The effect of boron oxide on the crystallization behavior of MgAl2O4 spinel phase during the cooling of the CaO-SiO2-10 mass.% MgO-30 mass.%Al2O3 systems
The microstructural characteristics of the CaO-SiO 2 -B 2 O 3 -10 mass.% MgO-30 mass.% Al 2 O 3 systems solidified during slow cooling from 1600 °C were investigated using SEM-EDS and a thermochemical computation package. The effect of boron oxide on the crystallization behavior of the spinel in the...
Saved in:
Published in | Metals and materials international Vol. 16; no. 6; pp. 987 - 992 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Springer
The Korean Institute of Metals and Materials
01.12.2010
대한금속·재료학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1598-9623 2005-4149 |
DOI | 10.1007/s12540-010-1220-3 |
Cover
Abstract | The microstructural characteristics of the CaO-SiO
2
-B
2
O
3
-10 mass.% MgO-30 mass.% Al
2
O
3
systems solidified during slow cooling from 1600 °C were investigated using SEM-EDS and a thermochemical computation package. The effect of boron oxide on the crystallization behavior of the spinel in the aluminosilicate system was observed because boron oxide is believed to become a potential flux to reduce the melting point of the liquid oxides. The primary crystalline phase was spinel, mainly MgAl
2
O
4
, irrespective of the boron content. The liquidus temperature
T
L
continuously decreased as the boron oxide content increased, indicating that the boron oxide decreased the activity of the MgAl
2
O
4
spinel phase in liquid melts at high temperatures. The size of the spinel crystals increased as the temperature range for the solid + liquid coexisting region,
viz
. the mushy zone, increased. In the present systems, because the
T
L
continuously decreased with the increase in the boron oxide content, the viscosity of the liquid oxide may have affected the crystallization behavior of the spinel during cooling. Based on these results, an injection of a small amount of B
2
O
3
flux into molten steel containing liquid aluminosilicate inclusions is not recommended because large spinel crystals can originate from the changes in the thermophysical properties of the liquid inclusions due to the incorporation of boron oxide into the aluminosilicate networks. |
---|---|
AbstractList | The microstructural characteristics of the CaO-SiO2-B2O3-10 mass.% MgO-30 mass.% Al2O3 systems solidified during slow cooling from 1600 degree C were investigated using SEM-EDS and a thermochemical computation package. The effect of boron oxide on the crystallization behavior of the spinel in the aluminosilicate system was observed because boron oxide is believed to become a potential flux to reduce the melting point of the liquid oxides. The primary crystalline phase was spinel, mainly MgAl2O4, irrespective of the boron content. The liquidus temperature T L continuously decreased as the boron oxide content increased, indicating that the boron oxide decreased the activity of the MgAl2O4 spinel phase in liquid melts at high temperatures. The size of the spinel crystals increased as the temperature range for the solid + liquid coexisting region, viz. the mushy zone, increased. In the present systems, because the T L continuously decreased with the increase in the boron oxide content, the viscosity of the liquid oxide may have affected the crystallization behavior of the spinel during cooling. Based on these results, an injection of a small amount of B2O3 flux into molten steel containing liquid aluminosilicate inclusions is not recommended because large spinel crystals can originate from the changes in the thermophysical properties of the liquid inclusions due to the incorporation of boron oxide into the aluminosilicate networks. The microstructural characteristics of the CaO-SiO 2 -B 2 O 3 -10 mass.% MgO-30 mass.% Al 2 O 3 systems solidified during slow cooling from 1600 °C were investigated using SEM-EDS and a thermochemical computation package. The effect of boron oxide on the crystallization behavior of the spinel in the aluminosilicate system was observed because boron oxide is believed to become a potential flux to reduce the melting point of the liquid oxides. The primary crystalline phase was spinel, mainly MgAl 2 O 4 , irrespective of the boron content. The liquidus temperature T L continuously decreased as the boron oxide content increased, indicating that the boron oxide decreased the activity of the MgAl 2 O 4 spinel phase in liquid melts at high temperatures. The size of the spinel crystals increased as the temperature range for the solid + liquid coexisting region, viz . the mushy zone, increased. In the present systems, because the T L continuously decreased with the increase in the boron oxide content, the viscosity of the liquid oxide may have affected the crystallization behavior of the spinel during cooling. Based on these results, an injection of a small amount of B 2 O 3 flux into molten steel containing liquid aluminosilicate inclusions is not recommended because large spinel crystals can originate from the changes in the thermophysical properties of the liquid inclusions due to the incorporation of boron oxide into the aluminosilicate networks. The microstructural characteristics of the CaO-SiO2-B2O3-10 mass.% MgO-30 mass.% Al2O3 systems solidified during slow cooling from 1600 °C were investigated using SEM-EDS and a thermochemical computation package. The effect of boron oxide on the crystallization behavior of the spinel in the aluminosilicate system was observed because boron oxide is believed to become a potential flux to reduce the melting point of the liquid oxides. The primary crystalline phase was spinel, mainly MgAl2O4, irrespective of the boron content. The liquidus temperature TL continuously decreased as the boron oxide content increased, indicating that the boron oxide decreased the activity of the MgAl2O4 spinel phase in liquid melts at high temperatures. The size of the spinel crystals increased as the temperature range for the solid + liquid coexisting region, viz. the mushy zone, increased. In the present systems, because the TL continuously decreased with the increase in the boron oxide content, the viscosity of the liquid oxide may have affected the crystallization behavior of the spinel during cooling. Based on these results, an injection of a small amount of B2O3 flux into molten steel containing liquid aluminosilicate inclusions is not recommended because large spinel crystals can originate from the changes in the thermophysical properties of the liquid inclusions due to the incorporation of boron oxide into the aluminosilicate networks. KCI Citation Count: 10 |
Author | Park, Joo Hyun |
Author_xml | – sequence: 1 givenname: Joo Hyun surname: Park fullname: Park, Joo Hyun email: basicity@mail.ulsan.ac.kr organization: School of Materials Science and Engineering, University of Ulsan |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001508432$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9UU1v1DAUtKoisS39Adx8QXBxef5q4uNqBaVSUSS6d8vrfdl1m42DnUWUf9J_i9OUC4ee3jx7ZmzNnJHTPvZIyHsOlxyg-py50AoYcGBcCGDyhCwEgGaKK3NKFlybmpkrId-Ss5zvAa645GJBntZ7pNi26EcaW7qJKfY0_g5bpAWM5dKnxzy6rgt_3BjK2Qb37leIaaJ_3y070Siah9BjR4e9y0i3xxT63ayNsZtwoU7ryjXsLjSCcaAHl_Plh-LQMPlvm8wkzeU9POR35E3ruowXL_OcrL9-Wa--sdvm-ma1vGVe1HJktVSmqrn3wLWo-QY8V7ipqgJAG6G03moEobgxiAKhbQWqrZCt9g6MlOfk02zbp9Y--GCjC89zF-1Dsssf6xtbga5BFerHmTqk-POIebSHkD12nesxHrM1UJkSt4TCrGamTzHnhK31YXyOb0wudJaDnVqzc2sWpr20Zqfv8P-UQwoHlx5f1YhZk4cpeUz2Ph5TX0J7RfQX2Y2ovA |
CitedBy_id | crossref_primary_10_1007_s11837_014_1087_8 crossref_primary_10_1177_03019233241260158 crossref_primary_10_3390_met9121331 crossref_primary_10_1007_s12540_013_3028_4 crossref_primary_10_1007_s11663_012_9701_z crossref_primary_10_1016_j_ceramint_2024_07_050 crossref_primary_10_1007_s12540_024_01833_3 crossref_primary_10_2355_isijinternational_52_2303 crossref_primary_10_1002_srin_201200210 crossref_primary_10_1111_jace_16526 crossref_primary_10_1051_metal_2022051 crossref_primary_10_2355_isijinternational_52_764 crossref_primary_10_2355_isijinternational_51_1375 crossref_primary_10_1016_j_calphad_2011_08_004 crossref_primary_10_1007_s11663_012_9667_x crossref_primary_10_1007_s11663_013_9908_7 crossref_primary_10_1007_s11663_011_9566_6 crossref_primary_10_1111_jace_13570 crossref_primary_10_1007_s11663_020_01954_1 crossref_primary_10_1007_s11663_013_9998_2 |
Cites_doi | 10.1111/j.1551-2916.2005.00706.x 10.2355/isijinternational.40.1059 10.1016/j.calphad.2007.05.005 10.1021/cm035261x 10.2355/isijinternational.49.1133 10.2355/isijinternational.49.965 10.1016/S0022-3093(01)00332-5 10.1002/srin.201000157 10.1016/j.jeurceramsoc.2010.07.020 10.2355/isijinternational.50.1333 10.1111/j.1151-2916.2003.tb03326.x 10.2355/isijinternational.50.1078 10.1016/j.calphad.2008.09.009 10.1016/j.jeurceramsoc.2003.11.029 10.1111/j.1551-2916.2008.02905.x 10.1016/j.msea.2007.03.011 10.2355/isijinternational.50.95 10.1007/s12540-009-0677-4 10.1016/j.ceramint.2009.09.045 10.1007/s11663-007-9066-x 10.1111/j.1551-2916.2006.01467.x |
ContentType | Journal Article |
Copyright | The Korean Institute of Metals and Materials and Springer Netherlands 2010 |
Copyright_xml | – notice: The Korean Institute of Metals and Materials and Springer Netherlands 2010 |
DBID | AAYXX CITATION 7QF 7QQ 7SR 8BQ 8FD JG9 ACYCR |
DOI | 10.1007/s12540-010-1220-3 |
DatabaseName | CrossRef Aluminium Industry Abstracts Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Korean Citation Index |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Aluminium Industry Abstracts Ceramic Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2005-4149 |
EndPage | 992 |
ExternalDocumentID | oai_kci_go_kr_ARTI_705804 10_1007_s12540_010_1220_3 |
GroupedDBID | -EM 06D 0R~ 0VY 123 1N0 2.D 203 29M 2JY 2KG 2VQ 30V 4.4 406 408 40D 5VS 67Z 8FE 8FG 96X 9ZL AAAVM AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BA0 BENPR BGLVJ CAG CCPQU COF CS3 CSCUP D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZB HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KB. KOV KVFHK LLZTM MA- MZR N2Q NDZJH NPVJJ NQJWS O9- O93 O9G O9I O9J P19 P2P P9N PDBOC PT4 PT5 Q2X R89 R9I RLLFE ROL RSV S1Z S26 S27 S28 S3B SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T16 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 Z45 Z7R Z7V Z7X Z7Y Z7Z Z83 Z85 ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7QF 7QQ 7SR 8BQ 8FD JG9 AABYN AAEOY AAFGU AAGCJ AAUCO ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU |
ID | FETCH-LOGICAL-c283t-8349781cc015281b0c14eb77b0c0592455d5e024199ee2e0ff2e4d23f5ca0933 |
IEDL.DBID | AGYKE |
ISSN | 1598-9623 |
IngestDate | Wed Jul 03 04:02:10 EDT 2024 Fri Jul 11 16:47:36 EDT 2025 Tue Jul 01 01:15:15 EDT 2025 Thu Apr 24 22:54:24 EDT 2025 Fri Feb 21 02:33:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | crystallization spinel inclusion thermodynamic properties oxides solidification |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c283t-8349781cc015281b0c14eb77b0c0592455d5e024199ee2e0ff2e4d23f5ca0933 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 G704-000797.2010.16.6.009 |
PQID | 907941430 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_705804 proquest_miscellaneous_907941430 crossref_citationtrail_10_1007_s12540_010_1220_3 crossref_primary_10_1007_s12540_010_1220_3 springer_journals_10_1007_s12540_010_1220_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Springer |
PublicationPlace_xml | – name: Springer |
PublicationTitle | Metals and materials international |
PublicationTitleAbbrev | Met. Mater. Int |
PublicationYear | 2010 |
Publisher | The Korean Institute of Metals and Materials 대한금속·재료학회 |
Publisher_xml | – name: The Korean Institute of Metals and Materials – name: 대한금속·재료학회 |
References | ParkJ. H.ParkG. H.LeeY. E.ISIJ Int.20105010781:CAS:528:DC%2BC3cXhtFegtLjP10.2355/isijinternational.50.1078 CaurantD.MajeurusO.FadelE.LenoirM.GervaisC.PinetO.J. Am. Ceram. Soc.2007907741:CAS:528:DC%2BD2sXjt1Gjs7g%3D10.1111/j.1551-2916.2006.01467.x ParkJ. H.JungI. H.LeeS. B.Met. Mater. Int.2009156771:CAS:528:DC%2BD1MXht1Whur%2FJ10.1007/s12540-009-0677-4 SawvelA. M.ChinnS. C.BourcierW. L.MaxwellR. S.Chem. Mater.20051714931:CAS:528:DC%2BD2MXhsF2js7k%3D10.1021/cm035261x ParkJ. H.TodorokiH.ISIJ Int.20105013331:CAS:528:DC%2BC3cXhsVSkurnN10.2355/isijinternational.50.1333 NaskarM. K.ChatterjeeM.J. Eur. Ceram. Soc.20042434991:CAS:528:DC%2BD2cXlslCqsbs%3D10.1016/j.jeurceramsoc.2003.11.029 CharkrabortyS.Diffusion in Silicate Melts, in Structure, Dynamics and Properties of Silicate Melts1995WAMineralogical Society of America ParkJ. H.CALPHAD2007314281:CAS:528:DC%2BD2sXhtFGrtbjP10.1016/j.calphad.2007.05.005 JiangM.WangX.ChenB.WangW.ISIJ Int.201050951:CAS:528:DC%2BC3cXhs1Ghsbg%3D10.2355/isijinternational.50.95 AraiH.MatsumotoK.ShimasakiS. I.TaniguchiS.ISIJ Int.2009499651:CAS:528:DC%2BD1MXpvFGqsr0%3D10.2355/isijinternational.49.965 www.factsage.com. SunT.XiaoH.GuoW.HongX.Ceram. Int.2010368211:CAS:528:DC%2BD1MXhsFOrtLnF10.1016/j.ceramint.2009.09.045 FujiiK.NagasakaT.HinoM.ISIJ Int.20004010591:CAS:528:DC%2BD3MXitVKktQ%3D%3D10.2355/isijinternational.40.1059 KohS. U.JungH. G.KangK. B.J. Kor. Inst. Met. & Mater.2008462571:CAS:528:DC%2BD1cXns1Cisbw%3D ParkJ. H.Mater. Sci. Eng. A20084724310.1016/j.msea.2007.03.011 EvermanR. L. A.CooperR. F.J. Am. Ceram. Soc.2003864871:CAS:528:DC%2BD3sXis1ansrc%3D10.1111/j.1151-2916.2003.tb03326.x UhlmannD. R.YinnonH.Glass: Science and Technology, Vol. 1, ch. 11983New York, NYAcademic Press KimJ. J.LeeJ. B.J. Kor. Inst. Met. & Mater.2008468091:CAS:528:DC%2BD1MXivFWmtQ%3D%3D BaleC.BelisleE.ChartrandP.DecterovS. A.ErikssonG.HackK.JungI. H.KangY. B.MelanconJ.PeltonA. D.RobelinC.PetersenS.CALPHAD2009332951:CAS:528:DC%2BD1MXls1ehsbw%3D10.1016/j.calphad.2008.09.009 RocaboisP.PontoireJ. N.LahmannJ.GayeH.J. Non-Cryst. Solids2001282981:CAS:528:DC%2BD3MXjsl2rtrc%3D10.1016/S0022-3093(01)00332-5 SukM. O.ParkJ. H.J. Am. Ceram. Soc.2009927171:CAS:528:DC%2BD1MXktVWitrw%3D10.1111/j.1551-2916.2008.02905.x ParkJ. H.Metall. Mater. Trans. B200738B6571:CAS:528:DC%2BD2sXhtFKjsL%2FE10.1007/s11663-007-9066-x ParkJ. H.ParkJ. G.MinD. J.LeeY. E.KangY. B.J. Eur. Ceram. Soc.20103031811:CAS:528:DC%2BC3cXhtVGhsbjK10.1016/j.jeurceramsoc.2010.07.020 ParkJ. H.SukM. O.JungI. H.GuoM.BlanpainB.Steel Res. Int.2010818601:CAS:528:DC%2BC3cXht1Clsb3L10.1002/srin.201000157 Van EndeM. A.GuoM.DekkersR.BurtyM.Van DyckJ.JonesP. T.BlanpainB.WollantP.ISIJ Int.200949113310.2355/isijinternational.49.1133 J. F. Stebbins, private communication. MillsK. C.Diffusion coefficients in molten slags, in Slag Atlas19952nd ed.DusseldorfVerlag Stahleisen GmbH ParkJ. H.J. Am. Ceram. Soc.2006896081:CAS:528:DC%2BD28XhsFWqt7c%3D10.1111/j.1551-2916.2005.00706.x P. Rocabois (1220_CR11) 2001; 282 1220_CR22 S. U. Koh (1220_CR1) 2008; 46 S. Charkraborty (1220_CR24) 1995 M. A. Ende Van (1220_CR4) 2009; 49 M. O. Suk (1220_CR15) 2009; 92 J. H. Park (1220_CR8) 2007; 38B D. R. Uhlmann (1220_CR25) 1983 J. J. Kim (1220_CR2) 2008; 46 J. H. Park (1220_CR7) 2007; 31 K. Fujii (1220_CR19) 2000; 40 R. L. A. Everman (1220_CR21) 2003; 86 K. C. Mills (1220_CR20) 1995 T. Sun (1220_CR28) 2010; 36 M. Jiang (1220_CR5) 2010; 50 J. H. Park (1220_CR10) 2010; 50 J. H. Park (1220_CR9) 2008; 472 J. H. Park (1220_CR14) 2009; 15 D. Caurant (1220_CR27) 2007; 90 M. K. Naskar (1220_CR23) 2004; 24 J. H. Park (1220_CR18) 2010; 50 J. H. Park (1220_CR6) 2006; 89 C. Bale (1220_CR13) 2009; 33 H. Arai (1220_CR3) 2009; 49 J. H. Park (1220_CR16) 2010; 30 J. H. Park (1220_CR17) 2010; 81 1220_CR12 A. M. Sawvel (1220_CR26) 2005; 17 |
References_xml | – reference: AraiH.MatsumotoK.ShimasakiS. I.TaniguchiS.ISIJ Int.2009499651:CAS:528:DC%2BD1MXpvFGqsr0%3D10.2355/isijinternational.49.965 – reference: Van EndeM. A.GuoM.DekkersR.BurtyM.Van DyckJ.JonesP. T.BlanpainB.WollantP.ISIJ Int.200949113310.2355/isijinternational.49.1133 – reference: ParkJ. H.Metall. Mater. Trans. B200738B6571:CAS:528:DC%2BD2sXhtFKjsL%2FE10.1007/s11663-007-9066-x – reference: ParkJ. H.JungI. H.LeeS. B.Met. Mater. Int.2009156771:CAS:528:DC%2BD1MXht1Whur%2FJ10.1007/s12540-009-0677-4 – reference: CharkrabortyS.Diffusion in Silicate Melts, in Structure, Dynamics and Properties of Silicate Melts1995WAMineralogical Society of America – reference: JiangM.WangX.ChenB.WangW.ISIJ Int.201050951:CAS:528:DC%2BC3cXhs1Ghsbg%3D10.2355/isijinternational.50.95 – reference: MillsK. C.Diffusion coefficients in molten slags, in Slag Atlas19952nd ed.DusseldorfVerlag Stahleisen GmbH – reference: ParkJ. H.Mater. Sci. Eng. A20084724310.1016/j.msea.2007.03.011 – reference: BaleC.BelisleE.ChartrandP.DecterovS. A.ErikssonG.HackK.JungI. H.KangY. B.MelanconJ.PeltonA. D.RobelinC.PetersenS.CALPHAD2009332951:CAS:528:DC%2BD1MXls1ehsbw%3D10.1016/j.calphad.2008.09.009 – reference: CaurantD.MajeurusO.FadelE.LenoirM.GervaisC.PinetO.J. Am. Ceram. Soc.2007907741:CAS:528:DC%2BD2sXjt1Gjs7g%3D10.1111/j.1551-2916.2006.01467.x – reference: SunT.XiaoH.GuoW.HongX.Ceram. Int.2010368211:CAS:528:DC%2BD1MXhsFOrtLnF10.1016/j.ceramint.2009.09.045 – reference: ParkJ. H.CALPHAD2007314281:CAS:528:DC%2BD2sXhtFGrtbjP10.1016/j.calphad.2007.05.005 – reference: UhlmannD. R.YinnonH.Glass: Science and Technology, Vol. 1, ch. 11983New York, NYAcademic Press – reference: EvermanR. L. A.CooperR. F.J. Am. Ceram. Soc.2003864871:CAS:528:DC%2BD3sXis1ansrc%3D10.1111/j.1151-2916.2003.tb03326.x – reference: RocaboisP.PontoireJ. N.LahmannJ.GayeH.J. Non-Cryst. Solids2001282981:CAS:528:DC%2BD3MXjsl2rtrc%3D10.1016/S0022-3093(01)00332-5 – reference: J. F. Stebbins, private communication. – reference: SukM. O.ParkJ. H.J. Am. Ceram. Soc.2009927171:CAS:528:DC%2BD1MXktVWitrw%3D10.1111/j.1551-2916.2008.02905.x – reference: www.factsage.com. – reference: ParkJ. H.ParkG. H.LeeY. E.ISIJ Int.20105010781:CAS:528:DC%2BC3cXhtFegtLjP10.2355/isijinternational.50.1078 – reference: ParkJ. H.ParkJ. G.MinD. J.LeeY. E.KangY. B.J. Eur. Ceram. Soc.20103031811:CAS:528:DC%2BC3cXhtVGhsbjK10.1016/j.jeurceramsoc.2010.07.020 – reference: ParkJ. H.SukM. O.JungI. H.GuoM.BlanpainB.Steel Res. Int.2010818601:CAS:528:DC%2BC3cXht1Clsb3L10.1002/srin.201000157 – reference: NaskarM. K.ChatterjeeM.J. Eur. Ceram. Soc.20042434991:CAS:528:DC%2BD2cXlslCqsbs%3D10.1016/j.jeurceramsoc.2003.11.029 – reference: FujiiK.NagasakaT.HinoM.ISIJ Int.20004010591:CAS:528:DC%2BD3MXitVKktQ%3D%3D10.2355/isijinternational.40.1059 – reference: KimJ. J.LeeJ. B.J. Kor. Inst. Met. & Mater.2008468091:CAS:528:DC%2BD1MXivFWmtQ%3D%3D – reference: ParkJ. H.J. Am. Ceram. Soc.2006896081:CAS:528:DC%2BD28XhsFWqt7c%3D10.1111/j.1551-2916.2005.00706.x – reference: ParkJ. H.TodorokiH.ISIJ Int.20105013331:CAS:528:DC%2BC3cXhsVSkurnN10.2355/isijinternational.50.1333 – reference: KohS. U.JungH. G.KangK. B.J. Kor. Inst. Met. & Mater.2008462571:CAS:528:DC%2BD1cXns1Cisbw%3D – reference: SawvelA. M.ChinnS. C.BourcierW. L.MaxwellR. S.Chem. Mater.20051714931:CAS:528:DC%2BD2MXhsF2js7k%3D10.1021/cm035261x – volume: 89 start-page: 608 year: 2006 ident: 1220_CR6 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2005.00706.x – volume: 40 start-page: 1059 year: 2000 ident: 1220_CR19 publication-title: ISIJ Int. doi: 10.2355/isijinternational.40.1059 – volume: 46 start-page: 257 year: 2008 ident: 1220_CR1 publication-title: J. Kor. Inst. Met. & Mater. – volume-title: Diffusion in Silicate Melts, in Structure, Dynamics and Properties of Silicate Melts year: 1995 ident: 1220_CR24 – volume: 31 start-page: 428 year: 2007 ident: 1220_CR7 publication-title: CALPHAD doi: 10.1016/j.calphad.2007.05.005 – volume: 17 start-page: 1493 year: 2005 ident: 1220_CR26 publication-title: Chem. Mater. doi: 10.1021/cm035261x – volume: 49 start-page: 1133 year: 2009 ident: 1220_CR4 publication-title: ISIJ Int. doi: 10.2355/isijinternational.49.1133 – volume: 49 start-page: 965 year: 2009 ident: 1220_CR3 publication-title: ISIJ Int. doi: 10.2355/isijinternational.49.965 – volume: 282 start-page: 98 year: 2001 ident: 1220_CR11 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00332-5 – volume: 81 start-page: 860 year: 2010 ident: 1220_CR17 publication-title: Steel Res. Int. doi: 10.1002/srin.201000157 – volume: 30 start-page: 3181 year: 2010 ident: 1220_CR16 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2010.07.020 – volume: 50 start-page: 1333 year: 2010 ident: 1220_CR10 publication-title: ISIJ Int. doi: 10.2355/isijinternational.50.1333 – volume: 86 start-page: 487 year: 2003 ident: 1220_CR21 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2003.tb03326.x – volume: 50 start-page: 1078 year: 2010 ident: 1220_CR18 publication-title: ISIJ Int. doi: 10.2355/isijinternational.50.1078 – ident: 1220_CR12 – volume-title: Glass: Science and Technology, Vol. 1, ch. 1 year: 1983 ident: 1220_CR25 – volume: 33 start-page: 295 year: 2009 ident: 1220_CR13 publication-title: CALPHAD doi: 10.1016/j.calphad.2008.09.009 – volume: 24 start-page: 3499 year: 2004 ident: 1220_CR23 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2003.11.029 – volume-title: Diffusion coefficients in molten slags, in Slag Atlas year: 1995 ident: 1220_CR20 – volume: 46 start-page: 809 year: 2008 ident: 1220_CR2 publication-title: J. Kor. Inst. Met. & Mater. – volume: 92 start-page: 717 year: 2009 ident: 1220_CR15 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2008.02905.x – volume: 472 start-page: 43 year: 2008 ident: 1220_CR9 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2007.03.011 – volume: 50 start-page: 95 year: 2010 ident: 1220_CR5 publication-title: ISIJ Int. doi: 10.2355/isijinternational.50.95 – volume: 15 start-page: 677 year: 2009 ident: 1220_CR14 publication-title: Met. Mater. Int. doi: 10.1007/s12540-009-0677-4 – volume: 36 start-page: 821 year: 2010 ident: 1220_CR28 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2009.09.045 – volume: 38B start-page: 657 year: 2007 ident: 1220_CR8 publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-007-9066-x – ident: 1220_CR22 – volume: 90 start-page: 774 year: 2007 ident: 1220_CR27 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2006.01467.x |
SSID | ssj0061312 |
Score | 1.9636003 |
Snippet | The microstructural characteristics of the CaO-SiO
2
-B
2
O
3
-10 mass.% MgO-30 mass.% Al
2
O
3
systems solidified during slow cooling from 1600 °C were... The microstructural characteristics of the CaO-SiO2-B2O3-10 mass.% MgO-30 mass.% Al2O3 systems solidified during slow cooling from 1600 degree C were... The microstructural characteristics of the CaO-SiO2-B2O3-10 mass.% MgO-30 mass.% Al2O3 systems solidified during slow cooling from 1600 °C were investigated... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 987 |
SubjectTerms | Aluminosilicates Characterization and Evaluation of Materials Chemistry and Materials Science Engineering Thermodynamics Heat and Mass Transfer Machines Magnetic Materials Magnetism Manufacturing Materials Science Metallic Materials Processes Solid Mechanics 재료공학 |
Title | The effect of boron oxide on the crystallization behavior of MgAl2O4 spinel phase during the cooling of the CaO-SiO2-10 mass.% MgO-30 mass.%Al2O3 systems |
URI | https://link.springer.com/article/10.1007/s12540-010-1220-3 https://www.proquest.com/docview/907941430 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001508432 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Metals and Materials International, 2010, 16(6), , pp.987-992 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-i2wUO41t0g8lIcAG5chy7SY7d1G6AtiLopHGyEscuVbOkaloJ-E_4b_fcxBubAGkn25HjJPbzez_nfQG86feZ5tz0qYl5TkXGNM3yKKGRsDzUIk3iTY6lk9P-8Zn4eC7PWz_u2lu7e5XkhlNfO7txp8RvrAmc228HtiWeT3A3bg-Ovn0aegaMAqpRcsoE9zKKd6_M_NsgN8RRp1zaG0jzlnJ0I3NGD2Hi37YxNZn31qusp3_dCuR4x895BDstBiWDhmgewz1TPoEHf0QmfAq_kXxIY-tBKksyF-eAVD9muSFYQdBI9PInAsuiaP04iff3d91PpoOCjwWpFzhiQRbfUVSSxiGyubdyqYKmrqtrHqZj-nU25sisyQWC-d5bHGFMQ99yg4WkiTldP4PJaDg5PKZtFgeqEbqsaBy6JHaB1gg8OIJkpgNhsijCCkI7LqTMpUGkECSJMdwwa7kROQ-t1Kn73fIctsqqNC-AxLkOA211ZLUUqXZrH-OBLYgtEza1WReYX0ul2wjnLtFGoa5jM7tJV8y1cdJV2IV3V7csmvAe_-v8GglEzfVMuaDcrpxWar5UePT4oCImYya6QDz5KNyoTvuSlqZa1yphyPoQnbIuvPcUoVqGUf_7obt36r0H9_mVvc1L2Fot1-YVoqZVtg-deHS03-4VLA-Gp5-_4NUzPrgELBAMtA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8N9rDtYWJsE92AGYm9gDy5jtMkjxUClY3SB4rEm5U4dqkISdUUCf4U_lvumpiPaZs0KVJs6XyRcvHdz7kvgN1eTxgpbY_bWOZcZcLwLI8SHiknA6PSJF72WBqe9gbn6udFeNHmcdc-2t27JJea-inZTZITv4kmoLTfFXhNXkY6cZ3Lvle_aJ4aF2eY4E5G4-5dmX9i8cIYrZRz9wJn_uYaXVqcozV430JF1m9k-wFe2XId3j0rIPgR7lHKrAnJYJVjGZUjYNXtNLcMB4jtmJnfIf4rijbdkvm0fCIfTvqFHClWz5BjwWaXaNFYk7fYrK2oo8-ESGl6kI742XQkUaeya8TcP74jhxEP_IyYBawpDV1_gvHR4fhgwNtmC9wgwljwOKBec11jEB9IxLLCdJXNoggHiMCkCsM8tGjQu0lirbTCOWlVLgMXmpT-inyG1bIq7QawODdB1zgTOROq1OAREi-EobETyqUu64DwL12bthA59cMo9FMJZZKTFjRHOemgA3uPS2ZNFY5_Ee-gJPWVmWqqnU33SaWv5hpPCMc6EmEsVAeYl7PG_UROkrS01U2tE4EaCkGk6MC-l79u93X994d--S_qb_BmMB6e6JPj019f4a18DJHZhNXF_MZuIdBZZNvLD_sBBzHveA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwED6xTkLwgXdEeTUSfAGlcx2nST5WY2VjbEViSOOTSRy7VA1J1aQS8E_4t9zN8cYmQEJIkRJLtpM4Z9_j3N1zAM9GI66FMKPAJKIIZM51kBdxGsTSilDLLE1OciwdHI52P8g3x9Fxl-e08d7u3iTpYhqIpalqt5aF3ToLfBNk0HeeBRQCvAGbklJI9GBz_Prj_o5fjFFZOYNnlOK8RlXvDZu_6-ScatqoVvYc6rxgKD3RP5Pr8Mk_uXM7WQzWbT7Q3y-QOv7Hq92Aax02ZWMnTDfhkqluwdVfGAtvww8UK-Z8QFhtWU78B6z-Oi8MwwsEk0yvviHgLMsuvpN5HgCqfjAbl2IqWbPEHku2_IwqlLlASde2phRCM6pKxe1sGryfTwUu4uwLgvzBc-xhGoS-RJ2FzHFRN3fgaLJztL0bdNkdAo2Qpg2SkJLbDbVGQCIQPHM9lCaPY7xAyCdkFBWRQQQxTFNjhOHWCiMLEdpIZ_Qb5i70qroy94AlhQ6H2urY6khmGveseCDuTSyXNrN5H7j_rkp3zOeUgKNUZ5zNNOiKUxkHXYV9eHHaZOloP_5W-SkKi1rouSKybjrParVYKdyS7KmYRwmXfWBelBROYLLKZJWp141KOS6JiFp5H1566VDdQtL8-ab3_6n2E7j87tVEvd073H8AV8SpS85D6LWrtXmEwKrNH3eT5ycVbBUX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+boron+oxide+on+the+crystallization+behavior+of+MgAl2O4+spinel+phase+during+the+cooling+of+the+CaO-SiO2-10+mass.%25+MgO-30+mass.%25Al2O3+systems&rft.jtitle=Metals+and+materials+international&rft.au=Park%2C+Joo+Hyun&rft.date=2010-12-01&rft.issn=1598-9623&rft.volume=16&rft.issue=6&rft.spage=987&rft.epage=992&rft_id=info:doi/10.1007%2Fs12540-010-1220-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon |