Detection of Image Compositing Based on a Statistical Model for Natural Images
Nowadays, digital images can be easily tampered due to the availability of powerful image processing software. As digital cameras continue to replace their analog counterparts, the importance of authenticating digital images, identifying their sources, and detecting forgeries is increasing. Blind im...
Saved in:
Published in | Zi dong hua xue bao Vol. 35; no. 12; pp. 1564 - 1567 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 1874-1029 1874-1029 |
DOI | 10.1016/S1874-1029(08)60124-X |
Cover
Abstract | Nowadays, digital images can be easily tampered due to the availability of powerful image processing software. As digital cameras continue to replace their analog counterparts, the importance of authenticating digital images, identifying their sources, and detecting forgeries is increasing. Blind image forensics is used to analyze an image in the complete absence of any digital watermark or signature. Image compositing is the most common form of digital tampering. Assuming that image compositing operations affect the inherent statistics of the image, we propose an image compositing detection method on based on a statistical model for natural image in the wavelet transform domain. The generalized Gaussian model (CGD) is employed to describe the marginal distribution of wavelet coefficients of images, and the parameters of GGD are obtained using maximumlikelihood estimator. The statistical features include GGD parameters, prediction error, mean, variance, skewness, and kurtosis at each wavelet detail subband. Then, these feature vectors are used to discriminate between natural images and composite images using support vector machine (SVM). To evaluate the performance of our proposed method, we carried out tests on the Columbia Uncompressed Image Splicing Detection Dataset and another advanced dataset, and achieved a detection accuracy of 92 % and 79 %, respectively. The detection performance of our method is better than that of the method using camera response function on the same dataset. |
---|---|
AbstractList | Nowadays, digital images can be easily tampered due to the availability of powerful image processing software. As digital cameras continue to replace their analog counterparts, the importance of authenticating digital images, identifying their sources, and detecting forgeries is increasing. Blind image forensics is used to analyze an image in the complete absence of any digital watermark or signature. Image compositing is the most common form of digital tampering. Assuming that image compositing operations affect the inherent statistics of the image, we propose an image compositing detection method on based on a statistical model for natural image in the wavelet transform domain. The generalized Gaussian model (GGD) is employed to describe the marginal distribution of wavelet coefficients of images, and the parameters of GGD are obtained using maximum-likelihood estimator. The statistical features include GGD parameters, prediction error, mean, variance, skewness, and kurtosis at each wavelet detail subband. Then, these feature vectors are used to discriminate between natural images and composite images using support vector machine (SVM). To evaluate the performance of our proposed method, we carried out tests on the Columbia Uncompressed Image Splicing Detection Dataset and another advanced dataset, and achieved a detection accuracy of 92 % and 79 %, respectively. The detection performance of our method is better than that of the method using camera response function on the same dataset. Nowadays, digital images can be easily tampered due to the availability of powerful image processing software. As digital cameras continue to replace their analog counterparts, the importance of authenticating digital images, identifying their sources, and detecting forgeries is increasing. Blind image forensics is used to analyze an image in the complete absence of any digital watermark or signature. Image compositing is the most common form of digital tampering. Assuming that image compositing operations affect the inherent statistics of the image, we propose an image compositing detection method on based on a statistical model for natural image in the wavelet transform domain. The generalized Gaussian model (CGD) is employed to describe the marginal distribution of wavelet coefficients of images, and the parameters of GGD are obtained using maximumlikelihood estimator. The statistical features include GGD parameters, prediction error, mean, variance, skewness, and kurtosis at each wavelet detail subband. Then, these feature vectors are used to discriminate between natural images and composite images using support vector machine (SVM). To evaluate the performance of our proposed method, we carried out tests on the Columbia Uncompressed Image Splicing Detection Dataset and another advanced dataset, and achieved a detection accuracy of 92 % and 79 %, respectively. The detection performance of our method is better than that of the method using camera response function on the same dataset. |
Author | SUN Shao-Jie WU Qiong LI Guo-Hui |
AuthorAffiliation | College of Information System and Management, National University of Defense Technology, Changsha 410073, P. R. China |
Author_xml | – sequence: 1 givenname: Shao-Jie surname: SUN fullname: SUN, Shao-Jie email: sshj_mil@126.com – sequence: 2 givenname: Qiong surname: WU fullname: WU, Qiong email: wuqiong_nudt@126.com – sequence: 3 givenname: Guo-Hui surname: LI fullname: LI, Guo-Hui email: guohli@nudt.edu.cn |
BookMark | eNqFkUtLAzEQgIMoWB8_QQhe1MNqXrvZxYNofUKtBxW8hWx2UoPbTZukgv_ebSsevHgamJlvhvlmB212vgOEDig5pYQWZ8-0lCKjhFXHpDwpCGUie9tAg9_0JhoQlotM0LzYRvsxuppQKWTFOBmg8TUkMMn5DnuLH6Z6AnjopzMfXXLdBF_pCA3uqxo_J51cTM7oFj_6BlpsfcBjnRahz6zQuIe2rG4j7P_EXfR6e_MyvM9GT3cPw8tRZljJU1ZLyQW1hRUVbwDqWuSyAsFLsDUIQ6lgMi9ICUwCrxvKmLW6KgTRzbJM-C46Ws-dBT9fQExq6qKBttUd-EVUUnBaUiLyvvN83WmCjzGAVcYtD_FdCtq1ihK19KhWHtVSmCKlWnlUbz2d_6FnwU11-PqXu1hz0Ev4dBBUNA46A40LvW7VePfvhMOfze--m8z7X6hamw_rWlCciUL0Uvg3NKOXfA |
CitedBy_id | crossref_primary_10_1080_19361610_2017_1422367 crossref_primary_10_1080_19361610_2021_1883397 |
Cites_doi | 10.1109/18.761332 10.1109/TIFS.2006.873602 10.1109/83.982822 10.1007/978-3-540-30114-1_10 10.1109/29.45554 |
ContentType | Journal Article |
Copyright | 2009 The Chinese Association of Automation and The Institute of Automation, Chinese Academy of Sciences |
Copyright_xml | – notice: 2009 The Chinese Association of Automation and The Institute of Automation, Chinese Academy of Sciences |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1016/S1874-1029(08)60124-X |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Detection of Image Compositing Based on a Statistical Model for Natural Images |
EISSN | 1874-1029 |
EndPage | 1567 |
ExternalDocumentID | 10_1016_S1874_1029_08_60124_X S187410290860124X 32464122 |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CDYEO CJLMK CQIGP CS3 CUBFJ CW9 EBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA EFLBG AAYXX ABJNI ABWVN ACRPL ADNMO CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D ~HD |
ID | FETCH-LOGICAL-c283t-b77341f6f493deebb4579e438efbe4c114275608e27e3bd122ffa9640ade4c103 |
IEDL.DBID | .~1 |
ISSN | 0254-4156 1874-1029 |
IngestDate | Sat Sep 27 16:04:39 EDT 2025 Thu Apr 24 22:51:25 EDT 2025 Tue Jul 01 01:29:05 EDT 2025 Fri Feb 23 02:28:46 EST 2024 Fri Nov 25 17:02:19 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | image forensics maximum-likelihood (ML) support vector machine (SVM) Image compositing generalized Gaussian model (GGD) |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c283t-b77341f6f493deebb4579e438efbe4c114275608e27e3bd122ffa9640ade4c103 |
Notes | Image compositing, generalized Gaussian model(GGD), maximum-likelihood (ML), support vector machine(SVM), image forensics 11-2109/TP TP391.41 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 743181045 |
PQPubID | 23500 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_743181045 crossref_citationtrail_10_1016_S1874_1029_08_60124_X crossref_primary_10_1016_S1874_1029_08_60124_X elsevier_sciencedirect_doi_10_1016_S1874_1029_08_60124_X chongqing_backfile_32464122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20091201 |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: 20091201 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Zi dong hua xue bao |
PublicationTitleAlternate | Acta Automatica Sinica |
PublicationYear | 2009 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Moulin, Liu (bib10) 1999; 45 Popescu A C. Statistical Tools for Digital Forensics [Ph. D. dissertation], Dartmouth College, USA, 2005 Lukas, Fridrich, Goljan (bib6) 2006; 1 Lin, Wang, Tang, Shum (bib5) 2005 Hsu, Chang (bib7) 2006 Mallat (bib9) 1989; 37 Do, Vetterli (bib11) 2002; 11 Chang, Lin (bib13) Johnson, Farid (bib4) 2005 Hsu, Chang (bib8) 2007 Fridrich, Soukal, Lukas (bib2) 2003 Kay (bib12) 1993 Ng T T, Chang S F. Blind Detection of Digital Photomontage Using Higher Order Statistics, Technical Report #201-2004-1, Columbia University, USA, 2004 10.1016/S1874-1029(08)60124-X_bib1 Hsu (10.1016/S1874-1029(08)60124-X_bib7) 2006 Mallat (10.1016/S1874-1029(08)60124-X_bib9) 1989; 37 10.1016/S1874-1029(08)60124-X_bib3 Johnson (10.1016/S1874-1029(08)60124-X_bib4) 2005 Moulin (10.1016/S1874-1029(08)60124-X_bib10) 1999; 45 Hsu (10.1016/S1874-1029(08)60124-X_bib8) 2007 Do (10.1016/S1874-1029(08)60124-X_bib11) 2002; 11 Kay (10.1016/S1874-1029(08)60124-X_bib12) 1993 Fridrich (10.1016/S1874-1029(08)60124-X_bib2) 2003 Lukas (10.1016/S1874-1029(08)60124-X_bib6) 2006; 1 Chang (10.1016/S1874-1029(08)60124-X_bib13) Lin (10.1016/S1874-1029(08)60124-X_bib5) 2005 |
References_xml | – start-page: 1 year: 2003 end-page: 10 ident: bib2 article-title: Detection of copy-move forgery in digital images publication-title: Proceedings of Digital Forensic Research Workshop – reference: Ng T T, Chang S F. Blind Detection of Digital Photomontage Using Higher Order Statistics, Technical Report #201-2004-1, Columbia University, USA, 2004 – volume: 37 start-page: 2091 year: 1989 end-page: 2110 ident: bib9 article-title: Multifrequency channel decompositions of images and wavelet models publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing – volume: 45 start-page: 909 year: 1999 end-page: 919 ident: bib10 article-title: Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors publication-title: IEEE Transactions on Information Theory – start-page: 1 year: 2005 end-page: 10 ident: bib4 article-title: Exposing digital forgeries by detecting inconsistencies in lighting publication-title: Proceedings of the 7th Workshop on Multimedia and Security – reference: Popescu A C. Statistical Tools for Digital Forensics [Ph. D. dissertation], Dartmouth College, USA, 2005 – start-page: 549 year: 2006 end-page: 552 ident: bib7 article-title: Detecting image splicing using geometry invariants and camera publication-title: Proceedings of IEEE International Conference on Multimedia and Expo – volume: 11 start-page: 146 year: 2002 end-page: 158 ident: bib11 article-title: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance publication-title: IEEE Transactions on Image Processing – year: 1993 ident: bib12 publication-title: Fundamentals of Statistical Signal Processing: Estimation Theory – ident: bib13 article-title: LIBSVM: a library for support vector machines [Online] – volume: 1 start-page: 205 year: 2006 end-page: 214 ident: bib6 article-title: Digital camera identification from sensor pattern noise publication-title: IEEE Transactions on Information Forensics and Security – start-page: 28 year: 2007 end-page: 31 ident: bib8 article-title: Image splicing detection using camera response function consistency and automatic segmentation publication-title: Proceedings of International Conference on Multimedia and Expo – start-page: 1087 year: 2005 end-page: 1092 ident: bib5 article-title: Detecting doctored images using camera response normality and consistency analysis publication-title: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2005 ident: 10.1016/S1874-1029(08)60124-X_bib4 article-title: Exposing digital forgeries by detecting inconsistencies in lighting – volume: 45 start-page: 909 issue: 3 year: 1999 ident: 10.1016/S1874-1029(08)60124-X_bib10 article-title: Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.761332 – year: 1993 ident: 10.1016/S1874-1029(08)60124-X_bib12 – ident: 10.1016/S1874-1029(08)60124-X_bib13 – start-page: 1 year: 2003 ident: 10.1016/S1874-1029(08)60124-X_bib2 article-title: Detection of copy-move forgery in digital images – start-page: 549 year: 2006 ident: 10.1016/S1874-1029(08)60124-X_bib7 article-title: Detecting image splicing using geometry invariants and camera – start-page: 1087 year: 2005 ident: 10.1016/S1874-1029(08)60124-X_bib5 article-title: Detecting doctored images using camera response normality and consistency analysis – volume: 1 start-page: 205 issue: 2 year: 2006 ident: 10.1016/S1874-1029(08)60124-X_bib6 article-title: Digital camera identification from sensor pattern noise publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2006.873602 – ident: 10.1016/S1874-1029(08)60124-X_bib1 – volume: 11 start-page: 146 issue: 2 year: 2002 ident: 10.1016/S1874-1029(08)60124-X_bib11 article-title: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance publication-title: IEEE Transactions on Image Processing doi: 10.1109/83.982822 – start-page: 28 year: 2007 ident: 10.1016/S1874-1029(08)60124-X_bib8 article-title: Image splicing detection using camera response function consistency and automatic segmentation – ident: 10.1016/S1874-1029(08)60124-X_bib3 doi: 10.1007/978-3-540-30114-1_10 – volume: 37 start-page: 2091 issue: 12 year: 1989 ident: 10.1016/S1874-1029(08)60124-X_bib9 article-title: Multifrequency channel decompositions of images and wavelet models publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing doi: 10.1109/29.45554 |
SSID | ssib017479230 ssib001102911 ssib006576350 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 1.8822491 |
Snippet | Nowadays, digital images can be easily tampered due to the availability of powerful image processing software. As digital cameras continue to replace their... |
SourceID | proquest crossref elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1564 |
SubjectTerms | generalized Gaussian model (GGD) Image compositing image forensics maximum-likelihood (ML) support vector machine (SVM) 图像合成 图像处理技术 数字干扰 软件 |
Title | Detection of Image Compositing Based on a Statistical Model for Natural Images |
URI | http://lib.cqvip.com/qk/90250X/200912/32464122.html https://dx.doi.org/10.1016/S1874-1029(08)60124-X https://www.proquest.com/docview/743181045 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqTjAgnqIUkAcGGNymifPwCIWqMHSBStksO7FLRUkLbVd-O3dOWh4SqsTqxKfIZ9_3nXL-jpALwBSdKaGYEX7EuA0zJnxlGeTLOhOxRYkurLYYRP0hf0jDtEa6q7swWFZZxf4yprtoXY20q9Vsz8bj9iN2kwN4FEDKIcryFG-w8xj3eutjXeYRojoNJl3wMsO3v27xlBbc4KWXXDkjLEWNhedpMXoD5PgLq35FbQdFvV2yU3FIel1-5h6pmWKfbH9TFjwgg1uzcEVWBZ1aev8KUYPi0XclWsWI3gB45RSeKop006k1g0nsjDahwGPpQDlBjnLq_JAMe3dP3T6rWiewDPjCguk4BniykeUiyI3RmoexMDxIjNWGZ3iBNgaukxg_NoHOO75vrRIR91SOj73giNSLaWGOCdVRkEeQrkLukfEkF0oFufYjkWiTw1DcIM31ggH0Zi8oKCWBp0UczDYIXy2hzCrVcWx-MZHr8jL0gkQvSC-RzgsybZDWetqslN3YNCFZ-Uf-2D8SoGHTVLryp4SzhT9MVGGmy7lEdpVAvhqe_N96k2z5VcsJr3NK6ov3pTkDHrPQ526jfgIohelK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwEB1xFECBOMVyuqCAwmxInMMlp5ZrG0BKZ9mJDQjIciwt386Mk10OCSHROvEo8tjz3ijjNwCbiCmm0FJzK8OECxcXXIbaccyXTSFTRxJdVG3RTTrX4jSP8xE4GNyFobLKJvbXMd1H62ak3axm--nurn1J3eQQHiWScoyyIh-FcUFtDnBT77wP6zxikqehrAvf5vT65zWe2oQf3AqybW-F5ySycNurbp4ROn4Dqx9h22PR8QxMNySS7dXfOQsjtpqDqS_SgvPQPbR9X2VVsZ5jJ48YNhidfV-jVd2wfUSvkuFTzYhverlmNEmt0R4YElnW1V6Ro576ugDXx0dXBx3e9E7gBRKGPjdpivjkEidkVFprjIhTaUWUWWesKOgGbYpkJ7NhaiNT7oahc1omItAlPQ6iRRirepVdAmaSqEwwX8XkoxBZKbWOShMmMjO2xKG0BSvDBUPsLe5JUUohUUsEmm2BGCyhKhrZcep-8aCG9WXkBUVeUEGmvBdU3oKd4bSnWnfjrwnZwD_q2wZSiA1_TWUDfyo8XPTHRFe29_aqiF5lmLDGy_-3vgETnauLc3V-0j1bgcmw6T8R7K7CWP_lza4hqembdb9pPwDYqexh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Image+Compositing+Based+on+a+Statistical+Model+for+Natural+Images&rft.jtitle=Zi+dong+hua+xue+bao&rft.au=SUN%2C+Shao-Jie&rft.au=WU%2C+Qiong&rft.au=LI%2C+Guo-Hui&rft.date=2009-12-01&rft.issn=1874-1029&rft.volume=35&rft.issue=12&rft.spage=1564&rft.epage=1568&rft_id=info:doi/10.1016%2FS1874-1029%2808%2960124-X&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1874_1029_08_60124_X |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg |