The effect of boron oxide on the crystallization behavior of MgAl2O4 spinel phase during the cooling of the CaO-SiO2-10 mass.% MgO-30 mass.%Al2O3 systems

The microstructural characteristics of the CaO-SiO 2 -B 2 O 3 -10 mass.% MgO-30 mass.% Al 2 O 3 systems solidified during slow cooling from 1600 °C were investigated using SEM-EDS and a thermochemical computation package. The effect of boron oxide on the crystallization behavior of the spinel in the...

Full description

Saved in:
Bibliographic Details
Published inMetals and materials international Vol. 16; no. 6; pp. 987 - 992
Main Author Park, Joo Hyun
Format Journal Article
LanguageEnglish
Published Springer The Korean Institute of Metals and Materials 01.12.2010
대한금속·재료학회
Subjects
Online AccessGet full text
ISSN1598-9623
2005-4149
DOI10.1007/s12540-010-1220-3

Cover

Abstract The microstructural characteristics of the CaO-SiO 2 -B 2 O 3 -10 mass.% MgO-30 mass.% Al 2 O 3 systems solidified during slow cooling from 1600 °C were investigated using SEM-EDS and a thermochemical computation package. The effect of boron oxide on the crystallization behavior of the spinel in the aluminosilicate system was observed because boron oxide is believed to become a potential flux to reduce the melting point of the liquid oxides. The primary crystalline phase was spinel, mainly MgAl 2 O 4 , irrespective of the boron content. The liquidus temperature T L continuously decreased as the boron oxide content increased, indicating that the boron oxide decreased the activity of the MgAl 2 O 4 spinel phase in liquid melts at high temperatures. The size of the spinel crystals increased as the temperature range for the solid + liquid coexisting region, viz . the mushy zone, increased. In the present systems, because the T L continuously decreased with the increase in the boron oxide content, the viscosity of the liquid oxide may have affected the crystallization behavior of the spinel during cooling. Based on these results, an injection of a small amount of B 2 O 3 flux into molten steel containing liquid aluminosilicate inclusions is not recommended because large spinel crystals can originate from the changes in the thermophysical properties of the liquid inclusions due to the incorporation of boron oxide into the aluminosilicate networks.
AbstractList The microstructural characteristics of the CaO-SiO2-B2O3-10 mass.% MgO-30 mass.% Al2O3 systems solidified during slow cooling from 1600 degree C were investigated using SEM-EDS and a thermochemical computation package. The effect of boron oxide on the crystallization behavior of the spinel in the aluminosilicate system was observed because boron oxide is believed to become a potential flux to reduce the melting point of the liquid oxides. The primary crystalline phase was spinel, mainly MgAl2O4, irrespective of the boron content. The liquidus temperature T L continuously decreased as the boron oxide content increased, indicating that the boron oxide decreased the activity of the MgAl2O4 spinel phase in liquid melts at high temperatures. The size of the spinel crystals increased as the temperature range for the solid + liquid coexisting region, viz. the mushy zone, increased. In the present systems, because the T L continuously decreased with the increase in the boron oxide content, the viscosity of the liquid oxide may have affected the crystallization behavior of the spinel during cooling. Based on these results, an injection of a small amount of B2O3 flux into molten steel containing liquid aluminosilicate inclusions is not recommended because large spinel crystals can originate from the changes in the thermophysical properties of the liquid inclusions due to the incorporation of boron oxide into the aluminosilicate networks.
The microstructural characteristics of the CaO-SiO 2 -B 2 O 3 -10 mass.% MgO-30 mass.% Al 2 O 3 systems solidified during slow cooling from 1600 °C were investigated using SEM-EDS and a thermochemical computation package. The effect of boron oxide on the crystallization behavior of the spinel in the aluminosilicate system was observed because boron oxide is believed to become a potential flux to reduce the melting point of the liquid oxides. The primary crystalline phase was spinel, mainly MgAl 2 O 4 , irrespective of the boron content. The liquidus temperature T L continuously decreased as the boron oxide content increased, indicating that the boron oxide decreased the activity of the MgAl 2 O 4 spinel phase in liquid melts at high temperatures. The size of the spinel crystals increased as the temperature range for the solid + liquid coexisting region, viz . the mushy zone, increased. In the present systems, because the T L continuously decreased with the increase in the boron oxide content, the viscosity of the liquid oxide may have affected the crystallization behavior of the spinel during cooling. Based on these results, an injection of a small amount of B 2 O 3 flux into molten steel containing liquid aluminosilicate inclusions is not recommended because large spinel crystals can originate from the changes in the thermophysical properties of the liquid inclusions due to the incorporation of boron oxide into the aluminosilicate networks.
The microstructural characteristics of the CaO-SiO2-B2O3-10 mass.% MgO-30 mass.% Al2O3 systems solidified during slow cooling from 1600 °C were investigated using SEM-EDS and a thermochemical computation package. The effect of boron oxide on the crystallization behavior of the spinel in the aluminosilicate system was observed because boron oxide is believed to become a potential flux to reduce the melting point of the liquid oxides. The primary crystalline phase was spinel, mainly MgAl2O4, irrespective of the boron content. The liquidus temperature TL continuously decreased as the boron oxide content increased, indicating that the boron oxide decreased the activity of the MgAl2O4 spinel phase in liquid melts at high temperatures. The size of the spinel crystals increased as the temperature range for the solid + liquid coexisting region, viz. the mushy zone, increased. In the present systems, because the TL continuously decreased with the increase in the boron oxide content, the viscosity of the liquid oxide may have affected the crystallization behavior of the spinel during cooling. Based on these results, an injection of a small amount of B2O3 flux into molten steel containing liquid aluminosilicate inclusions is not recommended because large spinel crystals can originate from the changes in the thermophysical properties of the liquid inclusions due to the incorporation of boron oxide into the aluminosilicate networks. KCI Citation Count: 10
Author Park, Joo Hyun
Author_xml – sequence: 1
  givenname: Joo Hyun
  surname: Park
  fullname: Park, Joo Hyun
  email: basicity@mail.ulsan.ac.kr
  organization: School of Materials Science and Engineering, University of Ulsan
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001508432$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UU1v1DAUtKoisS39Adx8QXBxef5q4uNqBaVSUSS6d8vrfdl1m42DnUWUf9J_i9OUC4ee3jx7ZmzNnJHTPvZIyHsOlxyg-py50AoYcGBcCGDyhCwEgGaKK3NKFlybmpkrId-Ss5zvAa645GJBntZ7pNi26EcaW7qJKfY0_g5bpAWM5dKnxzy6rgt_3BjK2Qb37leIaaJ_3y070Siah9BjR4e9y0i3xxT63ayNsZtwoU7ryjXsLjSCcaAHl_Plh-LQMPlvm8wkzeU9POR35E3ruowXL_OcrL9-Wa--sdvm-ma1vGVe1HJktVSmqrn3wLWo-QY8V7ipqgJAG6G03moEobgxiAKhbQWqrZCt9g6MlOfk02zbp9Y--GCjC89zF-1Dsssf6xtbga5BFerHmTqk-POIebSHkD12nesxHrM1UJkSt4TCrGamTzHnhK31YXyOb0wudJaDnVqzc2sWpr20Zqfv8P-UQwoHlx5f1YhZk4cpeUz2Ph5TX0J7RfQX2Y2ovA
CitedBy_id crossref_primary_10_1007_s11837_014_1087_8
crossref_primary_10_1177_03019233241260158
crossref_primary_10_3390_met9121331
crossref_primary_10_1007_s12540_013_3028_4
crossref_primary_10_1007_s11663_012_9701_z
crossref_primary_10_1016_j_ceramint_2024_07_050
crossref_primary_10_1007_s12540_024_01833_3
crossref_primary_10_2355_isijinternational_52_2303
crossref_primary_10_1002_srin_201200210
crossref_primary_10_1111_jace_16526
crossref_primary_10_1051_metal_2022051
crossref_primary_10_2355_isijinternational_52_764
crossref_primary_10_2355_isijinternational_51_1375
crossref_primary_10_1016_j_calphad_2011_08_004
crossref_primary_10_1007_s11663_012_9667_x
crossref_primary_10_1007_s11663_013_9908_7
crossref_primary_10_1007_s11663_011_9566_6
crossref_primary_10_1111_jace_13570
crossref_primary_10_1007_s11663_020_01954_1
crossref_primary_10_1007_s11663_013_9998_2
Cites_doi 10.1111/j.1551-2916.2005.00706.x
10.2355/isijinternational.40.1059
10.1016/j.calphad.2007.05.005
10.1021/cm035261x
10.2355/isijinternational.49.1133
10.2355/isijinternational.49.965
10.1016/S0022-3093(01)00332-5
10.1002/srin.201000157
10.1016/j.jeurceramsoc.2010.07.020
10.2355/isijinternational.50.1333
10.1111/j.1151-2916.2003.tb03326.x
10.2355/isijinternational.50.1078
10.1016/j.calphad.2008.09.009
10.1016/j.jeurceramsoc.2003.11.029
10.1111/j.1551-2916.2008.02905.x
10.1016/j.msea.2007.03.011
10.2355/isijinternational.50.95
10.1007/s12540-009-0677-4
10.1016/j.ceramint.2009.09.045
10.1007/s11663-007-9066-x
10.1111/j.1551-2916.2006.01467.x
ContentType Journal Article
Copyright The Korean Institute of Metals and Materials and Springer Netherlands 2010
Copyright_xml – notice: The Korean Institute of Metals and Materials and Springer Netherlands 2010
DBID AAYXX
CITATION
7QF
7QQ
7SR
8BQ
8FD
JG9
ACYCR
DOI 10.1007/s12540-010-1220-3
DatabaseName CrossRef
Aluminium Industry Abstracts
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Korean Citation Index
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4149
EndPage 992
ExternalDocumentID oai_kci_go_kr_ARTI_705804
10_1007_s12540_010_1220_3
GroupedDBID -EM
06D
0R~
0VY
123
1N0
2.D
203
29M
2JY
2KG
2VQ
30V
4.4
406
408
40D
5VS
67Z
8FE
8FG
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KB.
KOV
KVFHK
LLZTM
MA-
MZR
N2Q
NDZJH
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
P19
P2P
P9N
PDBOC
PT4
PT5
Q2X
R89
R9I
RLLFE
ROL
RSV
S1Z
S26
S27
S28
S3B
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
Z45
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7QF
7QQ
7SR
8BQ
8FD
JG9
AABYN
AAEOY
AAFGU
AAGCJ
AAUCO
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
ID FETCH-LOGICAL-c283t-8349781cc015281b0c14eb77b0c0592455d5e024199ee2e0ff2e4d23f5ca0933
IEDL.DBID AGYKE
ISSN 1598-9623
IngestDate Wed Jul 03 04:02:10 EDT 2024
Fri Jul 11 16:47:36 EDT 2025
Tue Jul 01 01:15:15 EDT 2025
Thu Apr 24 22:54:24 EDT 2025
Fri Feb 21 02:33:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords crystallization
spinel inclusion
thermodynamic properties
oxides
solidification
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c283t-8349781cc015281b0c14eb77b0c0592455d5e024199ee2e0ff2e4d23f5ca0933
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
G704-000797.2010.16.6.009
PQID 907941430
PQPubID 23500
PageCount 6
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_705804
proquest_miscellaneous_907941430
crossref_citationtrail_10_1007_s12540_010_1220_3
crossref_primary_10_1007_s12540_010_1220_3
springer_journals_10_1007_s12540_010_1220_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Springer
PublicationPlace_xml – name: Springer
PublicationTitle Metals and materials international
PublicationTitleAbbrev Met. Mater. Int
PublicationYear 2010
Publisher The Korean Institute of Metals and Materials
대한금속·재료학회
Publisher_xml – name: The Korean Institute of Metals and Materials
– name: 대한금속·재료학회
References ParkJ. H.ParkG. H.LeeY. E.ISIJ Int.20105010781:CAS:528:DC%2BC3cXhtFegtLjP10.2355/isijinternational.50.1078
CaurantD.MajeurusO.FadelE.LenoirM.GervaisC.PinetO.J. Am. Ceram. Soc.2007907741:CAS:528:DC%2BD2sXjt1Gjs7g%3D10.1111/j.1551-2916.2006.01467.x
ParkJ. H.JungI. H.LeeS. B.Met. Mater. Int.2009156771:CAS:528:DC%2BD1MXht1Whur%2FJ10.1007/s12540-009-0677-4
SawvelA. M.ChinnS. C.BourcierW. L.MaxwellR. S.Chem. Mater.20051714931:CAS:528:DC%2BD2MXhsF2js7k%3D10.1021/cm035261x
ParkJ. H.TodorokiH.ISIJ Int.20105013331:CAS:528:DC%2BC3cXhsVSkurnN10.2355/isijinternational.50.1333
NaskarM. K.ChatterjeeM.J. Eur. Ceram. Soc.20042434991:CAS:528:DC%2BD2cXlslCqsbs%3D10.1016/j.jeurceramsoc.2003.11.029
CharkrabortyS.Diffusion in Silicate Melts, in Structure, Dynamics and Properties of Silicate Melts1995WAMineralogical Society of America
ParkJ. H.CALPHAD2007314281:CAS:528:DC%2BD2sXhtFGrtbjP10.1016/j.calphad.2007.05.005
JiangM.WangX.ChenB.WangW.ISIJ Int.201050951:CAS:528:DC%2BC3cXhs1Ghsbg%3D10.2355/isijinternational.50.95
AraiH.MatsumotoK.ShimasakiS. I.TaniguchiS.ISIJ Int.2009499651:CAS:528:DC%2BD1MXpvFGqsr0%3D10.2355/isijinternational.49.965
www.factsage.com.
SunT.XiaoH.GuoW.HongX.Ceram. Int.2010368211:CAS:528:DC%2BD1MXhsFOrtLnF10.1016/j.ceramint.2009.09.045
FujiiK.NagasakaT.HinoM.ISIJ Int.20004010591:CAS:528:DC%2BD3MXitVKktQ%3D%3D10.2355/isijinternational.40.1059
KohS. U.JungH. G.KangK. B.J. Kor. Inst. Met. & Mater.2008462571:CAS:528:DC%2BD1cXns1Cisbw%3D
ParkJ. H.Mater. Sci. Eng. A20084724310.1016/j.msea.2007.03.011
EvermanR. L. A.CooperR. F.J. Am. Ceram. Soc.2003864871:CAS:528:DC%2BD3sXis1ansrc%3D10.1111/j.1151-2916.2003.tb03326.x
UhlmannD. R.YinnonH.Glass: Science and Technology, Vol. 1, ch. 11983New York, NYAcademic Press
KimJ. J.LeeJ. B.J. Kor. Inst. Met. & Mater.2008468091:CAS:528:DC%2BD1MXivFWmtQ%3D%3D
BaleC.BelisleE.ChartrandP.DecterovS. A.ErikssonG.HackK.JungI. H.KangY. B.MelanconJ.PeltonA. D.RobelinC.PetersenS.CALPHAD2009332951:CAS:528:DC%2BD1MXls1ehsbw%3D10.1016/j.calphad.2008.09.009
RocaboisP.PontoireJ. N.LahmannJ.GayeH.J. Non-Cryst. Solids2001282981:CAS:528:DC%2BD3MXjsl2rtrc%3D10.1016/S0022-3093(01)00332-5
SukM. O.ParkJ. H.J. Am. Ceram. Soc.2009927171:CAS:528:DC%2BD1MXktVWitrw%3D10.1111/j.1551-2916.2008.02905.x
ParkJ. H.Metall. Mater. Trans. B200738B6571:CAS:528:DC%2BD2sXhtFKjsL%2FE10.1007/s11663-007-9066-x
ParkJ. H.ParkJ. G.MinD. J.LeeY. E.KangY. B.J. Eur. Ceram. Soc.20103031811:CAS:528:DC%2BC3cXhtVGhsbjK10.1016/j.jeurceramsoc.2010.07.020
ParkJ. H.SukM. O.JungI. H.GuoM.BlanpainB.Steel Res. Int.2010818601:CAS:528:DC%2BC3cXht1Clsb3L10.1002/srin.201000157
Van EndeM. A.GuoM.DekkersR.BurtyM.Van DyckJ.JonesP. T.BlanpainB.WollantP.ISIJ Int.200949113310.2355/isijinternational.49.1133
J. F. Stebbins, private communication.
MillsK. C.Diffusion coefficients in molten slags, in Slag Atlas19952nd ed.DusseldorfVerlag Stahleisen GmbH
ParkJ. H.J. Am. Ceram. Soc.2006896081:CAS:528:DC%2BD28XhsFWqt7c%3D10.1111/j.1551-2916.2005.00706.x
P. Rocabois (1220_CR11) 2001; 282
1220_CR22
S. U. Koh (1220_CR1) 2008; 46
S. Charkraborty (1220_CR24) 1995
M. A. Ende Van (1220_CR4) 2009; 49
M. O. Suk (1220_CR15) 2009; 92
J. H. Park (1220_CR8) 2007; 38B
D. R. Uhlmann (1220_CR25) 1983
J. J. Kim (1220_CR2) 2008; 46
J. H. Park (1220_CR7) 2007; 31
K. Fujii (1220_CR19) 2000; 40
R. L. A. Everman (1220_CR21) 2003; 86
K. C. Mills (1220_CR20) 1995
T. Sun (1220_CR28) 2010; 36
M. Jiang (1220_CR5) 2010; 50
J. H. Park (1220_CR10) 2010; 50
J. H. Park (1220_CR9) 2008; 472
J. H. Park (1220_CR14) 2009; 15
D. Caurant (1220_CR27) 2007; 90
M. K. Naskar (1220_CR23) 2004; 24
J. H. Park (1220_CR18) 2010; 50
J. H. Park (1220_CR6) 2006; 89
C. Bale (1220_CR13) 2009; 33
H. Arai (1220_CR3) 2009; 49
J. H. Park (1220_CR16) 2010; 30
J. H. Park (1220_CR17) 2010; 81
1220_CR12
A. M. Sawvel (1220_CR26) 2005; 17
References_xml – reference: AraiH.MatsumotoK.ShimasakiS. I.TaniguchiS.ISIJ Int.2009499651:CAS:528:DC%2BD1MXpvFGqsr0%3D10.2355/isijinternational.49.965
– reference: Van EndeM. A.GuoM.DekkersR.BurtyM.Van DyckJ.JonesP. T.BlanpainB.WollantP.ISIJ Int.200949113310.2355/isijinternational.49.1133
– reference: ParkJ. H.Metall. Mater. Trans. B200738B6571:CAS:528:DC%2BD2sXhtFKjsL%2FE10.1007/s11663-007-9066-x
– reference: ParkJ. H.JungI. H.LeeS. B.Met. Mater. Int.2009156771:CAS:528:DC%2BD1MXht1Whur%2FJ10.1007/s12540-009-0677-4
– reference: CharkrabortyS.Diffusion in Silicate Melts, in Structure, Dynamics and Properties of Silicate Melts1995WAMineralogical Society of America
– reference: JiangM.WangX.ChenB.WangW.ISIJ Int.201050951:CAS:528:DC%2BC3cXhs1Ghsbg%3D10.2355/isijinternational.50.95
– reference: MillsK. C.Diffusion coefficients in molten slags, in Slag Atlas19952nd ed.DusseldorfVerlag Stahleisen GmbH
– reference: ParkJ. H.Mater. Sci. Eng. A20084724310.1016/j.msea.2007.03.011
– reference: BaleC.BelisleE.ChartrandP.DecterovS. A.ErikssonG.HackK.JungI. H.KangY. B.MelanconJ.PeltonA. D.RobelinC.PetersenS.CALPHAD2009332951:CAS:528:DC%2BD1MXls1ehsbw%3D10.1016/j.calphad.2008.09.009
– reference: CaurantD.MajeurusO.FadelE.LenoirM.GervaisC.PinetO.J. Am. Ceram. Soc.2007907741:CAS:528:DC%2BD2sXjt1Gjs7g%3D10.1111/j.1551-2916.2006.01467.x
– reference: SunT.XiaoH.GuoW.HongX.Ceram. Int.2010368211:CAS:528:DC%2BD1MXhsFOrtLnF10.1016/j.ceramint.2009.09.045
– reference: ParkJ. H.CALPHAD2007314281:CAS:528:DC%2BD2sXhtFGrtbjP10.1016/j.calphad.2007.05.005
– reference: UhlmannD. R.YinnonH.Glass: Science and Technology, Vol. 1, ch. 11983New York, NYAcademic Press
– reference: EvermanR. L. A.CooperR. F.J. Am. Ceram. Soc.2003864871:CAS:528:DC%2BD3sXis1ansrc%3D10.1111/j.1151-2916.2003.tb03326.x
– reference: RocaboisP.PontoireJ. N.LahmannJ.GayeH.J. Non-Cryst. Solids2001282981:CAS:528:DC%2BD3MXjsl2rtrc%3D10.1016/S0022-3093(01)00332-5
– reference: J. F. Stebbins, private communication.
– reference: SukM. O.ParkJ. H.J. Am. Ceram. Soc.2009927171:CAS:528:DC%2BD1MXktVWitrw%3D10.1111/j.1551-2916.2008.02905.x
– reference: www.factsage.com.
– reference: ParkJ. H.ParkG. H.LeeY. E.ISIJ Int.20105010781:CAS:528:DC%2BC3cXhtFegtLjP10.2355/isijinternational.50.1078
– reference: ParkJ. H.ParkJ. G.MinD. J.LeeY. E.KangY. B.J. Eur. Ceram. Soc.20103031811:CAS:528:DC%2BC3cXhtVGhsbjK10.1016/j.jeurceramsoc.2010.07.020
– reference: ParkJ. H.SukM. O.JungI. H.GuoM.BlanpainB.Steel Res. Int.2010818601:CAS:528:DC%2BC3cXht1Clsb3L10.1002/srin.201000157
– reference: NaskarM. K.ChatterjeeM.J. Eur. Ceram. Soc.20042434991:CAS:528:DC%2BD2cXlslCqsbs%3D10.1016/j.jeurceramsoc.2003.11.029
– reference: FujiiK.NagasakaT.HinoM.ISIJ Int.20004010591:CAS:528:DC%2BD3MXitVKktQ%3D%3D10.2355/isijinternational.40.1059
– reference: KimJ. J.LeeJ. B.J. Kor. Inst. Met. & Mater.2008468091:CAS:528:DC%2BD1MXivFWmtQ%3D%3D
– reference: ParkJ. H.J. Am. Ceram. Soc.2006896081:CAS:528:DC%2BD28XhsFWqt7c%3D10.1111/j.1551-2916.2005.00706.x
– reference: ParkJ. H.TodorokiH.ISIJ Int.20105013331:CAS:528:DC%2BC3cXhsVSkurnN10.2355/isijinternational.50.1333
– reference: KohS. U.JungH. G.KangK. B.J. Kor. Inst. Met. & Mater.2008462571:CAS:528:DC%2BD1cXns1Cisbw%3D
– reference: SawvelA. M.ChinnS. C.BourcierW. L.MaxwellR. S.Chem. Mater.20051714931:CAS:528:DC%2BD2MXhsF2js7k%3D10.1021/cm035261x
– volume: 89
  start-page: 608
  year: 2006
  ident: 1220_CR6
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2005.00706.x
– volume: 40
  start-page: 1059
  year: 2000
  ident: 1220_CR19
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.40.1059
– volume: 46
  start-page: 257
  year: 2008
  ident: 1220_CR1
  publication-title: J. Kor. Inst. Met. & Mater.
– volume-title: Diffusion in Silicate Melts, in Structure, Dynamics and Properties of Silicate Melts
  year: 1995
  ident: 1220_CR24
– volume: 31
  start-page: 428
  year: 2007
  ident: 1220_CR7
  publication-title: CALPHAD
  doi: 10.1016/j.calphad.2007.05.005
– volume: 17
  start-page: 1493
  year: 2005
  ident: 1220_CR26
  publication-title: Chem. Mater.
  doi: 10.1021/cm035261x
– volume: 49
  start-page: 1133
  year: 2009
  ident: 1220_CR4
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.49.1133
– volume: 49
  start-page: 965
  year: 2009
  ident: 1220_CR3
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.49.965
– volume: 282
  start-page: 98
  year: 2001
  ident: 1220_CR11
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00332-5
– volume: 81
  start-page: 860
  year: 2010
  ident: 1220_CR17
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201000157
– volume: 30
  start-page: 3181
  year: 2010
  ident: 1220_CR16
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2010.07.020
– volume: 50
  start-page: 1333
  year: 2010
  ident: 1220_CR10
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.50.1333
– volume: 86
  start-page: 487
  year: 2003
  ident: 1220_CR21
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2003.tb03326.x
– volume: 50
  start-page: 1078
  year: 2010
  ident: 1220_CR18
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.50.1078
– ident: 1220_CR12
– volume-title: Glass: Science and Technology, Vol. 1, ch. 1
  year: 1983
  ident: 1220_CR25
– volume: 33
  start-page: 295
  year: 2009
  ident: 1220_CR13
  publication-title: CALPHAD
  doi: 10.1016/j.calphad.2008.09.009
– volume: 24
  start-page: 3499
  year: 2004
  ident: 1220_CR23
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2003.11.029
– volume-title: Diffusion coefficients in molten slags, in Slag Atlas
  year: 1995
  ident: 1220_CR20
– volume: 46
  start-page: 809
  year: 2008
  ident: 1220_CR2
  publication-title: J. Kor. Inst. Met. & Mater.
– volume: 92
  start-page: 717
  year: 2009
  ident: 1220_CR15
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2008.02905.x
– volume: 472
  start-page: 43
  year: 2008
  ident: 1220_CR9
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2007.03.011
– volume: 50
  start-page: 95
  year: 2010
  ident: 1220_CR5
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.50.95
– volume: 15
  start-page: 677
  year: 2009
  ident: 1220_CR14
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-009-0677-4
– volume: 36
  start-page: 821
  year: 2010
  ident: 1220_CR28
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2009.09.045
– volume: 38B
  start-page: 657
  year: 2007
  ident: 1220_CR8
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-007-9066-x
– ident: 1220_CR22
– volume: 90
  start-page: 774
  year: 2007
  ident: 1220_CR27
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2006.01467.x
SSID ssj0061312
Score 1.9636003
Snippet The microstructural characteristics of the CaO-SiO 2 -B 2 O 3 -10 mass.% MgO-30 mass.% Al 2 O 3 systems solidified during slow cooling from 1600 °C were...
The microstructural characteristics of the CaO-SiO2-B2O3-10 mass.% MgO-30 mass.% Al2O3 systems solidified during slow cooling from 1600 degree C were...
The microstructural characteristics of the CaO-SiO2-B2O3-10 mass.% MgO-30 mass.% Al2O3 systems solidified during slow cooling from 1600 °C were investigated...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 987
SubjectTerms Aluminosilicates
Characterization and Evaluation of Materials
Chemistry and Materials Science
Engineering Thermodynamics
Heat and Mass Transfer
Machines
Magnetic Materials
Magnetism
Manufacturing
Materials Science
Metallic Materials
Processes
Solid Mechanics
재료공학
Title The effect of boron oxide on the crystallization behavior of MgAl2O4 spinel phase during the cooling of the CaO-SiO2-10 mass.% MgO-30 mass.%Al2O3 systems
URI https://link.springer.com/article/10.1007/s12540-010-1220-3
https://www.proquest.com/docview/907941430
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001508432
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Metals and Materials International, 2010, 16(6), , pp.987-992
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-i2wUO41t0g8lIcAG5chy7SY7d1G6AtiLopHGyEscuVbOkaloJ-E_4b_fcxBubAGkn25HjJPbzez_nfQG86feZ5tz0qYl5TkXGNM3yKKGRsDzUIk3iTY6lk9P-8Zn4eC7PWz_u2lu7e5XkhlNfO7txp8RvrAmc228HtiWeT3A3bg-Ovn0aegaMAqpRcsoE9zKKd6_M_NsgN8RRp1zaG0jzlnJ0I3NGD2Hi37YxNZn31qusp3_dCuR4x895BDstBiWDhmgewz1TPoEHf0QmfAq_kXxIY-tBKksyF-eAVD9muSFYQdBI9PInAsuiaP04iff3d91PpoOCjwWpFzhiQRbfUVSSxiGyubdyqYKmrqtrHqZj-nU25sisyQWC-d5bHGFMQ99yg4WkiTldP4PJaDg5PKZtFgeqEbqsaBy6JHaB1gg8OIJkpgNhsijCCkI7LqTMpUGkECSJMdwwa7kROQ-t1Kn73fIctsqqNC-AxLkOA211ZLUUqXZrH-OBLYgtEza1WReYX0ul2wjnLtFGoa5jM7tJV8y1cdJV2IV3V7csmvAe_-v8GglEzfVMuaDcrpxWar5UePT4oCImYya6QDz5KNyoTvuSlqZa1yphyPoQnbIuvPcUoVqGUf_7obt36r0H9_mVvc1L2Fot1-YVoqZVtg-deHS03-4VLA-Gp5-_4NUzPrgELBAMtA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8N9rDtYWJsE92AGYm9gDy5jtMkjxUClY3SB4rEm5U4dqkISdUUCf4U_lvumpiPaZs0KVJs6XyRcvHdz7kvgN1eTxgpbY_bWOZcZcLwLI8SHiknA6PSJF72WBqe9gbn6udFeNHmcdc-2t27JJea-inZTZITv4kmoLTfFXhNXkY6cZ3Lvle_aJ4aF2eY4E5G4-5dmX9i8cIYrZRz9wJn_uYaXVqcozV430JF1m9k-wFe2XId3j0rIPgR7lHKrAnJYJVjGZUjYNXtNLcMB4jtmJnfIf4rijbdkvm0fCIfTvqFHClWz5BjwWaXaNFYk7fYrK2oo8-ESGl6kI742XQkUaeya8TcP74jhxEP_IyYBawpDV1_gvHR4fhgwNtmC9wgwljwOKBec11jEB9IxLLCdJXNoggHiMCkCsM8tGjQu0lirbTCOWlVLgMXmpT-inyG1bIq7QawODdB1zgTOROq1OAREi-EobETyqUu64DwL12bthA59cMo9FMJZZKTFjRHOemgA3uPS2ZNFY5_Ee-gJPWVmWqqnU33SaWv5hpPCMc6EmEsVAeYl7PG_UROkrS01U2tE4EaCkGk6MC-l79u93X994d--S_qb_BmMB6e6JPj019f4a18DJHZhNXF_MZuIdBZZNvLD_sBBzHveA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwED6xTkLwgXdEeTUSfAGlcx2nST5WY2VjbEViSOOTSRy7VA1J1aQS8E_4t9zN8cYmQEJIkRJLtpM4Z9_j3N1zAM9GI66FMKPAJKIIZM51kBdxGsTSilDLLE1OciwdHI52P8g3x9Fxl-e08d7u3iTpYhqIpalqt5aF3ToLfBNk0HeeBRQCvAGbklJI9GBz_Prj_o5fjFFZOYNnlOK8RlXvDZu_6-ScatqoVvYc6rxgKD3RP5Pr8Mk_uXM7WQzWbT7Q3y-QOv7Hq92Aax02ZWMnTDfhkqluwdVfGAtvww8UK-Z8QFhtWU78B6z-Oi8MwwsEk0yvviHgLMsuvpN5HgCqfjAbl2IqWbPEHku2_IwqlLlASde2phRCM6pKxe1sGryfTwUu4uwLgvzBc-xhGoS-RJ2FzHFRN3fgaLJztL0bdNkdAo2Qpg2SkJLbDbVGQCIQPHM9lCaPY7xAyCdkFBWRQQQxTFNjhOHWCiMLEdpIZ_Qb5i70qroy94AlhQ6H2urY6khmGveseCDuTSyXNrN5H7j_rkp3zOeUgKNUZ5zNNOiKUxkHXYV9eHHaZOloP_5W-SkKi1rouSKybjrParVYKdyS7KmYRwmXfWBelBROYLLKZJWp141KOS6JiFp5H1566VDdQtL8-ab3_6n2E7j87tVEvd073H8AV8SpS85D6LWrtXmEwKrNH3eT5ycVbBUX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+boron+oxide+on+the+crystallization+behavior+of+MgAl2O4+spinel+phase+during+the+cooling+of+the+CaO-SiO2-10+mass.%25+MgO-30+mass.%25Al2O3+systems&rft.jtitle=Metals+and+materials+international&rft.au=Park%2C+Joo+Hyun&rft.date=2010-12-01&rft.issn=1598-9623&rft.volume=16&rft.issue=6&rft.spage=987&rft.epage=992&rft_id=info:doi/10.1007%2Fs12540-010-1220-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon