Maneuvering target tracking by adaptive statistics model
A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive accel...
Saved in:
Published in | Journal of China universities of posts and telecommunications Vol. 20; no. 1; pp. 108 - 114 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1005-8885 |
DOI | 10.1016/S1005-8885(13)60016-3 |
Cover
Abstract | A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter. |
---|---|
AbstractList | A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocorrelation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter. A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter. |
Author | JIN Xue-bo DU Jing-jing BAO Jia |
AuthorAffiliation | College of Computer and Information Engineering, Beijing Technology and Business University, Bcijing 100048, China College of Informatics, Zhcjiang Sci-Tcch University, Hangzhou 310018, China |
Author_xml | – sequence: 1 givenname: Xue-bo surname: JIN fullname: JIN, Xue-bo email: xuebojin@gmail.com organization: College of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China – sequence: 2 givenname: Jing-jing surname: DU fullname: DU, Jing-jing organization: College of Informatics, Zhejiang Sci-Tech University, Hangzhou 310018, China – sequence: 3 givenname: Jia surname: BAO fullname: BAO, Jia organization: College of Informatics, Zhejiang Sci-Tech University, Hangzhou 310018, China |
BookMark | eNqFkUtPAjEQgHvAREB_gsl6w8NqH2xb4sEY4ivReFDPTbedxeqyC20h4d_bBcLBC6fJTOabmX4doF7TNoDQBcHXBBN-80EwLnIpZTEi7IrjVMtZD_UP5VM0COEH4zGlmPeRfNMNrNbgXTPLovYziFn02vx2ebnJtNWL6NaQhaijC9GZkM1bC_UZOql0HeB8H4fo6_Hhc_qcv74_vUzvX3NDJYu5AGqJZBxKKSohqAQzrnipqcDjiZjoUhhcMCCVxVySosTaSGKZwQJMCZayIRrt5i58u1xBiGrugoG6Tne3q6AIE5QzySRPrbe7VuPbEDxUyrju6rZJL3K1Ilh1jtTWkepkJFptHSmW6OIfvfBurv3mKHe34yBZWDvwKhgHjQHrPJiobOuOTrjcb_5um9kymT-sHheT9E8FZ3--243H |
CitedBy_id | crossref_primary_10_3390_s17112611 crossref_primary_10_1155_2016_1472930 crossref_primary_10_1109_TCST_2016_2547984 crossref_primary_10_1049_iet_smt_2016_0030 crossref_primary_10_1016_j_sjbs_2017_01_026 crossref_primary_10_3390_s17071668 crossref_primary_10_3390_app8030379 crossref_primary_10_1002_asjc_1954 crossref_primary_10_1007_s11071_015_2552_9 crossref_primary_10_1088_1742_6596_679_1_012048 crossref_primary_10_3390_s17071575 crossref_primary_10_3390_s17091972 |
Cites_doi | 10.1109/TAES.2003.1261132 10.1109/TSP.2010.2098401 10.1109/TPWRS.2010.2098423 10.1016/j.automatica.2010.10.005 10.1109/TAES.2011.6034677 10.1109/TPWRS.2010.2098422 |
ContentType | Journal Article |
Copyright | 2013 The Journal of China Universities of Posts and Telecommunications |
Copyright_xml | – notice: 2013 The Journal of China Universities of Posts and Telecommunications |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1016/S1005-8885(13)60016-3 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics |
DocumentTitleAlternate | Maneuvering target tracking by adaptive statistics model |
EndPage | 114 |
ExternalDocumentID | 10_1016_S1005_8885_13_60016_3 S1005888513600163 45922056 |
GroupedDBID | --K --M -SI -S~ .~1 0R~ 123 188 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5VR 5VS 7-5 71M 8P~ 8RM 92H 92I 92L 92R 93N 9D9 9DI AAEDT AAIKJ AALRI AAOAW AAQFI AAXUO ABXDB ADEZE ADMUD ADTZH AECPX AEKER AFUIB AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW BLXMC CAJEI CAJUS CCEZO CHBEP CQIGP CS3 CUBFJ CW9 DU5 EBS EFLBG EJD EO9 EP2 EP3 FA0 FDB FNPLU GBLVA HZ~ J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q-- Q-8 Q38 RIG ROL SDF SDG SES T5K TCJ TGT U1G U5S UGNYK UZ4 W92 ~NJ ~WA AAYXX ABWVN ACRPL ADNMO CITATION 7SP 8FD L7M ~HD |
ID | FETCH-LOGICAL-c283t-7e2d1836eb87f7728ec4f6ba2704979ab7c053e1fd06815b0ac81d3c07ecbed23 |
IEDL.DBID | .~1 |
ISSN | 1005-8885 |
IngestDate | Sun Sep 28 05:58:36 EDT 2025 Tue Jul 01 01:53:44 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Fri Feb 23 02:23:47 EST 2024 Wed Feb 14 10:43:15 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Keywords | state estimation maneuvering target target model statistics relation |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c283t-7e2d1836eb87f7728ec4f6ba2704979ab7c053e1fd06815b0ac81d3c07ecbed23 |
Notes | 11-3486/TN maneuvering target, target model, statistics relation, state estimation A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1372638386 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1372638386 crossref_citationtrail_10_1016_S1005_8885_13_60016_3 crossref_primary_10_1016_S1005_8885_13_60016_3 elsevier_sciencedirect_doi_10_1016_S1005_8885_13_60016_3 chongqing_primary_45922056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-00 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-00 |
PublicationDecade | 2010 |
PublicationTitle | Journal of China universities of posts and telecommunications |
PublicationTitleAlternate | The Journal of China Universities of Posts and Telecommunications |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Osborne, Blair (bib6) 2011; 47 Li, Jilkov (bib1) 2003; 39 Ho (bib5) 2011; 47 Tian, Si, Han (bib8) 2011; 23 Chen, Pang, Li (bib2) 2012; 31 Song, Musicki, Sol (bib7) 2011; 59 Jiang, Yi, Zeng (bib4) 2011; 32 Vasuhi, Vaidehi, Rincy (bib3) 2011 Bian, Li, Chen (bib9) 2011; 26 Bian, Li, Chen (bib10) 2011; 26 Jiang (10.1016/S1005-8885(13)60016-3_bib4) 2011; 32 Tian (10.1016/S1005-8885(13)60016-3_bib8) 2011; 23 Vasuhi (10.1016/S1005-8885(13)60016-3_bib3) 2011 Ho (10.1016/S1005-8885(13)60016-3_bib5) 2011; 47 Bian (10.1016/S1005-8885(13)60016-3_bib9) 2011; 26 Chen (10.1016/S1005-8885(13)60016-3_bib2) 2012; 31 Song (10.1016/S1005-8885(13)60016-3_bib7) 2011; 59 Li (10.1016/S1005-8885(13)60016-3_bib1) 2003; 39 Osborne (10.1016/S1005-8885(13)60016-3_bib6) 2011; 47 Bian (10.1016/S1005-8885(13)60016-3_bib10) 2011; 26 |
References_xml | – volume: 31 start-page: 1502 year: 2012 end-page: 1508 ident: bib2 article-title: AUV sensor fault diagnosis based on STF-singer model publication-title: Chinese Journal of Scientific Instrument – volume: 26 start-page: 1196 year: 2011 end-page: 1208 ident: bib9 article-title: Joint estimation of state and parameter with synchrophasors, Part I: state tacking publication-title: IEEE Transactions on Power Systems – volume: 32 start-page: 343 year: 2011 end-page: 348 ident: bib4 article-title: Maneuvering target tracking using IMM-PF with doppler-aided measurement publication-title: Journal of Astronautics – volume: 26 start-page: 1209 year: 2011 end-page: 1220 ident: bib10 article-title: Joint estimation of state and parameter with synchrophasors, Part II: Parameter tracking publication-title: IEEE Transactions on Power Systems – volume: 59 start-page: 1063 year: 2011 end-page: 1074 ident: bib7 article-title: Target tracking with target state dependent detection publication-title: IEEE Transactions on Signal Processing – volume: 39 start-page: 1333 year: 2003 end-page: 1364 ident: bib1 article-title: Survey of maneuvering target tracking 1: dynamic models publication-title: IEEE Transactions on Aerospace and Electronic Systems – volume: 47 start-page: 2967 year: 2011 end-page: 2974 ident: bib6 article-title: Update to the hybrid conditional averaging performance prediction of the IMM algorithm publication-title: IEEE Transactions on Aerospace and Electronic Systems – start-page: 286 year: 2011 end-page: 290 ident: bib3 article-title: IMM estimator for maneuvering target tracking with improved current statistical model publication-title: Proceedings of the International Conference on Recent Trends in Information Technology (ICRTIT'11), Jun 3–5, 2011, Chennai, India – volume: 47 start-page: 92 year: 2011 end-page: 98 ident: bib5 article-title: A switched IMM-extended viterbi estimator-based algorithm for maneuvering target tracking publication-title: Automatica – volume: 23 start-page: 38 year: 2011 end-page: 42 ident: bib8 article-title: Research of MM algorithm in flying object passive tracking publication-title: Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition – start-page: 286 year: 2011 ident: 10.1016/S1005-8885(13)60016-3_bib3 article-title: IMM estimator for maneuvering target tracking with improved current statistical model – volume: 39 start-page: 1333 issue: 4 year: 2003 ident: 10.1016/S1005-8885(13)60016-3_bib1 article-title: Survey of maneuvering target tracking 1: dynamic models publication-title: IEEE Transactions on Aerospace and Electronic Systems doi: 10.1109/TAES.2003.1261132 – volume: 59 start-page: 1063 issue: 3 year: 2011 ident: 10.1016/S1005-8885(13)60016-3_bib7 article-title: Target tracking with target state dependent detection publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2010.2098401 – volume: 26 start-page: 1209 issue: 3 year: 2011 ident: 10.1016/S1005-8885(13)60016-3_bib10 article-title: Joint estimation of state and parameter with synchrophasors, Part II: Parameter tracking publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2010.2098423 – volume: 47 start-page: 92 issue: 1 year: 2011 ident: 10.1016/S1005-8885(13)60016-3_bib5 article-title: A switched IMM-extended viterbi estimator-based algorithm for maneuvering target tracking publication-title: Automatica doi: 10.1016/j.automatica.2010.10.005 – volume: 32 start-page: 343 issue: 2 year: 2011 ident: 10.1016/S1005-8885(13)60016-3_bib4 article-title: Maneuvering target tracking using IMM-PF with doppler-aided measurement publication-title: Journal of Astronautics – volume: 23 start-page: 38 issue: 1 year: 2011 ident: 10.1016/S1005-8885(13)60016-3_bib8 article-title: Research of MM algorithm in flying object passive tracking publication-title: Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition – volume: 31 start-page: 1502 issue: 7 year: 2012 ident: 10.1016/S1005-8885(13)60016-3_bib2 article-title: AUV sensor fault diagnosis based on STF-singer model publication-title: Chinese Journal of Scientific Instrument – volume: 47 start-page: 2967 issue: 4 year: 2011 ident: 10.1016/S1005-8885(13)60016-3_bib6 article-title: Update to the hybrid conditional averaging performance prediction of the IMM algorithm publication-title: IEEE Transactions on Aerospace and Electronic Systems doi: 10.1109/TAES.2011.6034677 – volume: 26 start-page: 1196 issue: 3 year: 2011 ident: 10.1016/S1005-8885(13)60016-3_bib9 article-title: Joint estimation of state and parameter with synchrophasors, Part I: state tacking publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2010.2098422 |
SSID | ssj0042206 |
Score | 1.6334769 |
Snippet | A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering... A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering... |
SourceID | proquest crossref elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108 |
SubjectTerms | Acceleration Autocorrelation functions China maneuvering target Maneuvering targets Mathematical models On-line systems state estimation Statistics statistics relation target model Tracking 估计性能 加速模型 机动目标跟踪 电流模型 统计模型 自适应模型 跟踪机动目标 马尔可夫模型 |
Title | Maneuvering target tracking by adaptive statistics model |
URI | http://lib.cqvip.com/qk/84121X/201301/45922056.html https://dx.doi.org/10.1016/S1005-8885(13)60016-3 https://www.proquest.com/docview/1372638386 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9jJz2IT9x8UMGDHrqtTZqkRxmOIcyLDnYLSZrqQLo5N8GLf7vfl7bzASJ4bEg-yvf8tfkehJwbm0qeZSJ0kdUhS2MBJqVtyEE3tGQJ0wlWI49u-XDMbibJpEH6dS0MplVWvr_06d5bVyvdipvd-XTavYtwJJ4ExEAxaHPs-MmYQF3vvK_TPFgc-_mauDnE3Z9VPCUFv3gR0UtPJKTYY-FxVjw8Q-T4LVb98No-FA22yVaFIYOr8jV3SMMVu2TzS2fBPSJHunCrV_8UlNnewXKhLf4YD8xboDM9R0cXYEFR2as58ENx9sl4cH3fH4bVkITQAjJYhsLFGZgld0aKHKCydJbl3OhYAPYXqTbCgp25KM96XEaJ6WkLEJXannDWuCymB6RZzAp3SAKZpxnF2lqbZPiZYjjTEoTcS_I0SblokfaaNWpeNsNQLEmxVpe3CKt5pWzVXhynXDypdR4Zslshu1VElWe3oi3SWR-rSf5xQNaCUN8URUEM-OvoWS04BUaENyMgi9nqBfaIGBwRlbz9f_JHZCP2szIw1-WYNJeLlTsBxLI0p14lPwDS9OGV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONAeEJRWLM8gcSiHsJvYsZ0jQqDlsVwKEjfLdhxYCWUXulupF347M06yUCSExDGWPYrmnXhmPoA963IlikLGPnEm5nkq0aSMiwXqhlE84yajbuTBpehf87Ob7GYOjtpeGCqrbHx_7dODt25Wug03u-PhsPs7IUg8hRkDo6At2BdY4ARzgEp98DSr8-BpGgA2aXdM21_aeGoSYfFXwvYDlZjRkIW7UXX7gKHjvWD1xm2HWHSyDEtNEhkd1u-5AnO--g7fXo0WXAU1MJWf_g1PUV3uHU0ejaM_45H9F5nCjMnTRdRRVA9rjgIqzg-4Pjm-OurHDUpC7DA1mMTSpwXapfBWyRJzZeUdL4U1qcTkX-bGSoeG5pOy6AmVZLZnHOaozPWkd9YXKfsJ89Wo8msQqTIvGDXXuqyg7xQruFEo5V5W5lkuZAfWZ6zR43oahuZZTs26ogO85ZV2zXxxgrm417NCMmK3JnbrhOnAbs06cDA71pL84IBqBaH_0xSNQeCjo7ut4DRaEV2NoCxG0z-4R6boiZgS658nvwOL_avBhb44vTzfgK9pAM6gwpdNmJ88Tv0Wpi8Tux3U8xki8OSs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maneuvering+target+tracking+by+adaptive+statistics+model&rft.jtitle=Journal+of+China+universities+of+posts+and+telecommunications&rft.au=JIN%2C+Xue-bo&rft.au=DU%2C+Jing-jing&rft.au=BAO%2C+Jia&rft.date=2013-02-01&rft.pub=Elsevier+Ltd&rft.issn=1005-8885&rft.volume=20&rft.issue=1&rft.spage=108&rft.epage=114&rft_id=info:doi/10.1016%2FS1005-8885%2813%2960016-3&rft.externalDocID=S1005888513600163 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84121X%2F84121X.jpg |