Spatiotemporal features of β-γ phase-amplitude coupling in Parkinson’s disease derived from scalp EEG
Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson’s disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson’s disease, the neuronal mechanisms underlying...
Saved in:
Published in | Brain (London, England : 1878) Vol. 144; no. 2; pp. 487 - 503 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
03.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-8950 1460-2156 1460-2156 |
DOI | 10.1093/brain/awaa400 |
Cover
Abstract | Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson’s disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson’s disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in Parkinson’s disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at rest in 19 patients with Parkinson’s disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson’s disease patients was enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference being statistically significant in the hemisphere contralateral to the clinically more affected side. β and γ signals involved in generating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between the β and γ signals from identical components as opposed to those from different components (originating from distinct spatial locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor severity as indexed by part III of the Movement Disorder Society Unified Parkinson’s Disease Rating Scale. Correlations with parkinsonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex, but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling demonstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude coupling in Parkinson’s disease patients originates from the coupling between distinct neural networks in several brain regions involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only the coupling between β and γ signals from different components appears to have pathophysiological significance, suggesting that therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting phase-amplitude coupling per se. |
---|---|
AbstractList | Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson's disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson's disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in Parkinson's disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at rest in 19 patients with Parkinson's disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson's disease patients was enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference being statistically significant in the hemisphere contralateral to the clinically more affected side. β and γ signals involved in generating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between the β and γ signals from identical components as opposed to those from different components (originating from distinct spatial locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor severity as indexed by part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale. Correlations with parkinsonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex, but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling demonstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude coupling in Parkinson's disease patients originates from the coupling between distinct neural networks in several brain regions involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only the coupling between β and γ signals from different components appears to have pathophysiological significance, suggesting that therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting phase-amplitude coupling per se. Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson's disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson's disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in Parkinson's disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at rest in 19 patients with Parkinson's disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson's disease patients was enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference being statistically significant in the hemisphere contralateral to the clinically more affected side. β and γ signals involved in generating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between the β and γ signals from identical components as opposed to those from different components (originating from distinct spatial locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor severity as indexed by part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale. Correlations with parkinsonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex, but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling demonstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude coupling in Parkinson's disease patients originates from the coupling between distinct neural networks in several brain regions involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only the coupling between β and γ signals from different components appears to have pathophysiological significance, suggesting that therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting phase-amplitude coupling per se.Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson's disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson's disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in Parkinson's disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at rest in 19 patients with Parkinson's disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson's disease patients was enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference being statistically significant in the hemisphere contralateral to the clinically more affected side. β and γ signals involved in generating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between the β and γ signals from identical components as opposed to those from different components (originating from distinct spatial locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor severity as indexed by part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale. Correlations with parkinsonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex, but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling demonstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude coupling in Parkinson's disease patients originates from the coupling between distinct neural networks in several brain regions involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only the coupling between β and γ signals from different components appears to have pathophysiological significance, suggesting that therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting phase-amplitude coupling per se. |
Author | Rumpf, Jost-Julian Fricke, Christopher Classen, Joseph Wegscheider, Mirko Knösche, Thomas R Gast, Richard Gong, Ruxue Mühlberg, Christoph Nikulin, Vadim V |
Author_xml | – sequence: 1 givenname: Ruxue surname: Gong fullname: Gong, Ruxue organization: Department of Neurology, Leipzig University Medical Center, Leipzig, Germany, Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany – sequence: 2 givenname: Mirko surname: Wegscheider fullname: Wegscheider, Mirko organization: Department of Neurology, Leipzig University Medical Center, Leipzig, Germany – sequence: 3 givenname: Christoph surname: Mühlberg fullname: Mühlberg, Christoph organization: Department of Neurology, Leipzig University Medical Center, Leipzig, Germany – sequence: 4 givenname: Richard orcidid: 0000-0002-4445-0340 surname: Gast fullname: Gast, Richard organization: Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany – sequence: 5 givenname: Christopher surname: Fricke fullname: Fricke, Christopher organization: Department of Neurology, Leipzig University Medical Center, Leipzig, Germany – sequence: 6 givenname: Jost-Julian orcidid: 0000-0002-7357-713X surname: Rumpf fullname: Rumpf, Jost-Julian organization: Department of Neurology, Leipzig University Medical Center, Leipzig, Germany – sequence: 7 givenname: Vadim V surname: Nikulin fullname: Nikulin, Vadim V organization: Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany – sequence: 8 givenname: Thomas R surname: Knösche fullname: Knösche, Thomas R organization: Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany – sequence: 9 givenname: Joseph surname: Classen fullname: Classen, Joseph organization: Department of Neurology, Leipzig University Medical Center, Leipzig, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33257940$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM9u1DAQhy1URLeFI1fkI5e0_r_xEVVLQapEJco5mjgTMDh2sJNWvfEavAa8Rx-CJyHLbjkg0dPM4fvN_PQdkYOYIhLynLMTzqw8bTP4eAo3AIqxR2TFlWGV4NockBVjzFS11eyQHJXymTGupDBPyKGUQq-tYivi348w-TThMKYMgfYI05yx0NTTux_V3U86foKCFQxj8NPcIXVpXtb4kfpILyF_8bGk-Ovb90I7X3BhaYfZX2NH-5wGWhyEkW4250_J4x5CwWf7eUw-vN5cnb2pLt6dvz17dVE5UculLgjdMmx524mWa2E1OlejW3O2VtytQfai7pyumWWKK6Gl48KYVktrbVdbeUxOdnfnOMLtDYTQjNkPkG8bzpqts-aPs2bvbAm83AXGnL7OWKZm8MVhCBAxzaURyhgmVW226Is9OrcDdn8P3_tcALkDXE6lZOwb56et4DgtP8N_G1T_pB5u_Bu22p39 |
CitedBy_id | crossref_primary_10_1146_annurev_neuro_092823_104810 crossref_primary_10_1093_sleep_zsae258 crossref_primary_10_34133_research_0484 crossref_primary_10_1186_s12888_022_04422_z crossref_primary_10_1016_j_brainresbull_2024_110911 crossref_primary_10_1016_j_jneumeth_2021_109282 crossref_primary_10_1016_j_jad_2022_08_022 crossref_primary_10_1016_j_nicl_2022_103266 crossref_primary_10_3390_a16120540 crossref_primary_10_1016_j_expneurol_2022_114210 crossref_primary_10_1016_j_neuroimage_2021_118512 crossref_primary_10_1152_jn_00272_2023 crossref_primary_10_1111_cns_14241 crossref_primary_10_3390_diagnostics13182969 crossref_primary_10_1111_cns_70250 crossref_primary_10_1109_TBME_2023_3250355 crossref_primary_10_1016_j_expneurol_2024_114833 crossref_primary_10_1016_j_brs_2021_11_019 crossref_primary_10_1016_j_clinph_2022_02_010 crossref_primary_10_1111_ner_13486 crossref_primary_10_1093_brain_awac172 crossref_primary_10_3389_fnins_2022_957181 crossref_primary_10_1152_jn_00541_2021 crossref_primary_10_1038_s41598_023_47410_3 crossref_primary_10_1088_1741_2552_ac64c4 crossref_primary_10_1016_j_neucli_2022_102839 crossref_primary_10_1080_14737175_2022_2136030 crossref_primary_10_1186_s41983_024_00839_3 crossref_primary_10_1007_s00332_023_09995_x crossref_primary_10_1016_j_heares_2022_108668 crossref_primary_10_1016_j_jneumeth_2022_109610 crossref_primary_10_1007_s00221_022_06308_8 crossref_primary_10_3233_JPD_225053 crossref_primary_10_3390_cells11193132 crossref_primary_10_3390_life14030391 crossref_primary_10_1016_j_bbr_2024_115364 crossref_primary_10_3389_fnagi_2022_846017 crossref_primary_10_1177_20552076241297355 crossref_primary_10_3389_fncel_2022_962957 crossref_primary_10_1093_brain_awac121 |
Cites_doi | 10.1016/j.baga.2013.11.003 10.1162/neco_a_01300 10.1371/journal.pcbi.1002298 10.1016/j.biopsych.2015.04.016 10.1002/mds.26424 10.1523/JNEUROSCI.5459-09.2010 10.1038/nrn3241 10.1093/cercor/bhq217 10.1093/brain/aww144 10.1007/BF00276920 10.1097/WCO.0000000000000034 10.1109/53.665 10.1016/j.neuroimage.2014.07.052 10.1073/pnas.0810524105 10.1523/ENEURO.0151-19.2019 10.1016/j.jneumeth.2003.10.009 10.1016/j.clinph.2017.08.001 10.1073/pnas.1214546110 10.1177/155005941004100204 10.1523/JNEUROSCI.2208-16.2017 10.1002/mds.27800 10.1016/j.pbiomolbio.2010.09.015 10.1016/0028-3932(71)90067-4 10.1155/2016/9832839 10.1002/ana.24507 10.1038/nature18933 10.1523/JNEUROSCI.4676-12.2013 10.1152/jn.00629.2017 10.1523/JNEUROSCI.16-08-02671.1996 10.1523/JNEUROSCI.4674-12.2013 10.1088/1741-2560/13/1/016005 10.1523/JNEUROSCI.2848-08.2008 10.1093/cercor/bhx314 10.1038/nn.3997 10.1001/jamaneurol.2015.2397 10.1016/j.tins.2008.09.012 10.1002/hbm.21475 10.1523/JNEUROSCI.4137-14.2015 10.4169/000298910x523344 10.1371/journal.pcbi.1000609 10.1016/j.brs.2018.01.028 10.1016/j.clinph.2016.01.015 10.1155/2011/156869 10.1002/mds.23788 10.1002/mds.22340 10.1016/j.clinph.2016.10.095 10.1152/jn.00141.2019 |
ContentType | Journal Article |
Copyright | The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
DOI | 10.1093/brain/awaa400 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 503 |
ExternalDocumentID | 10.1093/brain/awaa400 33257940 10_1093_brain_awaa400 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 -~X .2P .I3 .XZ .ZR 0R~ 1TH 23N 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAIMJ AAJKP AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAVAP AAVLN AAWTL AAYXX ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXAL AFYAG AGINJ AGKEF AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM C45 CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EMOBN ENERS F5P F9B FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MHKGH ML0 N9A NGC NLBLG NOMLY NOYVH O9- OAUYM OAWHX OBOKY OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX RUSNO RW1 RXO TCURE TEORI TJX TLC TR2 VVN W8F WH7 WOQ X7H YAYTL YKOAZ YSK YXANX ZKX ~91 ADJQC ADRIX AFXEN CGR CUY CVF ECM EIF NPM RIG 7X8 .55 .GJ 1CY 354 3O- 41~ AAGKA AAJQQ AAPGJ AAQQT AAUQX AAWDT AAYJJ ABDPE ABIME ABNGD ABPIB ABSMQ ABZEO ACBNA ACFRR ACPQN ACUKT ACVCV ACZBC ADMTO ADTOC AEHUL AEKPW AFFNX AFFQV AFSHK AGKRT AGMDO AGORE AGQPQ AI. AJDVS ANFBD APJGH AQDSO AQKUS ASAOO ASPBG ATDFG ATTQO AVNTJ AVWKF AZFZN BZKNY C1A CAG CXTWN DFGAJ EIHJH EJD ELUNK FEDTE HVGLF MBLQV MBTAY MVM N4W NTWIH NU- NVLIB O0~ OBFPC OHT O~Y PB- QBD RNI ROZ RZF RZO TCN TMA UNPAY VH1 X7M XJT XOL YQJ ZCG ZGI ZKB ZXP |
ID | FETCH-LOGICAL-c2836-8a25b0eb1bd2b15295ecc8ec710741c7a3f28dc58090414253c1266b53999d893 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Tue Aug 19 18:41:02 EDT 2025 Sat Sep 27 23:16:51 EDT 2025 Wed Feb 19 02:28:48 EST 2025 Thu Apr 24 23:03:26 EDT 2025 Wed Oct 01 01:22:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | source analysis phase-amplitude coupling spatiotemporal characteristics Parkinson’s disease |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2836-8a25b0eb1bd2b15295ecc8ec710741c7a3f28dc58090414253c1266b53999d893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4445-0340 0000-0002-7357-713X |
OpenAccessLink | https://academic.oup.com/brain/article-pdf/144/2/487/36454362/awaa400.pdf |
PMID | 33257940 |
PQID | 2466034860 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | unpaywall_primary_10_1093_brain_awaa400 proquest_miscellaneous_2466034860 pubmed_primary_33257940 crossref_citationtrail_10_1093_brain_awaa400 crossref_primary_10_1093_brain_awaa400 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-03 |
PublicationDateYYYYMMDD | 2021-03-03 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2021 |
References | Postuma (2021030904284462800_awaa400-B36) 2015; 30 Ermentrout (2021030904284462800_awaa400-B14) 1981; 12 Glasser (2021030904284462800_awaa400-B17) 2016; 536 Nambu (2021030904284462800_awaa400-B30) 1996; 16 Gast (2021030904284462800_awaa400-B16) 2020; 32 Langdon (2021030904284462800_awaa400-B24) 2011; 105 Ozturk (2021030904284462800_awaa400-B34) 2020; 35 Swann (2021030904284462800_awaa400-B42) 2015; 78 Buzsáki (2021030904284462800_awaa400-B4) 2012; 13 Oostenveld (2021030904284462800_awaa400-B32) 2011; 2011 Delorme (2021030904284462800_awaa400-B12) 2004; 134 Oswal (2021030904284462800_awaa400-B33) 2013; 26 Chen (2021030904284462800_awaa400-B5) 2013; 34 Van Veen (2021030904284462800_awaa400-B45) 1988; 5 Shimamoto (2021030904284462800_awaa400-B39) 2013; 33 Farris (2021030904284462800_awaa400-B15) 2010; 117 Jonmohamadi (2021030904284462800_awaa400-B22) 2014; 101 Voytek (2021030904284462800_awaa400-B47) 2015; 77 Tort (2021030904284462800_awaa400-B43) 2008; 105 West (2021030904284462800_awaa400-B48) 2018; 119 Cole (2021030904284462800_awaa400-B6) 2017; 37 Connolly (2021030904284462800_awaa400-B7) 2015; 35 López-Azcárate (2021030904284462800_awaa400-B25) 2010; 30 Magrinelli (2021030904284462800_awaa400-B26) 2016; 2016 Miller (2021030904284462800_awaa400-B28) 2019; 122 van Wijk (2021030904284462800_awaa400-B46) 2016; 127 Boertien (2021030904284462800_awaa400-B2) 2011; 26 Bruni (2021030904284462800_awaa400-B3) 2018; 223 Haynes (2021030904284462800_awaa400-B19) 2013; 33 Jackson (2021030904284462800_awaa400-B20) 2019; 6 Ray (2021030904284462800_awaa400-B37) 2008; 28 DeLong (2021030904284462800_awaa400-B11) 2015; 72 Jonmohamadi (2021030904284462800_awaa400-B21) 2016; 13 Oldfield (2021030904284462800_awaa400-B31) 1971; 9 Shreve (2021030904284462800_awaa400-B40) 2017; 128 Pasquereau (2021030904284462800_awaa400-B35) 2011; 21 Schroeder (2021030904284462800_awaa400-B38) 2009; 32 Belluscio (2021030904284462800_awaa400-B1) 2014; 3 Tsiokos (2021030904284462800_awaa400-B44) 2017; 128 De Hemptinne (2021030904284462800_awaa400-B9) 2015; 18 DeLong (2021030904284462800_awaa400-B10) 2010; 41 Devergnas (2021030904284462800_awaa400-B13) 2019; 29 de Hemptinne (2021030904284462800_awaa400-B8) 2013; 110 Malekmohammadi (2021030904284462800_awaa400-B27) 2018; 11 Spiegler (2021030904284462800_awaa400-B41) 2011; 7 Miller (2021030904284462800_awaa400-B29) 2009; 5 Goetz (2021030904284462800_awaa400-B18) 2008; 23 Kondylis (2021030904284462800_awaa400-B23) 2016; 139 |
References_xml | – volume: 3 start-page: 203 year: 2014 ident: 2021030904284462800_awaa400-B1 article-title: Oscillations in the basal ganglia in Parkinson's disease: role of the striatum publication-title: Basal Ganglia doi: 10.1016/j.baga.2013.11.003 – volume: 32 start-page: 1615 year: 2020 ident: 2021030904284462800_awaa400-B16 article-title: A mean-field description of bursting dynamics in spiking neural networks with short-term adaptation publication-title: Neural Comput doi: 10.1162/neco_a_01300 – volume: 7 start-page: e1002298 year: 2011 ident: 2021030904284462800_awaa400-B41 article-title: Modeling brain resonance phenomena using a neural mass model publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002298 – volume: 77 start-page: 1089 year: 2015 ident: 2021030904284462800_awaa400-B47 article-title: Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2015.04.016 – volume: 30 start-page: 1591 year: 2015 ident: 2021030904284462800_awaa400-B36 article-title: MDS clinical diagnostic criteria for Parkinson's disease publication-title: Mov Disord doi: 10.1002/mds.26424 – volume: 30 start-page: 6667 year: 2010 ident: 2021030904284462800_awaa400-B25 article-title: Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson's disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5459-09.2010 – volume: 13 start-page: 407 year: 2012 ident: 2021030904284462800_awaa400-B4 article-title: The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes publication-title: Nat Rev Neurosci doi: 10.1038/nrn3241 – volume: 21 start-page: 1362 year: 2011 ident: 2021030904284462800_awaa400-B35 article-title: Primary motor cortex of the parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons publication-title: Cerebral Cortex doi: 10.1093/cercor/bhq217 – volume: 139 start-page: 2211 year: 2016 ident: 2021030904284462800_awaa400-B23 article-title: Movement-related dynamics of cortical oscillations in Parkinson’s disease and essential tremor publication-title: Brain doi: 10.1093/brain/aww144 – volume: 12 start-page: 327 year: 1981 ident: 2021030904284462800_awaa400-B14 article-title: n: m Phase-locking of weakly coupled oscillators publication-title: J Math Biol doi: 10.1007/BF00276920 – volume: 26 start-page: 662 year: 2013 ident: 2021030904284462800_awaa400-B33 article-title: Synchronized neural oscillations and the pathophysiology of Parkinson's disease publication-title: Curr Opin Neurol doi: 10.1097/WCO.0000000000000034 – volume: 5 start-page: 4 year: 1988 ident: 2021030904284462800_awaa400-B45 article-title: Beamforming: a versatile approach to spatial filtering publication-title: IEEE Assp Mag doi: 10.1109/53.665 – volume: 223 start-page: 1713 year: 2018 ident: 2021030904284462800_awaa400-B3 article-title: Cortical and subcortical connections of parietal and premotor nodes of the monkey hand mirror neuron network publication-title: Brain Struct Funct – volume: 101 start-page: 720 year: 2014 ident: 2021030904284462800_awaa400-B22 article-title: Source-space ICA for EEG source separation, localization, and time-course reconstruction publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.052 – volume: 105 start-page: 20517 year: 2008 ident: 2021030904284462800_awaa400-B43 article-title: Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0810524105 – volume: 6 start-page: ENEURO.0151-19.2019 year: 2019 ident: 2021030904284462800_awaa400-B20 article-title: Characteristics of waveform shape in Parkinson’s disease detected with scalp electroencephalography publication-title: eNeuro doi: 10.1523/ENEURO.0151-19.2019 – volume: 134 start-page: 9 year: 2004 ident: 2021030904284462800_awaa400-B12 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 128 start-page: 2165 year: 2017 ident: 2021030904284462800_awaa400-B44 article-title: Pallidal low β-low γ phase-amplitude coupling inversely correlates with Parkinson disease symptoms publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2017.08.001 – volume: 110 start-page: 4780 year: 2013 ident: 2021030904284462800_awaa400-B8 article-title: Exaggerated phase–amplitude coupling in the primary motor cortex in Parkinson disease publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1214546110 – volume: 41 start-page: 61 year: 2010 ident: 2021030904284462800_awaa400-B10 article-title: Changing views of basal ganglia circuits and circuit disorders publication-title: Clin Eeg Neurosci doi: 10.1177/155005941004100204 – volume: 37 start-page: 4830 year: 2017 ident: 2021030904284462800_awaa400-B6 article-title: Nonsinusoidal beta oscillations reflect cortical pathophysiology in Parkinson's disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2208-16.2017 – volume: 35 start-page: 91 year: 2020 ident: 2021030904284462800_awaa400-B34 article-title: Distinct subthalamic coupling in the ON state describes motor performance in Parkinson's disease publication-title: Mov Disord doi: 10.1002/mds.27800 – volume: 105 start-page: 58 year: 2011 ident: 2021030904284462800_awaa400-B24 article-title: Multi-frequency phase locking in human somatosensory cortex publication-title: Prog Biophys Mol Biol doi: 10.1016/j.pbiomolbio.2010.09.015 – volume: 9 start-page: 97 year: 1971 ident: 2021030904284462800_awaa400-B31 article-title: The assessment and analysis of handedness: the Edinburgh inventory publication-title: Neuropsychologia doi: 10.1016/0028-3932(71)90067-4 – volume: 2016 start-page: 1 year: 2016 ident: 2021030904284462800_awaa400-B26 article-title: Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation publication-title: Parkinsons Dis doi: 10.1155/2016/9832839 – volume: 78 start-page: 742 year: 2015 ident: 2021030904284462800_awaa400-B42 article-title: Elevated synchrony in Parkinson disease detected with electroencephalography publication-title: Ann Neurol doi: 10.1002/ana.24507 – volume: 536 start-page: 171 year: 2016 ident: 2021030904284462800_awaa400-B17 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – volume: 33 start-page: 7220 year: 2013 ident: 2021030904284462800_awaa400-B39 article-title: Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in Parkinson's disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4676-12.2013 – volume: 119 start-page: 1608 year: 2018 ident: 2021030904284462800_awaa400-B48 article-title: Propagation of beta/gamma rhythms in the cortico-basal ganglia circuits of the parkinsonian rat publication-title: J Neurophysiol doi: 10.1152/jn.00629.2017 – volume: 16 start-page: 2671 year: 1996 ident: 2021030904284462800_awaa400-B30 article-title: Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-08-02671.1996 – volume: 33 start-page: 4804 year: 2013 ident: 2021030904284462800_awaa400-B19 article-title: The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4674-12.2013 – volume: 13 start-page: 016005 year: 2016 ident: 2021030904284462800_awaa400-B21 article-title: Source-space ICA for MEG source imaging publication-title: J Neural Eng doi: 10.1088/1741-2560/13/1/016005 – volume: 28 start-page: 11526 year: 2008 ident: 2021030904284462800_awaa400-B37 article-title: Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2848-08.2008 – volume: 29 start-page: 167 year: 2019 ident: 2021030904284462800_awaa400-B13 article-title: Cortical phase–amplitude coupling in a progressive model of parkinsonism in nonhuman primates publication-title: Cereb Cortex doi: 10.1093/cercor/bhx314 – volume: 18 start-page: 779 year: 2015 ident: 2021030904284462800_awaa400-B9 article-title: Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease publication-title: Nat Neurosci doi: 10.1038/nn.3997 – volume: 72 start-page: 1354 year: 2015 ident: 2021030904284462800_awaa400-B11 article-title: Basal ganglia circuits as targets for neuromodulation in Parkinson disease publication-title: JAMA Neurol doi: 10.1001/jamaneurol.2015.2397 – volume: 32 start-page: 9 year: 2009 ident: 2021030904284462800_awaa400-B38 article-title: Low-frequency neuronal oscillations as instruments of sensory selection publication-title: Trends Neurosci doi: 10.1016/j.tins.2008.09.012 – volume: 34 start-page: 852 year: 2013 ident: 2021030904284462800_awaa400-B5 article-title: Dynamic changes of ICA-derived EEG functional connectivity in the resting state publication-title: Hum Brain Mapp doi: 10.1002/hbm.21475 – volume: 35 start-page: 6231 year: 2015 ident: 2021030904284462800_awaa400-B7 article-title: Modulations in oscillatory frequency and coupling in globus pallidus with increasing parkinsonian severity publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4137-14.2015 – volume: 117 start-page: 851 year: 2010 ident: 2021030904284462800_awaa400-B15 article-title: The Gini index and measures of inequality publication-title: Am Math Mon doi: 10.4169/000298910x523344 – volume: 5 start-page: e1000609 year: 2009 ident: 2021030904284462800_awaa400-B29 article-title: Den Nijs M. Power-law scaling in the brain surface electric potential publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000609 – volume: 11 start-page: 607 year: 2018 ident: 2021030904284462800_awaa400-B27 article-title: Pallidal deep brain stimulation modulates excessive cortical high β phase amplitude coupling in Parkinson disease publication-title: Brain Stimul doi: 10.1016/j.brs.2018.01.028 – volume: 127 start-page: 2010 year: 2016 ident: 2021030904284462800_awaa400-B46 article-title: Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson’s disease publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2016.01.015 – volume: 2011 start-page: 1 year: 2011 ident: 2021030904284462800_awaa400-B32 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput Intell Neurosci doi: 10.1155/2011/156869 – volume: 26 start-page: 1835 year: 2011 ident: 2021030904284462800_awaa400-B2 article-title: Functional imaging of subthalamic nucleus deep brain stimulation in Parkinson's disease publication-title: Mov Disord doi: 10.1002/mds.23788 – volume: 23 start-page: 2129 year: 2008 ident: 2021030904284462800_awaa400-B18 article-title: Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results publication-title: Mov Disord doi: 10.1002/mds.22340 – volume: 128 start-page: 128 year: 2017 ident: 2021030904284462800_awaa400-B40 article-title: Subthalamic oscillations and phase amplitude coupling are greater in the more affected hemisphere in Parkinson’s disease publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2016.10.095 – volume: 122 start-page: 290 year: 2019 ident: 2021030904284462800_awaa400-B28 article-title: Effect of levodopa on electroencephalographic biomarkers of the parkinsonian state publication-title: J Neurophysiol doi: 10.1152/jn.00141.2019 |
SSID | ssj0014326 |
Score | 2.5275247 |
Snippet | Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson’s... Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson's... |
SourceID | unpaywall proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 487 |
SubjectTerms | Adult Aged Beta Rhythm Cerebral Cortex - physiopathology Electroencephalography - methods Female Gamma Rhythm Humans Male Middle Aged Neural Pathways - physiopathology Parkinson Disease - physiopathology Scalp Signal Processing, Computer-Assisted |
Title | Spatiotemporal features of β-γ phase-amplitude coupling in Parkinson’s disease derived from scalp EEG |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33257940 https://www.proquest.com/docview/2466034860 https://academic.oup.com/brain/article-pdf/144/2/487/36454362/awaa400.pdf |
UnpaywallVersion | publishedVersion |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1460-2156 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014326 issn: 1460-2156 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1460-2156 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0014326 issn: 1460-2156 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1460-2156 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0014326 issn: 1460-2156 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkLg8IO6Um4zEtofOLLVzfWRV2wltQ4JW6ltkO8mGiJLQNgz4K_wL-B_7TRzHTpayggYvaeVGceTz9Zxjn3O-g9DLyJGBS4VHAsoZsSOHES54RHxmOwH4s44fqXPIwyN3f2q_mTmzTud7K2upXIpX8tvaupL_kSqMgVxVlew_SLZ5KAzAd5AvXEHCcL2UjN9X6dCGXSrtJXHF0lklZ2wOhpt7lFQfrFecgLEiXGWPKy7LnszLIjXVLKru2ZSAeYs6YNOL4P0_gzNalZ8sQJBFbzgcr4SAVXOJtR1B9DGD7_mtY4axSf19V34pW-GgY9hcK6atuU7hn3_MGwSoEP7e4CStE9AaGoTmkVzXq7S4AerzC6oTuFhL5dquRcDxMITYa8ZqPa2JIg0gaUvr2tpmX7AGmilLzKszlhE_5dy2rHPDVwf7j96Go-nBQTgZziZbxSeiWpKp0L3pz3IFXaWe66r2GONZkz8EfiY1pWv6VQ2BK8y5W824a-ZbdXgu7GJuoutlVvCvpzxNW57N5Da6ZbYk-LXG1x3UibO76NqhSbq4h45XYYZrmOE8wWc_yNlP_Bu8cA0v_CHDDby2F9iACxtwYQUuXIELA7juo-loOBnsE9Ofg0hwSl3ic-oIC4y9iKjoq4gx6AM_lp5K8u1Lj7OE-pF0fCuw7D4YByb74A8KRYYcROAoP0AbWZ7FjxDmUsDOIkmsCJQE-NACVjSyeJDIxAvA6HTRTr2IoTTk9aqHShrqJAoWVmsemjXvoq3m9kKztvzpxhe1RELQqypYxrM4LxchtV3XYqpFWxc91KJqHsUYGLrAhl-2G9n9fZ7Hl5jnCbpx_v94ijaW8zJ-Bh7vUjyvkPcLXfqu7Q |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+features+of+%CE%B2-%CE%B3+phase-amplitude+coupling+in+Parkinson%27s+disease+derived+from+scalp+EEG&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Gong%2C+Ruxue&rft.au=Wegscheider%2C+Mirko&rft.au=M%C3%BChlberg%2C+Christoph&rft.au=Gast%2C+Richard&rft.date=2021-03-03&rft.issn=1460-2156&rft.eissn=1460-2156&rft.volume=144&rft.issue=2&rft.spage=487&rft_id=info:doi/10.1093%2Fbrain%2Fawaa400&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |