: IEEE Transactions on Image Processing
– year: 1993
  ident: bib12
  publication-title: Fundamentals of Statistical Signal Processing: Estimation Theory
– ident: bib13
  article-title: LIBSVM: a library for support vector machines [Online]
– volume: 1
  start-page: 205
  year: 2006
  end-page: 214
  ident: bib6
  article-title: Digital camera identification from sensor pattern noise
  publication-title: IEEE Transactions on Information Forensics and Security
– start-page: 28
  year: 2007
  end-page: 31
  ident: bib8
  article-title: Image splicing detection using camera response function consistency and automatic segmentation
  publication-title: Proceedings of International Conference on Multimedia and Expo
– start-page: 1087
  year: 2005
  end-page: 1092
  ident: bib5
  article-title: Detecting doctored images using camera response normality and consistency analysis
  publication-title: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2005
  ident: 10.1016/S1874-1029(08)60124-X_bib4
  article-title: Exposing digital forgeries by detecting inconsistencies in lighting
– volume: 45
  start-page: 909
  issue: 3
  year: 1999
  ident: 10.1016/S1874-1029(08)60124-X_bib10
  article-title: Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.761332
– year: 1993
  ident: 10.1016/S1874-1029(08)60124-X_bib12
– ident: 10.1016/S1874-1029(08)60124-X_bib13
– start-page: 1
  year: 2003
  ident: 10.1016/S1874-1029(08)60124-X_bib2
  article-title: Detection of copy-move forgery in digital images
– start-page: 549
  year: 2006
  ident: 10.1016/S1874-1029(08)60124-X_bib7
  article-title: Detecting image splicing using geometry invariants and camera
– start-page: 1087
  year: 2005
  ident: 10.1016/S1874-1029(08)60124-X_bib5
  article-title: Detecting doctored images using camera response normality and consistency analysis
– volume: 1
  start-page: 205
  issue: 2
  year: 2006
  ident: 10.1016/S1874-1029(08)60124-X_bib6
  article-title: Digital camera identification from sensor pattern noise
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2006.873602
– ident: 10.1016/S1874-1029(08)60124-X_bib1
– volume: 11
  start-page: 146
  issue: 2
  year: 2002
  ident: 10.1016/S1874-1029(08)60124-X_bib11
  article-title: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.982822
– start-page: 28
  year: 2007
  ident: 10.1016/S1874-1029(08)60124-X_bib8
  article-title: Image splicing detection using camera response function consistency and automatic segmentation
– ident: 10.1016/S1874-1029(08)60124-X_bib3
  doi: 10.1007/978-3-540-30114-1_10
– volume: 37
  start-page: 2091
  issue: 12
  year: 1989
  ident: 10.1016/S1874-1029(08)60124-X_bib9
  article-title: Multifrequency channel decompositions of images and wavelet models
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
  doi: 10.1109/29.45554
SSID ssib017479230
ssib001102911
ssib006576350
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 1.8822491
Snippet Nowadays, digital images can be easily tampered due to the availability of powerful image processing software. As digital cameras continue to replace their...
SourceID proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1564
SubjectTerms generalized Gaussian model (GGD)
Image compositing
image forensics
maximum-likelihood (ML)
support vector machine (SVM)
图像合成
图像处理技术
数字干扰
软件
Title Detection of Image Compositing Based on a Statistical Model for Natural Images
URI http://lib.cqvip.com/qk/90250X/200912/32464122.html
https://dx.doi.org/10.1016/S1874-1029(08)60124-X
https://www.proquest.com/docview/743181045
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqTjAgnqIUkAcGGNymifPwCIWqMHSBStksO7FLRUkLbVd-O3dOWh4SqsTqxKfIZ9_3nXL-jpALwBSdKaGYEX7EuA0zJnxlGeTLOhOxRYkurLYYRP0hf0jDtEa6q7swWFZZxf4yprtoXY20q9Vsz8bj9iN2kwN4FEDKIcryFG-w8xj3eutjXeYRojoNJl3wMsO3v27xlBbc4KWXXDkjLEWNhedpMXoD5PgLq35FbQdFvV2yU3FIel1-5h6pmWKfbH9TFjwgg1uzcEVWBZ1aev8KUYPi0XclWsWI3gB45RSeKop006k1g0nsjDahwGPpQDlBjnLq_JAMe3dP3T6rWiewDPjCguk4BniykeUiyI3RmoexMDxIjNWGZ3iBNgaukxg_NoHOO75vrRIR91SOj73giNSLaWGOCdVRkEeQrkLukfEkF0oFufYjkWiTw1DcIM31ggH0Zi8oKCWBp0UczDYIXy2hzCrVcWx-MZHr8jL0gkQvSC-RzgsybZDWetqslN3YNCFZ-Uf-2D8SoGHTVLryp4SzhT9MVGGmy7lEdpVAvhqe_N96k2z5VcsJr3NK6ov3pTkDHrPQ526jfgIohelK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwEB1xFECBOMVyuqCAwmxInMMlp5ZrG0BKZ9mJDQjIciwt386Mk10OCSHROvEo8tjz3ijjNwCbiCmm0FJzK8OECxcXXIbaccyXTSFTRxJdVG3RTTrX4jSP8xE4GNyFobLKJvbXMd1H62ak3axm--nurn1J3eQQHiWScoyyIh-FcUFtDnBT77wP6zxikqehrAvf5vT65zWe2oQf3AqybW-F5ySycNurbp4ROn4Dqx9h22PR8QxMNySS7dXfOQsjtpqDqS_SgvPQPbR9X2VVsZ5jJ48YNhidfV-jVd2wfUSvkuFTzYhverlmNEmt0R4YElnW1V6Ro576ugDXx0dXBx3e9E7gBRKGPjdpivjkEidkVFprjIhTaUWUWWesKOgGbYpkJ7NhaiNT7oahc1omItAlPQ6iRRirepVdAmaSqEwwX8XkoxBZKbWOShMmMjO2xKG0BSvDBUPsLe5JUUohUUsEmm2BGCyhKhrZcep-8aCG9WXkBUVeUEGmvBdU3oKd4bSnWnfjrwnZwD_q2wZSiA1_TWUDfyo8XPTHRFe29_aqiF5lmLDGy_-3vgETnauLc3V-0j1bgcmw6T8R7K7CWP_lza4hqembdb9pPwDYqexh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Image+Compositing+Based+on+a+Statistical+Model+for+Natural+Images&rft.jtitle=Zi+dong+hua+xue+bao&rft.au=SUN%2C+Shao-Jie&rft.au=WU%2C+Qiong&rft.au=LI%2C+Guo-Hui&rft.date=2009-12-01&rft.issn=1874-1029&rft.volume=35&rft.issue=12&rft.spage=1564&rft.epage=1568&rft_id=info:doi/10.1016%2FS1874-1029%2808%2960124-X&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1874_1029_08_60124_X
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg