Maneuvering target tracking by adaptive statistics model

A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive accel...

Full description

Saved in:
Bibliographic Details
Published inJournal of China universities of posts and telecommunications Vol. 20; no. 1; pp. 108 - 114
Main Authors JIN, Xue-bo, DU, Jing-jing, BAO, Jia
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2013
Subjects
Online AccessGet full text
ISSN1005-8885
DOI10.1016/S1005-8885(13)60016-3

Cover

Abstract A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter.
AbstractList A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocorrelation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter.
A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter.
Author JIN Xue-bo DU Jing-jing BAO Jia
AuthorAffiliation College of Computer and Information Engineering, Beijing Technology and Business University, Bcijing 100048, China College of Informatics, Zhcjiang Sci-Tcch University, Hangzhou 310018, China
Author_xml – sequence: 1
  givenname: Xue-bo
  surname: JIN
  fullname: JIN, Xue-bo
  email: xuebojin@gmail.com
  organization: College of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China
– sequence: 2
  givenname: Jing-jing
  surname: DU
  fullname: DU, Jing-jing
  organization: College of Informatics, Zhejiang Sci-Tech University, Hangzhou 310018, China
– sequence: 3
  givenname: Jia
  surname: BAO
  fullname: BAO, Jia
  organization: College of Informatics, Zhejiang Sci-Tech University, Hangzhou 310018, China
BookMark eNqFkUtPAjEQgHvAREB_gsl6w8NqH2xb4sEY4ivReFDPTbedxeqyC20h4d_bBcLBC6fJTOabmX4doF7TNoDQBcHXBBN-80EwLnIpZTEi7IrjVMtZD_UP5VM0COEH4zGlmPeRfNMNrNbgXTPLovYziFn02vx2ebnJtNWL6NaQhaijC9GZkM1bC_UZOql0HeB8H4fo6_Hhc_qcv74_vUzvX3NDJYu5AGqJZBxKKSohqAQzrnipqcDjiZjoUhhcMCCVxVySosTaSGKZwQJMCZayIRrt5i58u1xBiGrugoG6Tne3q6AIE5QzySRPrbe7VuPbEDxUyrju6rZJL3K1Ilh1jtTWkepkJFptHSmW6OIfvfBurv3mKHe34yBZWDvwKhgHjQHrPJiobOuOTrjcb_5um9kymT-sHheT9E8FZ3--243H
CitedBy_id crossref_primary_10_3390_s17112611
crossref_primary_10_1155_2016_1472930
crossref_primary_10_1109_TCST_2016_2547984
crossref_primary_10_1049_iet_smt_2016_0030
crossref_primary_10_1016_j_sjbs_2017_01_026
crossref_primary_10_3390_s17071668
crossref_primary_10_3390_app8030379
crossref_primary_10_1002_asjc_1954
crossref_primary_10_1007_s11071_015_2552_9
crossref_primary_10_1088_1742_6596_679_1_012048
crossref_primary_10_3390_s17071575
crossref_primary_10_3390_s17091972
Cites_doi 10.1109/TAES.2003.1261132
10.1109/TSP.2010.2098401
10.1109/TPWRS.2010.2098423
10.1016/j.automatica.2010.10.005
10.1109/TAES.2011.6034677
10.1109/TPWRS.2010.2098422
ContentType Journal Article
Copyright 2013 The Journal of China Universities of Posts and Telecommunications
Copyright_xml – notice: 2013 The Journal of China Universities of Posts and Telecommunications
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1016/S1005-8885(13)60016-3
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
DocumentTitleAlternate Maneuvering target tracking by adaptive statistics model
EndPage 114
ExternalDocumentID 10_1016_S1005_8885_13_60016_3
S1005888513600163
45922056
GroupedDBID --K
--M
-SI
-S~
.~1
0R~
123
188
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5VR
5VS
7-5
71M
8P~
8RM
92H
92I
92L
92R
93N
9D9
9DI
AAEDT
AAIKJ
AALRI
AAOAW
AAQFI
AAXUO
ABXDB
ADEZE
ADMUD
ADTZH
AECPX
AEKER
AFUIB
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
BLXMC
CAJEI
CAJUS
CCEZO
CHBEP
CQIGP
CS3
CUBFJ
CW9
DU5
EBS
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FNPLU
GBLVA
HZ~
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q--
Q-8
Q38
RIG
ROL
SDF
SDG
SES
T5K
TCJ
TGT
U1G
U5S
UGNYK
UZ4
W92
~NJ
~WA
AAYXX
ABWVN
ACRPL
ADNMO
CITATION
7SP
8FD
L7M
~HD
ID FETCH-LOGICAL-c283t-7e2d1836eb87f7728ec4f6ba2704979ab7c053e1fd06815b0ac81d3c07ecbed23
IEDL.DBID .~1
ISSN 1005-8885
IngestDate Sun Sep 28 05:58:36 EDT 2025
Tue Jul 01 01:53:44 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Fri Feb 23 02:23:47 EST 2024
Wed Feb 14 10:43:15 EST 2024
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords state estimation
maneuvering target
target model
statistics relation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c283t-7e2d1836eb87f7728ec4f6ba2704979ab7c053e1fd06815b0ac81d3c07ecbed23
Notes 11-3486/TN
maneuvering target, target model, statistics relation, state estimation
A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1372638386
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1372638386
crossref_citationtrail_10_1016_S1005_8885_13_60016_3
crossref_primary_10_1016_S1005_8885_13_60016_3
elsevier_sciencedirect_doi_10_1016_S1005_8885_13_60016_3
chongqing_primary_45922056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-00
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-00
PublicationDecade 2010
PublicationTitle Journal of China universities of posts and telecommunications
PublicationTitleAlternate The Journal of China Universities of Posts and Telecommunications
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Osborne, Blair (bib6) 2011; 47
Li, Jilkov (bib1) 2003; 39
Ho (bib5) 2011; 47
Tian, Si, Han (bib8) 2011; 23
Chen, Pang, Li (bib2) 2012; 31
Song, Musicki, Sol (bib7) 2011; 59
Jiang, Yi, Zeng (bib4) 2011; 32
Vasuhi, Vaidehi, Rincy (bib3) 2011
Bian, Li, Chen (bib9) 2011; 26
Bian, Li, Chen (bib10) 2011; 26
Jiang (10.1016/S1005-8885(13)60016-3_bib4) 2011; 32
Tian (10.1016/S1005-8885(13)60016-3_bib8) 2011; 23
Vasuhi (10.1016/S1005-8885(13)60016-3_bib3) 2011
Ho (10.1016/S1005-8885(13)60016-3_bib5) 2011; 47
Bian (10.1016/S1005-8885(13)60016-3_bib9) 2011; 26
Chen (10.1016/S1005-8885(13)60016-3_bib2) 2012; 31
Song (10.1016/S1005-8885(13)60016-3_bib7) 2011; 59
Li (10.1016/S1005-8885(13)60016-3_bib1) 2003; 39
Osborne (10.1016/S1005-8885(13)60016-3_bib6) 2011; 47
Bian (10.1016/S1005-8885(13)60016-3_bib10) 2011; 26
References_xml – volume: 31
  start-page: 1502
  year: 2012
  end-page: 1508
  ident: bib2
  article-title: AUV sensor fault diagnosis based on STF-singer model
  publication-title: Chinese Journal of Scientific Instrument
– volume: 26
  start-page: 1196
  year: 2011
  end-page: 1208
  ident: bib9
  article-title: Joint estimation of state and parameter with synchrophasors, Part I: state tacking
  publication-title: IEEE Transactions on Power Systems
– volume: 32
  start-page: 343
  year: 2011
  end-page: 348
  ident: bib4
  article-title: Maneuvering target tracking using IMM-PF with doppler-aided measurement
  publication-title: Journal of Astronautics
– volume: 26
  start-page: 1209
  year: 2011
  end-page: 1220
  ident: bib10
  article-title: Joint estimation of state and parameter with synchrophasors, Part II: Parameter tracking
  publication-title: IEEE Transactions on Power Systems
– volume: 59
  start-page: 1063
  year: 2011
  end-page: 1074
  ident: bib7
  article-title: Target tracking with target state dependent detection
  publication-title: IEEE Transactions on Signal Processing
– volume: 39
  start-page: 1333
  year: 2003
  end-page: 1364
  ident: bib1
  article-title: Survey of maneuvering target tracking 1: dynamic models
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– volume: 47
  start-page: 2967
  year: 2011
  end-page: 2974
  ident: bib6
  article-title: Update to the hybrid conditional averaging performance prediction of the IMM algorithm
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– start-page: 286
  year: 2011
  end-page: 290
  ident: bib3
  article-title: IMM estimator for maneuvering target tracking with improved current statistical model
  publication-title: Proceedings of the International Conference on Recent Trends in Information Technology (ICRTIT'11), Jun 3–5, 2011, Chennai, India
– volume: 47
  start-page: 92
  year: 2011
  end-page: 98
  ident: bib5
  article-title: A switched IMM-extended viterbi estimator-based algorithm for maneuvering target tracking
  publication-title: Automatica
– volume: 23
  start-page: 38
  year: 2011
  end-page: 42
  ident: bib8
  article-title: Research of MM algorithm in flying object passive tracking
  publication-title: Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition
– start-page: 286
  year: 2011
  ident: 10.1016/S1005-8885(13)60016-3_bib3
  article-title: IMM estimator for maneuvering target tracking with improved current statistical model
– volume: 39
  start-page: 1333
  issue: 4
  year: 2003
  ident: 10.1016/S1005-8885(13)60016-3_bib1
  article-title: Survey of maneuvering target tracking 1: dynamic models
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
  doi: 10.1109/TAES.2003.1261132
– volume: 59
  start-page: 1063
  issue: 3
  year: 2011
  ident: 10.1016/S1005-8885(13)60016-3_bib7
  article-title: Target tracking with target state dependent detection
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2010.2098401
– volume: 26
  start-page: 1209
  issue: 3
  year: 2011
  ident: 10.1016/S1005-8885(13)60016-3_bib10
  article-title: Joint estimation of state and parameter with synchrophasors, Part II: Parameter tracking
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2010.2098423
– volume: 47
  start-page: 92
  issue: 1
  year: 2011
  ident: 10.1016/S1005-8885(13)60016-3_bib5
  article-title: A switched IMM-extended viterbi estimator-based algorithm for maneuvering target tracking
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.10.005
– volume: 32
  start-page: 343
  issue: 2
  year: 2011
  ident: 10.1016/S1005-8885(13)60016-3_bib4
  article-title: Maneuvering target tracking using IMM-PF with doppler-aided measurement
  publication-title: Journal of Astronautics
– volume: 23
  start-page: 38
  issue: 1
  year: 2011
  ident: 10.1016/S1005-8885(13)60016-3_bib8
  article-title: Research of MM algorithm in flying object passive tracking
  publication-title: Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition
– volume: 31
  start-page: 1502
  issue: 7
  year: 2012
  ident: 10.1016/S1005-8885(13)60016-3_bib2
  article-title: AUV sensor fault diagnosis based on STF-singer model
  publication-title: Chinese Journal of Scientific Instrument
– volume: 47
  start-page: 2967
  issue: 4
  year: 2011
  ident: 10.1016/S1005-8885(13)60016-3_bib6
  article-title: Update to the hybrid conditional averaging performance prediction of the IMM algorithm
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
  doi: 10.1109/TAES.2011.6034677
– volume: 26
  start-page: 1196
  issue: 3
  year: 2011
  ident: 10.1016/S1005-8885(13)60016-3_bib9
  article-title: Joint estimation of state and parameter with synchrophasors, Part I: state tacking
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2010.2098422
SSID ssj0042206
Score 1.6334769
Snippet A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering...
A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering...
SourceID proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108
SubjectTerms Acceleration
Autocorrelation functions
China
maneuvering target
Maneuvering targets
Mathematical models
On-line systems
state estimation
Statistics
statistics relation
target model
Tracking
估计性能
加速模型
机动目标跟踪
电流模型
统计模型
自适应模型
跟踪机动目标
马尔可夫模型
Title Maneuvering target tracking by adaptive statistics model
URI http://lib.cqvip.com/qk/84121X/201301/45922056.html
https://dx.doi.org/10.1016/S1005-8885(13)60016-3
https://www.proquest.com/docview/1372638386
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9jJz2IT9x8UMGDHrqtTZqkRxmOIcyLDnYLSZrqQLo5N8GLf7vfl7bzASJ4bEg-yvf8tfkehJwbm0qeZSJ0kdUhS2MBJqVtyEE3tGQJ0wlWI49u-XDMbibJpEH6dS0MplVWvr_06d5bVyvdipvd-XTavYtwJJ4ExEAxaHPs-MmYQF3vvK_TPFgc-_mauDnE3Z9VPCUFv3gR0UtPJKTYY-FxVjw8Q-T4LVb98No-FA22yVaFIYOr8jV3SMMVu2TzS2fBPSJHunCrV_8UlNnewXKhLf4YD8xboDM9R0cXYEFR2as58ENx9sl4cH3fH4bVkITQAjJYhsLFGZgld0aKHKCydJbl3OhYAPYXqTbCgp25KM96XEaJ6WkLEJXannDWuCymB6RZzAp3SAKZpxnF2lqbZPiZYjjTEoTcS_I0SblokfaaNWpeNsNQLEmxVpe3CKt5pWzVXhynXDypdR4Zslshu1VElWe3oi3SWR-rSf5xQNaCUN8URUEM-OvoWS04BUaENyMgi9nqBfaIGBwRlbz9f_JHZCP2szIw1-WYNJeLlTsBxLI0p14lPwDS9OGV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONAeEJRWLM8gcSiHsJvYsZ0jQqDlsVwKEjfLdhxYCWUXulupF347M06yUCSExDGWPYrmnXhmPoA963IlikLGPnEm5nkq0aSMiwXqhlE84yajbuTBpehf87Ob7GYOjtpeGCqrbHx_7dODt25Wug03u-PhsPs7IUg8hRkDo6At2BdY4ARzgEp98DSr8-BpGgA2aXdM21_aeGoSYfFXwvYDlZjRkIW7UXX7gKHjvWD1xm2HWHSyDEtNEhkd1u-5AnO--g7fXo0WXAU1MJWf_g1PUV3uHU0ejaM_45H9F5nCjMnTRdRRVA9rjgIqzg-4Pjm-OurHDUpC7DA1mMTSpwXapfBWyRJzZeUdL4U1qcTkX-bGSoeG5pOy6AmVZLZnHOaozPWkd9YXKfsJ89Wo8msQqTIvGDXXuqyg7xQruFEo5V5W5lkuZAfWZ6zR43oahuZZTs26ogO85ZV2zXxxgrm417NCMmK3JnbrhOnAbs06cDA71pL84IBqBaH_0xSNQeCjo7ut4DRaEV2NoCxG0z-4R6boiZgS658nvwOL_avBhb44vTzfgK9pAM6gwpdNmJ88Tv0Wpi8Tux3U8xki8OSs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maneuvering+target+tracking+by+adaptive+statistics+model&rft.jtitle=Journal+of+China+universities+of+posts+and+telecommunications&rft.au=JIN%2C+Xue-bo&rft.au=DU%2C+Jing-jing&rft.au=BAO%2C+Jia&rft.date=2013-02-01&rft.pub=Elsevier+Ltd&rft.issn=1005-8885&rft.volume=20&rft.issue=1&rft.spage=108&rft.epage=114&rft_id=info:doi/10.1016%2FS1005-8885%2813%2960016-3&rft.externalDocID=S1005888513600163
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84121X%2F84121X.jpg