Posttranslational regulation of plant membrane transporters
SUMMARY The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintain...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 121; no. 3; pp. e17262 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-7412 1365-313X 1365-313X |
DOI | 10.1111/tpj.17262 |
Cover
Abstract | SUMMARY
The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi‐layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved.
Significance Statement
Plant membrane transporters are tightly regulated to maintain the precise fluxes required for cellular function. Although existing examples demonstrate the crucial role of posttranslational modifications (PTMs) in modulating key transporter properties, they remain limited with few recent advances. This review consolidates current knowledge on PTMs affecting plant membrane transporters and suggests future research directions to clarify how gradual modulation of transporter function is achieved. |
---|---|
AbstractList | The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi-layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved.The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi-layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved. The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi-layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved. The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi‐layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved. Plant membrane transporters are tightly regulated to maintain the precise fluxes required for cellular function. Although existing examples demonstrate the crucial role of posttranslational modifications (PTMs) in modulating key transporter properties, they remain limited with few recent advances. This review consolidates current knowledge on PTMs affecting plant membrane transporters and suggests future research directions to clarify how gradual modulation of transporter function is achieved. SUMMARY The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi‐layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved. Significance Statement Plant membrane transporters are tightly regulated to maintain the precise fluxes required for cellular function. Although existing examples demonstrate the crucial role of posttranslational modifications (PTMs) in modulating key transporter properties, they remain limited with few recent advances. This review consolidates current knowledge on PTMs affecting plant membrane transporters and suggests future research directions to clarify how gradual modulation of transporter function is achieved. |
Author | Niño‐González, María Duque, Paula |
Author_xml | – sequence: 1 givenname: María surname: Niño‐González fullname: Niño‐González, María email: mfninog@gmail.com organization: GIMM – Gulbenkian Institute for Molecular Medicine – sequence: 2 givenname: Paula surname: Duque fullname: Duque, Paula email: paula.duque@gimm.pt organization: GIMM – Gulbenkian Institute for Molecular Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39931795$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0EtLAzEQB_AgFfvQg19A9qiHrXlnF09SfFKwhwreQro7kS37MtlF-u2N3epNzGXI8Jth-E_RqG5qQOic4DkJ77prt3OiqKRHaEKYFDEj7G2EJjiVOFac0DGaer_FmCgm-QkaszRlRKVigm5Wje86Z2pfmq5oalNGDt774RM1NmpLU3dRBdUmIIj2tG1cB86fomNrSg9nhzpDr_d368VjvHx5eFrcLuOMJozGFPM8xZwDFTlVuQWiFBiRWKkkBpNQmoPNWOilLMmz0N9QmpA8k1YoYgWbocthb-uajx58p6vCZ1CGy6DpvWYUY0ZTrtj_lEjBieBSBXpxoP2mgly3rqiM2-mfbAK4GkDmGu8d2F9CsP7OXYfc9T73YK8H-1mUsPsb6vXqeZj4AsJag2E |
Cites_doi | 10.1105/tpc.108.061994 10.1104/pp.106.094243 10.1093/jxb/erz230 10.1038/s41477‐021‐01040‐7 10.1093/plphys/kiae124 10.1016/j.cell.2023.04.027 10.1093/plcell/koab141 10.1105/tpc.009787 10.1111/pce.13100 10.1042/BJ20060569 10.1371/journal.pbio.1001076 10.1105/tpc.110.078360 10.1016/j.mcpro.2023.100685 10.1073/pnas.1200824109 10.1038/s41598‐020‐70230‐8 10.1038/nature13116 10.1093/plcell/koae177 10.1073/pnas.1100659108 10.1016/j.cub.2023.04.029 10.1073/pnas.1912754117 10.1105/tpc.10.3.451 10.1105/tpc.112.105999 10.1074/jbc.M307982200 10.1105/tpc.113.115998 10.1074/mcp.M700566-MCP200 10.1105/tpc.109.068593 10.1111/jipb.12858 10.1038/ncomms10430 10.1021/bi050565d 10.1111/tpj.15239 10.1111/pbi.13003 10.1016/j.febslet.2005.06.082 10.1093/nar/gkab945 10.1111/pbi.13414 10.1186/s12284‐023‐00666‐9 10.1016/j.pbi.2017.06.006 10.1111/tpj.13516 10.1038/ncb1369 10.1038/nature05579 10.1038/nature04316 10.1038/s41477‐019‐0376‐1 10.1105/tpc.17.00452 10.1093/plcell/koaa020 10.1104/pp.113.232496 10.1016/j.jplph.2014.06.009 10.1038/s41467‐024‐53411‐1 10.1016/j.envexpbot.2020.104367 10.1093/plphys/kiab023 10.1093/pcp/pcab008 10.1093/jxb/ery165 10.1038/nature13074 10.1002/1873‐3468.12576 10.1016/j.cell.2009.07.004 10.1074/jbc.RA120.014104 10.3390/plants11243572 10.3390/cells11223651 10.1105/tpc.110.081067 10.1083/jcb.118.2.481 10.1071/FP21153 10.1111/j.1365‐313X.2009.03964.x 10.1105/tpc.113.116012 10.1105/tpc.114.135335 10.1105/tpc.113.120311 10.1104/pp.104.044891 10.1002/1873‐3468.14706 10.1074/mcp.M113.028241 10.1073/pnas.2204574119 10.1016/j.molcel.2018.02.009 10.1111/pce.12522 10.1038/s41467‐024‐45236‐9 10.15252/msb.20177819 10.1038/s41467‐024‐45248‐5 10.1074/jbc.M110.184929 10.1111/pce.13349 10.1073/pnas.1018921108 10.1038/emboj.2012.120 10.1016/j.pbi.2021.102146 10.3390/ijms241813798 10.1016/j.plaphy.2020.02.009 10.1016/j.molp.2015.11.002 10.1016/j.molp.2020.11.004 10.1111/nph.19712 10.1016/j.cub.2019.09.018 |
ContentType | Journal Article |
Copyright | 2025 Society for Experimental Biology and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2025 Society for Experimental Biology and John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1111/tpj.17262 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | n/a |
ExternalDocumentID | 39931795 10_1111_tpj_17262 TPJ17262 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Fundação para a Ciência e a Tecnologia funderid: 2022.03584.PTDC; PTDC/ASP‐PLA/2550/2021; PTDC/ASP‐PLA/6105/2020; UIDB/04551/2020 – fundername: Fundação para a Ciência e a Tecnologia grantid: UIDB/04551/2020 – fundername: Fundação para a Ciência e a Tecnologia grantid: 2022.03584.PTDC – fundername: Fundação para a Ciência e a Tecnologia grantid: PTDC/ASP-PLA/2550/2021 – fundername: Fundação para a Ciência e a Tecnologia grantid: PTDC/ASP-PLA/6105/2020 |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7S9 L.6 |
ID | FETCH-LOGICAL-c2832-204d9044e25d27dfe177ea58f6760ea822defc37ea938dc8f6b2281dc6f571f53 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 1365-313X |
IngestDate | Fri Jul 11 18:30:29 EDT 2025 Fri Jul 11 06:38:26 EDT 2025 Thu May 08 05:29:44 EDT 2025 Tue Jul 01 05:11:48 EDT 2025 Fri Feb 14 09:50:45 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Arabidopsis thaliana membrane transporter posttranslational modifications ubiquitination phosphorylation |
Language | English |
License | 2025 Society for Experimental Biology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2832-204d9044e25d27dfe177ea58f6760ea822defc37ea938dc8f6b2281dc6f571f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doi.org/10.1111/tpj.17262 |
PMID | 39931795 |
PQID | 3165415467 |
PQPubID | 23479 |
PageCount | 3 |
ParticipantIDs | proquest_miscellaneous_3200329473 proquest_miscellaneous_3165415467 pubmed_primary_39931795 crossref_primary_10_1111_tpj_17262 wiley_primary_10_1111_tpj_17262_TPJ17262 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 2025-Feb 20250201 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2025 |
References | 2015; 38 2013; 25 2023; 33 2023; 186 2020; 62 2007; 143 2005; 579 2019; 17 2014; 26 2003; 15 2008; 7 2017; 591 2018; 41 2022; 65 2020; 10 2014; 171 2024; 36 2020; 18 2010; 22 2023; 24 2021; 33 2004; 135 2020; 295 2017; 39 2013; 12 2024; 195 2019; 29 2011; 23 2024; 23 1998; 10 2014; 164 1992; 2 2011; 286 2006; 400 2021; 48 2006; 439 2019; 70 2009; 21 2007; 446 2019; 5 2022; 50 2009; 60 2023; 16 2021; 106 2006; 8 2020; 149 2021; 184 2006 2024; 243 2017; 29 2021; 185 2022; 119 2024; 15 2005; 44 2012; 31 2018; 69 2009; 138 2012; 109 2011; 9 2021; 14 2016; 7 2014; 507 2011; 108 2015; 27 2017; 90 2004; 279 2019; 42 2023; 597 2022; 8 2017; 13 2020; 117 2022; 11 2021; 62 2016; 9 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Taiz L. (e_1_2_9_61_1) 2006 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 90 start-page: 1040 year: 2017 end-page: 1051 article-title: OsNLA1, a RING‐type ubiquitin ligase, maintains phosphate homeostasis in via degradation of phosphate transporters publication-title: The Plant Journal – volume: 41 start-page: 1139 year: 2018 end-page: 1153 article-title: Oxidative stress‐triggered interactions between the succinyl‐ and acetyl‐proteomes of rice leaves publication-title: Plant, Cell & Environment – volume: 62 start-page: 865 year: 2020 end-page: 876 article-title: Phosphorylation at Ser28 stabilizes the Arabidopsis nitrate transporter NRT2.1 in response to nitrate limitation publication-title: Journal of Integrative Plant Biology – volume: 27 start-page: 711 year: 2015 end-page: 723 article-title: The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels publication-title: Plant Cell – volume: 9 start-page: 323 year: 2016 end-page: 337 article-title: Plasma membrane H+‐ATPase regulation in the center of plant physiology publication-title: Molecular Plant – volume: 185 start-page: 1483 year: 2021 end-page: 1488 article-title: Large‐scale identification of ubiquitination sites on membrane‐associated proteins in seedlings publication-title: Plant Physiology – volume: 108 start-page: E450 year: 2011 end-page: E458 article-title: Monoubiquitin‐dependent endocytosis of the IRON‐REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 8 start-page: 68 year: 2022 end-page: 77 article-title: Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought publication-title: Nature Plants – volume: 7 year: 2016 article-title: Pin1At regulates PIN1 polar localization and root gravitropism publication-title: Nature Communications – volume: 117 start-page: 6223 year: 2020 end-page: 6230 article-title: Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2 publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 42 start-page: 918 year: 2019 end-page: 930 article-title: A CIPK protein kinase targets sucrose transporter MdSUT2.2 at Ser254 for phosphorylation to enhance salt tolerance publication-title: Plant, Cell & Environment – volume: 24 year: 2023 article-title: Plant aquaporin gating is reversed by phosphorylation on intracellular loop D—evidence from molecular dynamics simulations publication-title: International Journal of Molecular Sciences – volume: 25 start-page: 4044 year: 2013 end-page: 4060 article-title: Identification of downstream components of ubiquitin‐conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots publication-title: Plant Cell – volume: 29 start-page: 2552 year: 2017 end-page: 2569 article-title: ABA‐induced stomatal closure involves ALMT4, a phosphorylation‐dependent vacuolar anion channel of Arabidopsis publication-title: Plant Cell – volume: 25 start-page: 202 year: 2013 end-page: 214 article-title: Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane publication-title: Plant Cell – volume: 69 start-page: 953 year: 2018 end-page: 964.e5 article-title: Metal sensing by the IRT1 transporter‐receptor orchestrates its own degradation and plant metal nutrition publication-title: Molecular Cell – volume: 7 start-page: 1019 year: 2008 end-page: 1030 article-title: Multiple phosphorylations in the C‐terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of AtPIP2;1 in response to salt stress publication-title: Molecular & Cellular Proteomics – volume: 9 year: 2011 article-title: phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism publication-title: PLoS Biology – volume: 50 start-page: D1491 year: 2022 end-page: D1499 article-title: qPTMplants: an integrative database of quantitative post‐translational modifications in plants publication-title: Nucleic Acids Research – volume: 70 start-page: 4919 year: 2019 end-page: 4930 article-title: Ammonium and nitrate regulate NH4+ uptake activity of Arabidopsis ammonium transporter AtAMT1;3 via phosphorylation at multiple C‐terminal sites publication-title: Journal of Experimental Botany – volume: 15 start-page: 1194 year: 2024 article-title: Phosphorylation of plasma membrane H+‐ATPase Thr881 participates in light‐induced stomatal opening publication-title: Nature Communications – volume: 15 start-page: 1195 year: 2024 article-title: Light‐induced stomatal opening requires phosphorylation of the C‐terminal autoinhibitory domain of plasma membrane H+‐ATPase publication-title: Nature Communications – volume: 143 start-page: 1651 year: 2007 end-page: 1659 article-title: Regulation of NH4+ transport by essential cross talk between AMT monomers through the carboxyl tails publication-title: Plant Physiology – volume: 579 start-page: 4417 year: 2005 end-page: 4422 article-title: Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation publication-title: FEBS Letters – volume: 22 start-page: 3295 year: 2010 end-page: 3304 article-title: The ER‐localized TWD1 Immunophilin is necessary for localization of multidrug resistance‐like proteins required for polar auxin transport in Arabidopsis roots publication-title: Plant Cell – volume: 279 start-page: 207 year: 2004 end-page: 215 article-title: Regulation of vacuolar Na+/H+ exchange in by the salt‐overly‐sensitive (SOS) pathway publication-title: Journal of Biological Chemistry – volume: 65 year: 2022 article-title: Phosphorylation control of PIN auxin transporters publication-title: Current Opinion in Plant Biology – volume: 597 start-page: 2048 year: 2023 end-page: 2058 article-title: Phosphorylation by CIPK23 regulates the high‐affinity Mn transporter NRAMP1 in Arabidopsis publication-title: FEBS Letters – volume: 15 start-page: 9090 year: 2024 article-title: The Bor1 elevator transport cycle is subject to autoinhibition and activation publication-title: Nature Communications – volume: 106 start-page: 1328 year: 2021 end-page: 1337 article-title: Manganese triggers phosphorylation‐mediated endocytosis of the Arabidopsis metal transporter NRAMP1 publication-title: The Plant Journal – volume: 39 start-page: 123 year: 2017 end-page: 128 article-title: Regulation of potassium transport and signaling in plants publication-title: Current Opinion in Plant Biology – volume: 23 start-page: 1523 year: 2011 end-page: 1535 article-title: high‐affinity phosphate transporters exhibit multiple levels of posttranslational regulation publication-title: Plant Cell – volume: 31 start-page: 2965 year: 2012 end-page: 2980 2980 article-title: Regulation of ABCB1/PGP1‐catalysed auxin transport by linker phosphorylation publication-title: The EMBO Journal – volume: 29 start-page: 3778 year: 2019 end-page: 3790.e8 article-title: The receptor kinases BAK1/SERK4 regulate Ca2+ channel‐mediated cellular homeostasis for cell death containment publication-title: Current Biology – volume: 33 start-page: 420 year: 2021 end-page: 438 article-title: Transport‐coupled ubiquitination of the borate transporter BOR1 for its boron‐dependent degradation publication-title: Plant Cell – volume: 38 start-page: 2012 year: 2015 end-page: 2022 article-title: Increased phosphate transport of Pht1;1 by site‐directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions publication-title: Plant, Cell & Environment – volume: 16 start-page: 54 year: 2023 article-title: Phosphate transporter OsPT4, ubiquitinated by E3 ligase OsAIRP2, plays a crucial role in phosphorus and nitrogen translocation and consumption in germinating seed publication-title: Rice – volume: 14 start-page: 151 year: 2021 end-page: 165 article-title: Pho‐view of auxin: reversible protein phosphorylation in auxin biosynthesis, transport and signaling publication-title: Molecular Plant – volume: 48 start-page: 1199 year: 2021 end-page: 1212 article-title: Post‐translational regulation of the membrane transporters contributing to salt tolerance in plants publication-title: Functional Plant Biology – volume: 33 start-page: 2008 year: 2023 end-page: 2023.e8 article-title: An LRR receptor kinase controls ABC transporter substrate preferences during plant growth‐defense decisions publication-title: Current Biology – volume: 25 start-page: 4061 year: 2013 end-page: 4074 article-title: NITROGEN LIMITATION ADAPTATION, a target of MicroRNA827, mediates degradation of plasma membrane–localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis publication-title: Plant Cell – volume: 108 start-page: 2611 year: 2011 end-page: 2616 article-title: Activation of the plasma membrane Na/H antiporter salt‐overly‐sensitive 1 (SOS1) by phosphorylation of an auto‐inhibitory C‐terminal domain publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 439 start-page: 688 year: 2006 end-page: 694 article-title: Structural mechanism of plant aquaporin gating publication-title: Nature – volume: 18 start-page: 2406 year: 2020 end-page: 2419 article-title: Maize ZmPT7 regulates pi uptake and redistribution which is modulated by phosphorylation publication-title: Plant Biotechnology Journal – volume: 62 start-page: 543 year: 2021 end-page: 552 article-title: Posttranslational modifications: regulation of nitrogen utilization and signaling publication-title: Plant & Cell Physiology – volume: 507 start-page: 73 year: 2014 end-page: 77 article-title: Crystal structure of the plant dual‐affinity nitrate transporter NRT1.1 publication-title: Nature – volume: 109 start-page: 8322 year: 2012 end-page: 8327 article-title: Lysine63‐linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 17 start-page: 625 year: 2019 end-page: 637 article-title: An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought publication-title: Plant Biotechnology Journal – volume: 69 start-page: 4511 year: 2018 end-page: 4527 article-title: Ubiquitylation in plants: signaling hub for the integration of environmental signals publication-title: Journal of Experimental Botany – volume: 591 start-page: 656 year: 2017 end-page: 666 article-title: Identification of amino acid residues important for the arsenic resistance function of Arabidopsis ABCC1 publication-title: FEBS Letters – volume: 195 start-page: 1005 year: 2024 end-page: 1024 article-title: Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato publication-title: Plant Physiology – volume: 295 start-page: 13094 year: 2020 end-page: 13105 article-title: Auxin‐transporting ABC transporters are defined by a conserved D/E‐P motif regulated by a prolylisomerase publication-title: Journal of Biological Chemistry – volume: 119 year: 2022 article-title: Ca ‐dependent phosphorylation of NRAMP1 by CPK21 and CPK23 facilitates manganese uptake and homeostasis in Arabidopsis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 21 start-page: 3610 year: 2009 end-page: 3622 article-title: Feedback inhibition of ammonium uptake by a phospho‐dependent allosteric mechanism in Arabidopsis publication-title: Plant Cell – volume: 13 start-page: 949 year: 2017 article-title: Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis publication-title: Molecular Systems Biology – volume: 8 start-page: 249 year: 2006 end-page: 256 article-title: Intracellular trafficking and proteolysis of the Arabidopsis auxin‐efflux facilitator PIN2 are involved in root gravitropism publication-title: Nature Cell Biology – volume: 26 start-page: 454 year: 2014 end-page: 464 article-title: NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the PHOSPHATE transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis publication-title: Plant Cell – volume: 507 start-page: 68 year: 2014 end-page: 72 article-title: Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1 publication-title: Nature – volume: 184 year: 2021 article-title: Dynamic role of aquaporin transport system under drought stress in plants publication-title: Environmental and Experimental Botany – start-page: 95 year: 2006 end-page: 121 – volume: 44 start-page: 14443 year: 2005 end-page: 14454 article-title: Phosphorylation of aquaporin PvTIP3;1 defined by mass spectrometry and molecular modeling publication-title: Biochemistry – volume: 60 start-page: 411 year: 2009 end-page: 423 article-title: Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat publication-title: The Plant Journal – volume: 36 start-page: 4356 year: 2024 end-page: 4371 article-title: Differential phosphorylation of Ca2+‐permeable channel CYCLIC NUCLEOTIDE–GATED CHANNEL20 modulates calcium‐mediated freezing tolerance in Arabidopsis publication-title: Plant Cell – volume: 10 start-page: 451 year: 1998 end-page: 459 article-title: Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation publication-title: Plant Cell – volume: 446 start-page: 195 year: 2007 end-page: 198 article-title: A cytosolic trans‐activation domain essential for ammonium uptake publication-title: Nature – volume: 400 start-page: 189 year: 2006 end-page: 197 article-title: Methylation of aquaporins in plant plasma membrane publication-title: Biochemical Journal – volume: 12 start-page: 3886 year: 2013 end-page: 3897 article-title: Coordinated post‐translational responses of aquaporins to abiotic and nutritional stimuli in Arabidopsis roots publication-title: Molecular & Cellular Proteomics – volume: 171 start-page: 1401 year: 2014 end-page: 1412 article-title: The Camelina aquaporin CsPIP2;1 is regulated by phosphorylation at Ser273, but not at Ser277, of the C‐terminus and is involved in salt‐ and drought‐stress responses publication-title: Journal of Plant Physiology – volume: 135 start-page: 2318 year: 2004 end-page: 2329 article-title: Novel regulation of Aquaporins during osmotic stress publication-title: Plant Physiology – volume: 10 start-page: 13454 year: 2020 article-title: Proteome and lysine acetylome analysis reveals insights into the molecular mechanism of seed germination in wheat publication-title: Scientific Reports – volume: 186 start-page: 2329 year: 2023 end-page: 2344.e20 article-title: A phospho‐switch constrains BTL2‐mediated phytocytokine signaling in plant immunity publication-title: Cell – volume: 33 start-page: 2883 year: 2021 end-page: 2898 article-title: ERAD‐related E2 and E3 enzymes modulate the drought response by regulating the stability of PIP2 aquaporins publication-title: Plant Cell – volume: 2 start-page: 481 year: 1992 end-page: 490 article-title: Topology and phosphorylation of soybean nodulin‐26, an intrinsic protein of the peribacteroid membrane publication-title: The Journal of Cell Biology – volume: 23 year: 2024 article-title: Protein phosphorylation orchestrates acclimations of Arabidopsis plants to environmental pH publication-title: Molecular & Cellular Proteomics – volume: 5 start-page: 290 year: 2019 end-page: 299 article-title: In rose, transcription factor PTM balances growth and drought survival via PIP2;1 aquaporin publication-title: Nature Plants – volume: 21 start-page: 622 year: 2009 end-page: 641 article-title: Drought stress‐induced Rma1H1, a RING membrane‐anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants publication-title: Plant Cell – volume: 15 start-page: 981 year: 2003 end-page: 991 article-title: Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals publication-title: Plant Cell – volume: 164 start-page: 1401 year: 2014 end-page: 1414 article-title: The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism publication-title: Plant Physiology – volume: 286 start-page: 6175 year: 2011 end-page: 6183 article-title: High boron‐induced ubiquitination regulates vacuolar sorting of the BOR1 borate transporter in publication-title: Journal of Biological Chemistry – volume: 11 year: 2022 article-title: Single‐molecule and vesicle trafficking analysis of ubiquitination involved in the activity of ammonium transporter AMT1;3 in Arbidopsis under high ammonium stress publication-title: Cells – volume: 149 start-page: 178 year: 2020 end-page: 189 article-title: Versatile roles of aquaporin in physiological processes and stress tolerance in plants publication-title: Plant Physiology and Biochemistry – volume: 138 start-page: 1184 year: 2009 end-page: 1194 article-title: CHL1 functions as a nitrate sensor in plants publication-title: Cell – volume: 11 year: 2022 article-title: Histone acetyltransferase GCN5 affects auxin transport during root growth by modulating histone acetylation and gene expression of PINs publication-title: Plants – volume: 243 start-page: 1795 issue: 5 year: 2024 end-page: 1809 article-title: CPK10 protein kinase regulates Arabidopsis tolerance to boron deficiency through phosphorylation and activation of BOR1 transporter publication-title: New Phytologist – ident: e_1_2_9_38_1 doi: 10.1105/tpc.108.061994 – ident: e_1_2_9_48_1 doi: 10.1104/pp.106.094243 – ident: e_1_2_9_72_1 doi: 10.1093/jxb/erz230 – ident: e_1_2_9_9_1 doi: 10.1038/s41477‐021‐01040‐7 – ident: e_1_2_9_84_1 doi: 10.1093/plphys/kiae124 – ident: e_1_2_9_77_1 doi: 10.1016/j.cell.2023.04.027 – ident: e_1_2_9_10_1 doi: 10.1093/plcell/koab141 – ident: e_1_2_9_21_1 doi: 10.1105/tpc.009787 – ident: e_1_2_9_83_1 doi: 10.1111/pce.13100 – ident: e_1_2_9_56_1 doi: 10.1042/BJ20060569 – ident: e_1_2_9_11_1 doi: 10.1371/journal.pbio.1001076 – ident: e_1_2_9_71_1 doi: 10.1105/tpc.110.078360 – ident: e_1_2_9_30_1 doi: 10.1016/j.mcpro.2023.100685 – ident: e_1_2_9_39_1 doi: 10.1073/pnas.1200824109 – ident: e_1_2_9_22_1 doi: 10.1038/s41598‐020‐70230‐8 – ident: e_1_2_9_50_1 doi: 10.1038/nature13116 – ident: e_1_2_9_51_1 doi: 10.1093/plcell/koae177 – ident: e_1_2_9_4_1 doi: 10.1073/pnas.1100659108 – ident: e_1_2_9_3_1 doi: 10.1016/j.cub.2023.04.029 – ident: e_1_2_9_74_1 doi: 10.1073/pnas.1912754117 – ident: e_1_2_9_33_1 doi: 10.1105/tpc.10.3.451 – ident: e_1_2_9_66_1 doi: 10.1105/tpc.112.105999 – ident: e_1_2_9_54_1 doi: 10.1074/jbc.M307982200 – ident: e_1_2_9_29_1 doi: 10.1105/tpc.113.115998 – ident: e_1_2_9_53_1 doi: 10.1074/mcp.M700566-MCP200 – ident: e_1_2_9_37_1 doi: 10.1105/tpc.109.068593 – ident: e_1_2_9_85_1 doi: 10.1111/jipb.12858 – ident: e_1_2_9_73_1 doi: 10.1038/ncomms10430 – ident: e_1_2_9_12_1 doi: 10.1021/bi050565d – ident: e_1_2_9_7_1 doi: 10.1111/tpj.15239 – ident: e_1_2_9_44_1 doi: 10.1111/pbi.13003 – ident: e_1_2_9_63_1 doi: 10.1016/j.febslet.2005.06.082 – ident: e_1_2_9_75_1 doi: 10.1093/nar/gkab945 – ident: e_1_2_9_67_1 doi: 10.1111/pbi.13414 – ident: e_1_2_9_60_1 doi: 10.1186/s12284‐023‐00666‐9 – ident: e_1_2_9_69_1 doi: 10.1016/j.pbi.2017.06.006 – ident: e_1_2_9_79_1 doi: 10.1111/tpj.13516 – ident: e_1_2_9_2_1 doi: 10.1038/ncb1369 – ident: e_1_2_9_42_1 doi: 10.1038/nature05579 – ident: e_1_2_9_64_1 doi: 10.1038/nature04316 – ident: e_1_2_9_81_1 doi: 10.1038/s41477‐019‐0376‐1 – ident: e_1_2_9_15_1 doi: 10.1105/tpc.17.00452 – ident: e_1_2_9_76_1 doi: 10.1093/plcell/koaa020 – ident: e_1_2_9_35_1 doi: 10.1104/pp.113.232496 – ident: e_1_2_9_31_1 doi: 10.1016/j.jplph.2014.06.009 – ident: e_1_2_9_32_1 doi: 10.1038/s41467‐024‐53411‐1 – ident: e_1_2_9_57_1 doi: 10.1016/j.envexpbot.2020.104367 – ident: e_1_2_9_20_1 doi: 10.1093/plphys/kiab023 – ident: e_1_2_9_68_1 doi: 10.1093/pcp/pcab008 – ident: e_1_2_9_46_1 doi: 10.1093/jxb/ery165 – ident: e_1_2_9_59_1 doi: 10.1038/nature13074 – ident: e_1_2_9_80_1 doi: 10.1002/1873‐3468.12576 – ident: e_1_2_9_28_1 doi: 10.1016/j.cell.2009.07.004 – start-page: 95 volume-title: Plant Physiology year: 2006 ident: e_1_2_9_61_1 – ident: e_1_2_9_24_1 doi: 10.1074/jbc.RA120.014104 – ident: e_1_2_9_52_1 doi: 10.3390/plants11243572 – ident: e_1_2_9_82_1 doi: 10.3390/cells11223651 – ident: e_1_2_9_6_1 doi: 10.1105/tpc.110.081067 – ident: e_1_2_9_45_1 doi: 10.1083/jcb.118.2.481 – ident: e_1_2_9_23_1 doi: 10.1071/FP21153 – ident: e_1_2_9_40_1 doi: 10.1111/j.1365‐313X.2009.03964.x – ident: e_1_2_9_41_1 doi: 10.1105/tpc.113.116012 – ident: e_1_2_9_8_1 doi: 10.1105/tpc.114.135335 – ident: e_1_2_9_49_1 doi: 10.1105/tpc.113.120311 – ident: e_1_2_9_65_1 doi: 10.1104/pp.104.044891 – ident: e_1_2_9_36_1 doi: 10.1002/1873‐3468.14706 – ident: e_1_2_9_13_1 doi: 10.1074/mcp.M113.028241 – ident: e_1_2_9_18_1 doi: 10.1073/pnas.2204574119 – ident: e_1_2_9_14_1 doi: 10.1016/j.molcel.2018.02.009 – ident: e_1_2_9_17_1 doi: 10.1111/pce.12522 – ident: e_1_2_9_19_1 doi: 10.1038/s41467‐024‐45236‐9 – ident: e_1_2_9_25_1 doi: 10.15252/msb.20177819 – ident: e_1_2_9_26_1 doi: 10.1038/s41467‐024‐45248‐5 – ident: e_1_2_9_34_1 doi: 10.1074/jbc.M110.184929 – ident: e_1_2_9_43_1 doi: 10.1111/pce.13349 – ident: e_1_2_9_55_1 doi: 10.1073/pnas.1018921108 – ident: e_1_2_9_27_1 doi: 10.1038/emboj.2012.120 – ident: e_1_2_9_5_1 doi: 10.1016/j.pbi.2021.102146 – ident: e_1_2_9_47_1 doi: 10.3390/ijms241813798 – ident: e_1_2_9_58_1 doi: 10.1016/j.plaphy.2020.02.009 – ident: e_1_2_9_16_1 doi: 10.1016/j.molp.2015.11.002 – ident: e_1_2_9_62_1 doi: 10.1016/j.molp.2020.11.004 – ident: e_1_2_9_70_1 doi: 10.1111/nph.19712 – ident: e_1_2_9_78_1 doi: 10.1016/j.cub.2019.09.018 |
SSID | ssj0017364 |
Score | 2.4723692 |
SecondaryResourceType | review_article |
Snippet | SUMMARY
The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter... The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e17262 |
SubjectTerms | Arabidopsis thaliana Biological Transport endocytosis Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism membrane transporter Phosphorylation Plant Proteins - genetics Plant Proteins - metabolism Plants - genetics Plants - metabolism posttranslational modifications Protein Processing, Post-Translational substrate specificity Ubiquitination vacuoles |
Title | Posttranslational regulation of plant membrane transporters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.17262 https://www.ncbi.nlm.nih.gov/pubmed/39931795 https://www.proquest.com/docview/3165415467 https://www.proquest.com/docview/3200329473 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1ViAMX9iVsCogDl1SJlyzqia2qekAItVIPSFEW-0KbVm16gK9nJpsoCIS4JZYj2zMez7MzfgNwFduasUjalnLs1BJSJ1aAuNmyhZapcGLKbU7RFo9ubyj6IzlqQae-C1PyQzQHbmQZxXpNBh7Fi09Gns8oGocV66_DXeLNv39uqKMcj5fUUYjQLfSarGIVoiie5stVX_QNYK7i1cLhdLfgpe5qGWfy2l7mcTt5_8Li-M-xbMNmBUTNm3Lm7EBLZbuwfjtFsPi2Bx1K4puTHxtXp4XmvMxajy_mVJuzMarEnKgJNpspM2840ueLfRh2HwZ3PavKs2AllKgIDUWkgS2EYjJlXqqV43kqkr52PddWEUKIVOmEY1nA_TTB8pgxxLmJq6XnaMkPYC2bZuoITF8qBA0R0ZIFQkUiVtrlBNocO_Z9RxtwWUs8nJV0GmG9DUEhhIUQDLiodRHiZKc_GDiS6XIRcrp7haDP9X6pQ-F2LBAeN-CwVGTTFKExXIGkAdeFOn7uQzh46hcPx3-vegIbjLIDFzHdp7CWz5fqDCFLHp8Xc_MDq-_l6w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KFfTi-1GfUTx4iSSb3TzQi4ql1lpEWuhFQh67F9umtOlBf70zSROsooi3ZNmwj9nZ-TI7-w3AWWgoxgJh6NI0Yp0LFeke4mbd4ErE3AwptzlFW7TtRpc3e6JXgaviLkzOD1E63Egzsv2aFJwc0p-0PB1ROA6jDXghO58jSPRckkeZjpWTRyFG19FushmvEMXxlJ_OW6NvEHMesWYmp74KL0Vn80iT14tpGl5E7194HP87mjVYmWFR7TpfPOtQkcMNWLxJEC--bcIl5fFNyZT1Zw5DbZwnrscXLVHaqI9S0QZygO0OpZaWNOnjyRZ063ed24Y-S7WgR5SrCHWFx57BuWQiZk6spOk4MhCush3bkAGiiFiqyMIyz3LjCMtDxhDqRrYSjqmEtQ3VYTKUu6C5QiJuCIiZzOMy4KFUtkW4zTRC1zVVDU6LKfdHOaOGX_yJ4CT42STU4KQQho_rnQ4xcCTJdOJbdP0KcZ_t_FKHIu6Yxx2rBju5JMumCJDhJiRqcJ7J4-c--J2nZvaw9_eqx7DU6Dy2_NZ9-2EflhklC85CvA-gmo6n8hARTBoeZQv1AxZ_6gk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1VBSEu7EtZA-LAJShx7Czqia0qBVUVaqUekKIs9oUuUZse4OuZSZqIgkCIW2I5sj3j8Tw74zcAF6GhGAuEoUvTiHUuVKR7iJt1gysRczOk3OYUbdG2mz3e6ot-BerFXZicH6I8cCPLyNZrMvAkVp-MPE0oGofR-rvEbXSThIieS-4o07Fy7iiE6Dq6TTanFaIwnvLTRWf0DWEuAtbM4zTW4aXoax5o8no1S8Or6P0LjeM_B7MBa3Mkql3nU2cTKnK0Bcs3Y0SLb9tQpyy-KTmywfy4UJvkaevxRRsrLRmgTrShHGKzI6mlJUn6ZLoDvcZ997apzxMt6BFlKkJL4bFncC6ZiJkTK2k6jgyEq2zHNmSAGCKWKrKwzLPcOMLykDEEupGthGMqYe1CdTQeyX3QXCERNQTES-ZxGfBQKtsi1GYaoeuaqgbnhcT9JOfT8It9CArBz4RQg7NCFz7OdvqFgSMZz6a-RZevEPXZzi91KN6OedyxarCXK7JsiuAYLkGiBpeZOn7ug9_ttLKHg79XPYWVzl3Df3poPx7CKqNMwVl89xFU08lMHiN8ScOTbJp-AG546Lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Posttranslational+regulation+of+plant+membrane+transporters&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Ni%C3%B1o%E2%80%90Gonz%C3%A1lez%2C+Mar%C3%ADa&rft.au=Duque%2C+Paula&rft.date=2025-02-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=121&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Ftpj.17262&rft.externalDBID=10.1111%252Ftpj.17262&rft.externalDocID=TPJ17262 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |