Spatiotemporal features of β-γ phase-amplitude coupling in Parkinson’s disease derived from scalp EEG

Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson’s disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson’s disease, the neuronal mechanisms underlying...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 144; no. 2; pp. 487 - 503
Main Authors Gong, Ruxue, Wegscheider, Mirko, Mühlberg, Christoph, Gast, Richard, Fricke, Christopher, Rumpf, Jost-Julian, Nikulin, Vadim V, Knösche, Thomas R, Classen, Joseph
Format Journal Article
LanguageEnglish
Published England 03.03.2021
Subjects
Online AccessGet full text
ISSN0006-8950
1460-2156
1460-2156
DOI10.1093/brain/awaa400

Cover

Abstract Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson’s disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson’s disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in Parkinson’s disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at rest in 19 patients with Parkinson’s disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson’s disease patients was enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference being statistically significant in the hemisphere contralateral to the clinically more affected side. β and γ signals involved in generating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between the β and γ signals from identical components as opposed to those from different components (originating from distinct spatial locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor severity as indexed by part III of the Movement Disorder Society Unified Parkinson’s Disease Rating Scale. Correlations with parkinsonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex, but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling demonstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude coupling in Parkinson’s disease patients originates from the coupling between distinct neural networks in several brain regions involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only the coupling between β and γ signals from different components appears to have pathophysiological significance, suggesting that therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting phase-amplitude coupling per se.
AbstractList Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson's disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson's disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in Parkinson's disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at rest in 19 patients with Parkinson's disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson's disease patients was enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference being statistically significant in the hemisphere contralateral to the clinically more affected side. β and γ signals involved in generating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between the β and γ signals from identical components as opposed to those from different components (originating from distinct spatial locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor severity as indexed by part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale. Correlations with parkinsonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex, but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling demonstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude coupling in Parkinson's disease patients originates from the coupling between distinct neural networks in several brain regions involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only the coupling between β and γ signals from different components appears to have pathophysiological significance, suggesting that therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting phase-amplitude coupling per se.
Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson's disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson's disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in Parkinson's disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at rest in 19 patients with Parkinson's disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson's disease patients was enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference being statistically significant in the hemisphere contralateral to the clinically more affected side. β and γ signals involved in generating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between the β and γ signals from identical components as opposed to those from different components (originating from distinct spatial locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor severity as indexed by part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale. Correlations with parkinsonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex, but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling demonstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude coupling in Parkinson's disease patients originates from the coupling between distinct neural networks in several brain regions involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only the coupling between β and γ signals from different components appears to have pathophysiological significance, suggesting that therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting phase-amplitude coupling per se.Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson's disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson's disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in Parkinson's disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at rest in 19 patients with Parkinson's disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson's disease patients was enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference being statistically significant in the hemisphere contralateral to the clinically more affected side. β and γ signals involved in generating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between the β and γ signals from identical components as opposed to those from different components (originating from distinct spatial locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor severity as indexed by part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale. Correlations with parkinsonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex, but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling demonstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude coupling in Parkinson's disease patients originates from the coupling between distinct neural networks in several brain regions involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only the coupling between β and γ signals from different components appears to have pathophysiological significance, suggesting that therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting phase-amplitude coupling per se.
Author Rumpf, Jost-Julian
Fricke, Christopher
Classen, Joseph
Wegscheider, Mirko
Knösche, Thomas R
Gast, Richard
Gong, Ruxue
Mühlberg, Christoph
Nikulin, Vadim V
Author_xml – sequence: 1
  givenname: Ruxue
  surname: Gong
  fullname: Gong, Ruxue
  organization: Department of Neurology, Leipzig University Medical Center, Leipzig, Germany, Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
– sequence: 2
  givenname: Mirko
  surname: Wegscheider
  fullname: Wegscheider, Mirko
  organization: Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
– sequence: 3
  givenname: Christoph
  surname: Mühlberg
  fullname: Mühlberg, Christoph
  organization: Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
– sequence: 4
  givenname: Richard
  orcidid: 0000-0002-4445-0340
  surname: Gast
  fullname: Gast, Richard
  organization: Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
– sequence: 5
  givenname: Christopher
  surname: Fricke
  fullname: Fricke, Christopher
  organization: Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
– sequence: 6
  givenname: Jost-Julian
  orcidid: 0000-0002-7357-713X
  surname: Rumpf
  fullname: Rumpf, Jost-Julian
  organization: Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
– sequence: 7
  givenname: Vadim V
  surname: Nikulin
  fullname: Nikulin, Vadim V
  organization: Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
– sequence: 8
  givenname: Thomas R
  surname: Knösche
  fullname: Knösche, Thomas R
  organization: Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
– sequence: 9
  givenname: Joseph
  surname: Classen
  fullname: Classen, Joseph
  organization: Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33257940$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9u1DAQhy1URLeFI1fkI5e0_r_xEVVLQapEJco5mjgTMDh2sJNWvfEavAa8Rx-CJyHLbjkg0dPM4fvN_PQdkYOYIhLynLMTzqw8bTP4eAo3AIqxR2TFlWGV4NockBVjzFS11eyQHJXymTGupDBPyKGUQq-tYivi348w-TThMKYMgfYI05yx0NTTux_V3U86foKCFQxj8NPcIXVpXtb4kfpILyF_8bGk-Ovb90I7X3BhaYfZX2NH-5wGWhyEkW4250_J4x5CwWf7eUw-vN5cnb2pLt6dvz17dVE5UculLgjdMmx524mWa2E1OlejW3O2VtytQfai7pyumWWKK6Gl48KYVktrbVdbeUxOdnfnOMLtDYTQjNkPkG8bzpqts-aPs2bvbAm83AXGnL7OWKZm8MVhCBAxzaURyhgmVW226Is9OrcDdn8P3_tcALkDXE6lZOwb56et4DgtP8N_G1T_pB5u_Bu22p39
CitedBy_id crossref_primary_10_1146_annurev_neuro_092823_104810
crossref_primary_10_1093_sleep_zsae258
crossref_primary_10_34133_research_0484
crossref_primary_10_1186_s12888_022_04422_z
crossref_primary_10_1016_j_brainresbull_2024_110911
crossref_primary_10_1016_j_jneumeth_2021_109282
crossref_primary_10_1016_j_jad_2022_08_022
crossref_primary_10_1016_j_nicl_2022_103266
crossref_primary_10_3390_a16120540
crossref_primary_10_1016_j_expneurol_2022_114210
crossref_primary_10_1016_j_neuroimage_2021_118512
crossref_primary_10_1152_jn_00272_2023
crossref_primary_10_1111_cns_14241
crossref_primary_10_3390_diagnostics13182969
crossref_primary_10_1111_cns_70250
crossref_primary_10_1109_TBME_2023_3250355
crossref_primary_10_1016_j_expneurol_2024_114833
crossref_primary_10_1016_j_brs_2021_11_019
crossref_primary_10_1016_j_clinph_2022_02_010
crossref_primary_10_1111_ner_13486
crossref_primary_10_1093_brain_awac172
crossref_primary_10_3389_fnins_2022_957181
crossref_primary_10_1152_jn_00541_2021
crossref_primary_10_1038_s41598_023_47410_3
crossref_primary_10_1088_1741_2552_ac64c4
crossref_primary_10_1016_j_neucli_2022_102839
crossref_primary_10_1080_14737175_2022_2136030
crossref_primary_10_1186_s41983_024_00839_3
crossref_primary_10_1007_s00332_023_09995_x
crossref_primary_10_1016_j_heares_2022_108668
crossref_primary_10_1016_j_jneumeth_2022_109610
crossref_primary_10_1007_s00221_022_06308_8
crossref_primary_10_3233_JPD_225053
crossref_primary_10_3390_cells11193132
crossref_primary_10_3390_life14030391
crossref_primary_10_1016_j_bbr_2024_115364
crossref_primary_10_3389_fnagi_2022_846017
crossref_primary_10_1177_20552076241297355
crossref_primary_10_3389_fncel_2022_962957
crossref_primary_10_1093_brain_awac121
Cites_doi 10.1016/j.baga.2013.11.003
10.1162/neco_a_01300
10.1371/journal.pcbi.1002298
10.1016/j.biopsych.2015.04.016
10.1002/mds.26424
10.1523/JNEUROSCI.5459-09.2010
10.1038/nrn3241
10.1093/cercor/bhq217
10.1093/brain/aww144
10.1007/BF00276920
10.1097/WCO.0000000000000034
10.1109/53.665
10.1016/j.neuroimage.2014.07.052
10.1073/pnas.0810524105
10.1523/ENEURO.0151-19.2019
10.1016/j.jneumeth.2003.10.009
10.1016/j.clinph.2017.08.001
10.1073/pnas.1214546110
10.1177/155005941004100204
10.1523/JNEUROSCI.2208-16.2017
10.1002/mds.27800
10.1016/j.pbiomolbio.2010.09.015
10.1016/0028-3932(71)90067-4
10.1155/2016/9832839
10.1002/ana.24507
10.1038/nature18933
10.1523/JNEUROSCI.4676-12.2013
10.1152/jn.00629.2017
10.1523/JNEUROSCI.16-08-02671.1996
10.1523/JNEUROSCI.4674-12.2013
10.1088/1741-2560/13/1/016005
10.1523/JNEUROSCI.2848-08.2008
10.1093/cercor/bhx314
10.1038/nn.3997
10.1001/jamaneurol.2015.2397
10.1016/j.tins.2008.09.012
10.1002/hbm.21475
10.1523/JNEUROSCI.4137-14.2015
10.4169/000298910x523344
10.1371/journal.pcbi.1000609
10.1016/j.brs.2018.01.028
10.1016/j.clinph.2016.01.015
10.1155/2011/156869
10.1002/mds.23788
10.1002/mds.22340
10.1016/j.clinph.2016.10.095
10.1152/jn.00141.2019
ContentType Journal Article
Copyright The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1093/brain/awaa400
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 503
ExternalDocumentID 10.1093/brain/awaa400
33257940
10_1093_brain_awaa400
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
0R~
1TH
23N
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAVLN
AAWTL
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXAL
AFYAG
AGINJ
AGKEF
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AIJHB
AJBYB
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
C45
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EMOBN
ENERS
F5P
F9B
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MHKGH
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TLC
TR2
VVN
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YSK
YXANX
ZKX
~91
ADJQC
ADRIX
AFXEN
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
.55
.GJ
1CY
354
3O-
41~
AAGKA
AAJQQ
AAPGJ
AAQQT
AAUQX
AAWDT
AAYJJ
ABDPE
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACBNA
ACFRR
ACPQN
ACUKT
ACVCV
ACZBC
ADMTO
ADTOC
AEHUL
AEKPW
AFFNX
AFFQV
AFSHK
AGKRT
AGMDO
AGORE
AGQPQ
AI.
AJDVS
ANFBD
APJGH
AQDSO
AQKUS
ASAOO
ASPBG
ATDFG
ATTQO
AVNTJ
AVWKF
AZFZN
BZKNY
C1A
CAG
CXTWN
DFGAJ
EIHJH
EJD
ELUNK
FEDTE
HVGLF
MBLQV
MBTAY
MVM
N4W
NTWIH
NU-
NVLIB
O0~
OBFPC
OHT
O~Y
PB-
QBD
RNI
ROZ
RZF
RZO
TCN
TMA
UNPAY
VH1
X7M
XJT
XOL
YQJ
ZCG
ZGI
ZKB
ZXP
ID FETCH-LOGICAL-c2836-8a25b0eb1bd2b15295ecc8ec710741c7a3f28dc58090414253c1266b53999d893
ISSN 0006-8950
1460-2156
IngestDate Tue Aug 19 18:41:02 EDT 2025
Sat Sep 27 23:16:51 EDT 2025
Wed Feb 19 02:28:48 EST 2025
Thu Apr 24 23:03:26 EDT 2025
Wed Oct 01 01:22:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords source analysis
phase-amplitude coupling
spatiotemporal characteristics
Parkinson’s disease
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2836-8a25b0eb1bd2b15295ecc8ec710741c7a3f28dc58090414253c1266b53999d893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4445-0340
0000-0002-7357-713X
OpenAccessLink https://academic.oup.com/brain/article-pdf/144/2/487/36454362/awaa400.pdf
PMID 33257940
PQID 2466034860
PQPubID 23479
PageCount 17
ParticipantIDs unpaywall_primary_10_1093_brain_awaa400
proquest_miscellaneous_2466034860
pubmed_primary_33257940
crossref_citationtrail_10_1093_brain_awaa400
crossref_primary_10_1093_brain_awaa400
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-03
PublicationDateYYYYMMDD 2021-03-03
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2021
References Postuma (2021030904284462800_awaa400-B36) 2015; 30
Ermentrout (2021030904284462800_awaa400-B14) 1981; 12
Glasser (2021030904284462800_awaa400-B17) 2016; 536
Nambu (2021030904284462800_awaa400-B30) 1996; 16
Gast (2021030904284462800_awaa400-B16) 2020; 32
Langdon (2021030904284462800_awaa400-B24) 2011; 105
Ozturk (2021030904284462800_awaa400-B34) 2020; 35
Swann (2021030904284462800_awaa400-B42) 2015; 78
Buzsáki (2021030904284462800_awaa400-B4) 2012; 13
Oostenveld (2021030904284462800_awaa400-B32) 2011; 2011
Delorme (2021030904284462800_awaa400-B12) 2004; 134
Oswal (2021030904284462800_awaa400-B33) 2013; 26
Chen (2021030904284462800_awaa400-B5) 2013; 34
Van Veen (2021030904284462800_awaa400-B45) 1988; 5
Shimamoto (2021030904284462800_awaa400-B39) 2013; 33
Farris (2021030904284462800_awaa400-B15) 2010; 117
Jonmohamadi (2021030904284462800_awaa400-B22) 2014; 101
Voytek (2021030904284462800_awaa400-B47) 2015; 77
Tort (2021030904284462800_awaa400-B43) 2008; 105
West (2021030904284462800_awaa400-B48) 2018; 119
Cole (2021030904284462800_awaa400-B6) 2017; 37
Connolly (2021030904284462800_awaa400-B7) 2015; 35
López-Azcárate (2021030904284462800_awaa400-B25) 2010; 30
Magrinelli (2021030904284462800_awaa400-B26) 2016; 2016
Miller (2021030904284462800_awaa400-B28) 2019; 122
van Wijk (2021030904284462800_awaa400-B46) 2016; 127
Boertien (2021030904284462800_awaa400-B2) 2011; 26
Bruni (2021030904284462800_awaa400-B3) 2018; 223
Haynes (2021030904284462800_awaa400-B19) 2013; 33
Jackson (2021030904284462800_awaa400-B20) 2019; 6
Ray (2021030904284462800_awaa400-B37) 2008; 28
DeLong (2021030904284462800_awaa400-B11) 2015; 72
Jonmohamadi (2021030904284462800_awaa400-B21) 2016; 13
Oldfield (2021030904284462800_awaa400-B31) 1971; 9
Shreve (2021030904284462800_awaa400-B40) 2017; 128
Pasquereau (2021030904284462800_awaa400-B35) 2011; 21
Schroeder (2021030904284462800_awaa400-B38) 2009; 32
Belluscio (2021030904284462800_awaa400-B1) 2014; 3
Tsiokos (2021030904284462800_awaa400-B44) 2017; 128
De Hemptinne (2021030904284462800_awaa400-B9) 2015; 18
DeLong (2021030904284462800_awaa400-B10) 2010; 41
Devergnas (2021030904284462800_awaa400-B13) 2019; 29
de Hemptinne (2021030904284462800_awaa400-B8) 2013; 110
Malekmohammadi (2021030904284462800_awaa400-B27) 2018; 11
Spiegler (2021030904284462800_awaa400-B41) 2011; 7
Miller (2021030904284462800_awaa400-B29) 2009; 5
Goetz (2021030904284462800_awaa400-B18) 2008; 23
Kondylis (2021030904284462800_awaa400-B23) 2016; 139
References_xml – volume: 3
  start-page: 203
  year: 2014
  ident: 2021030904284462800_awaa400-B1
  article-title: Oscillations in the basal ganglia in Parkinson's disease: role of the striatum
  publication-title: Basal Ganglia
  doi: 10.1016/j.baga.2013.11.003
– volume: 32
  start-page: 1615
  year: 2020
  ident: 2021030904284462800_awaa400-B16
  article-title: A mean-field description of bursting dynamics in spiking neural networks with short-term adaptation
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01300
– volume: 7
  start-page: e1002298
  year: 2011
  ident: 2021030904284462800_awaa400-B41
  article-title: Modeling brain resonance phenomena using a neural mass model
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002298
– volume: 77
  start-page: 1089
  year: 2015
  ident: 2021030904284462800_awaa400-B47
  article-title: Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2015.04.016
– volume: 30
  start-page: 1591
  year: 2015
  ident: 2021030904284462800_awaa400-B36
  article-title: MDS clinical diagnostic criteria for Parkinson's disease
  publication-title: Mov Disord
  doi: 10.1002/mds.26424
– volume: 30
  start-page: 6667
  year: 2010
  ident: 2021030904284462800_awaa400-B25
  article-title: Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson's disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5459-09.2010
– volume: 13
  start-page: 407
  year: 2012
  ident: 2021030904284462800_awaa400-B4
  article-title: The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3241
– volume: 21
  start-page: 1362
  year: 2011
  ident: 2021030904284462800_awaa400-B35
  article-title: Primary motor cortex of the parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhq217
– volume: 139
  start-page: 2211
  year: 2016
  ident: 2021030904284462800_awaa400-B23
  article-title: Movement-related dynamics of cortical oscillations in Parkinson’s disease and essential tremor
  publication-title: Brain
  doi: 10.1093/brain/aww144
– volume: 12
  start-page: 327
  year: 1981
  ident: 2021030904284462800_awaa400-B14
  article-title: n: m Phase-locking of weakly coupled oscillators
  publication-title: J Math Biol
  doi: 10.1007/BF00276920
– volume: 26
  start-page: 662
  year: 2013
  ident: 2021030904284462800_awaa400-B33
  article-title: Synchronized neural oscillations and the pathophysiology of Parkinson's disease
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0000000000000034
– volume: 5
  start-page: 4
  year: 1988
  ident: 2021030904284462800_awaa400-B45
  article-title: Beamforming: a versatile approach to spatial filtering
  publication-title: IEEE Assp Mag
  doi: 10.1109/53.665
– volume: 223
  start-page: 1713
  year: 2018
  ident: 2021030904284462800_awaa400-B3
  article-title: Cortical and subcortical connections of parietal and premotor nodes of the monkey hand mirror neuron network
  publication-title: Brain Struct Funct
– volume: 101
  start-page: 720
  year: 2014
  ident: 2021030904284462800_awaa400-B22
  article-title: Source-space ICA for EEG source separation, localization, and time-course reconstruction
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.052
– volume: 105
  start-page: 20517
  year: 2008
  ident: 2021030904284462800_awaa400-B43
  article-title: Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0810524105
– volume: 6
  start-page: ENEURO.0151-19.2019
  year: 2019
  ident: 2021030904284462800_awaa400-B20
  article-title: Characteristics of waveform shape in Parkinson’s disease detected with scalp electroencephalography
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0151-19.2019
– volume: 134
  start-page: 9
  year: 2004
  ident: 2021030904284462800_awaa400-B12
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 128
  start-page: 2165
  year: 2017
  ident: 2021030904284462800_awaa400-B44
  article-title: Pallidal low β-low γ phase-amplitude coupling inversely correlates with Parkinson disease symptoms
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2017.08.001
– volume: 110
  start-page: 4780
  year: 2013
  ident: 2021030904284462800_awaa400-B8
  article-title: Exaggerated phase–amplitude coupling in the primary motor cortex in Parkinson disease
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1214546110
– volume: 41
  start-page: 61
  year: 2010
  ident: 2021030904284462800_awaa400-B10
  article-title: Changing views of basal ganglia circuits and circuit disorders
  publication-title: Clin Eeg Neurosci
  doi: 10.1177/155005941004100204
– volume: 37
  start-page: 4830
  year: 2017
  ident: 2021030904284462800_awaa400-B6
  article-title: Nonsinusoidal beta oscillations reflect cortical pathophysiology in Parkinson's disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2208-16.2017
– volume: 35
  start-page: 91
  year: 2020
  ident: 2021030904284462800_awaa400-B34
  article-title: Distinct subthalamic coupling in the ON state describes motor performance in Parkinson's disease
  publication-title: Mov Disord
  doi: 10.1002/mds.27800
– volume: 105
  start-page: 58
  year: 2011
  ident: 2021030904284462800_awaa400-B24
  article-title: Multi-frequency phase locking in human somatosensory cortex
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2010.09.015
– volume: 9
  start-page: 97
  year: 1971
  ident: 2021030904284462800_awaa400-B31
  article-title: The assessment and analysis of handedness: the Edinburgh inventory
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(71)90067-4
– volume: 2016
  start-page: 1
  year: 2016
  ident: 2021030904284462800_awaa400-B26
  article-title: Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation
  publication-title: Parkinsons Dis
  doi: 10.1155/2016/9832839
– volume: 78
  start-page: 742
  year: 2015
  ident: 2021030904284462800_awaa400-B42
  article-title: Elevated synchrony in Parkinson disease detected with electroencephalography
  publication-title: Ann Neurol
  doi: 10.1002/ana.24507
– volume: 536
  start-page: 171
  year: 2016
  ident: 2021030904284462800_awaa400-B17
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 33
  start-page: 7220
  year: 2013
  ident: 2021030904284462800_awaa400-B39
  article-title: Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in Parkinson's disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4676-12.2013
– volume: 119
  start-page: 1608
  year: 2018
  ident: 2021030904284462800_awaa400-B48
  article-title: Propagation of beta/gamma rhythms in the cortico-basal ganglia circuits of the parkinsonian rat
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00629.2017
– volume: 16
  start-page: 2671
  year: 1996
  ident: 2021030904284462800_awaa400-B30
  article-title: Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-08-02671.1996
– volume: 33
  start-page: 4804
  year: 2013
  ident: 2021030904284462800_awaa400-B19
  article-title: The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4674-12.2013
– volume: 13
  start-page: 016005
  year: 2016
  ident: 2021030904284462800_awaa400-B21
  article-title: Source-space ICA for MEG source imaging
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/13/1/016005
– volume: 28
  start-page: 11526
  year: 2008
  ident: 2021030904284462800_awaa400-B37
  article-title: Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2848-08.2008
– volume: 29
  start-page: 167
  year: 2019
  ident: 2021030904284462800_awaa400-B13
  article-title: Cortical phase–amplitude coupling in a progressive model of parkinsonism in nonhuman primates
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhx314
– volume: 18
  start-page: 779
  year: 2015
  ident: 2021030904284462800_awaa400-B9
  article-title: Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3997
– volume: 72
  start-page: 1354
  year: 2015
  ident: 2021030904284462800_awaa400-B11
  article-title: Basal ganglia circuits as targets for neuromodulation in Parkinson disease
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2015.2397
– volume: 32
  start-page: 9
  year: 2009
  ident: 2021030904284462800_awaa400-B38
  article-title: Low-frequency neuronal oscillations as instruments of sensory selection
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2008.09.012
– volume: 34
  start-page: 852
  year: 2013
  ident: 2021030904284462800_awaa400-B5
  article-title: Dynamic changes of ICA-derived EEG functional connectivity in the resting state
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21475
– volume: 35
  start-page: 6231
  year: 2015
  ident: 2021030904284462800_awaa400-B7
  article-title: Modulations in oscillatory frequency and coupling in globus pallidus with increasing parkinsonian severity
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4137-14.2015
– volume: 117
  start-page: 851
  year: 2010
  ident: 2021030904284462800_awaa400-B15
  article-title: The Gini index and measures of inequality
  publication-title: Am Math Mon
  doi: 10.4169/000298910x523344
– volume: 5
  start-page: e1000609
  year: 2009
  ident: 2021030904284462800_awaa400-B29
  article-title: Den Nijs M. Power-law scaling in the brain surface electric potential
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000609
– volume: 11
  start-page: 607
  year: 2018
  ident: 2021030904284462800_awaa400-B27
  article-title: Pallidal deep brain stimulation modulates excessive cortical high β phase amplitude coupling in Parkinson disease
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2018.01.028
– volume: 127
  start-page: 2010
  year: 2016
  ident: 2021030904284462800_awaa400-B46
  article-title: Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson’s disease
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2016.01.015
– volume: 2011
  start-page: 1
  year: 2011
  ident: 2021030904284462800_awaa400-B32
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2011/156869
– volume: 26
  start-page: 1835
  year: 2011
  ident: 2021030904284462800_awaa400-B2
  article-title: Functional imaging of subthalamic nucleus deep brain stimulation in Parkinson's disease
  publication-title: Mov Disord
  doi: 10.1002/mds.23788
– volume: 23
  start-page: 2129
  year: 2008
  ident: 2021030904284462800_awaa400-B18
  article-title: Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results
  publication-title: Mov Disord
  doi: 10.1002/mds.22340
– volume: 128
  start-page: 128
  year: 2017
  ident: 2021030904284462800_awaa400-B40
  article-title: Subthalamic oscillations and phase amplitude coupling are greater in the more affected hemisphere in Parkinson’s disease
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2016.10.095
– volume: 122
  start-page: 290
  year: 2019
  ident: 2021030904284462800_awaa400-B28
  article-title: Effect of levodopa on electroencephalographic biomarkers of the parkinsonian state
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00141.2019
SSID ssj0014326
Score 2.5275247
Snippet Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson’s...
Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson's...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 487
SubjectTerms Adult
Aged
Beta Rhythm
Cerebral Cortex - physiopathology
Electroencephalography - methods
Female
Gamma Rhythm
Humans
Male
Middle Aged
Neural Pathways - physiopathology
Parkinson Disease - physiopathology
Scalp
Signal Processing, Computer-Assisted
Title Spatiotemporal features of β-γ phase-amplitude coupling in Parkinson’s disease derived from scalp EEG
URI https://www.ncbi.nlm.nih.gov/pubmed/33257940
https://www.proquest.com/docview/2466034860
https://academic.oup.com/brain/article-pdf/144/2/487/36454362/awaa400.pdf
UnpaywallVersion publishedVersion
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1460-2156
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014326
  issn: 1460-2156
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1460-2156
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0014326
  issn: 1460-2156
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1460-2156
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0014326
  issn: 1460-2156
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkLg8IO6Um4zEtofOLLVzfWRV2wltQ4JW6ltkO8mGiJLQNgz4K_wL-B_7TRzHTpayggYvaeVGceTz9Zxjn3O-g9DLyJGBS4VHAsoZsSOHES54RHxmOwH4s44fqXPIwyN3f2q_mTmzTud7K2upXIpX8tvaupL_kSqMgVxVlew_SLZ5KAzAd5AvXEHCcL2UjN9X6dCGXSrtJXHF0lklZ2wOhpt7lFQfrFecgLEiXGWPKy7LnszLIjXVLKru2ZSAeYs6YNOL4P0_gzNalZ8sQJBFbzgcr4SAVXOJtR1B9DGD7_mtY4axSf19V34pW-GgY9hcK6atuU7hn3_MGwSoEP7e4CStE9AaGoTmkVzXq7S4AerzC6oTuFhL5dquRcDxMITYa8ZqPa2JIg0gaUvr2tpmX7AGmilLzKszlhE_5dy2rHPDVwf7j96Go-nBQTgZziZbxSeiWpKp0L3pz3IFXaWe66r2GONZkz8EfiY1pWv6VQ2BK8y5W824a-ZbdXgu7GJuoutlVvCvpzxNW57N5Da6ZbYk-LXG1x3UibO76NqhSbq4h45XYYZrmOE8wWc_yNlP_Bu8cA0v_CHDDby2F9iACxtwYQUuXIELA7juo-loOBnsE9Ofg0hwSl3ic-oIC4y9iKjoq4gx6AM_lp5K8u1Lj7OE-pF0fCuw7D4YByb74A8KRYYcROAoP0AbWZ7FjxDmUsDOIkmsCJQE-NACVjSyeJDIxAvA6HTRTr2IoTTk9aqHShrqJAoWVmsemjXvoq3m9kKztvzpxhe1RELQqypYxrM4LxchtV3XYqpFWxc91KJqHsUYGLrAhl-2G9n9fZ7Hl5jnCbpx_v94ijaW8zJ-Bh7vUjyvkPcLXfqu7Q
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+features+of+%CE%B2-%CE%B3+phase-amplitude+coupling+in+Parkinson%27s+disease+derived+from+scalp+EEG&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Gong%2C+Ruxue&rft.au=Wegscheider%2C+Mirko&rft.au=M%C3%BChlberg%2C+Christoph&rft.au=Gast%2C+Richard&rft.date=2021-03-03&rft.issn=1460-2156&rft.eissn=1460-2156&rft.volume=144&rft.issue=2&rft.spage=487&rft_id=info:doi/10.1093%2Fbrain%2Fawaa400&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon