Posttranslational regulation of plant membrane transporters

SUMMARY The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintain...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 121; no. 3; pp. e17262 - n/a
Main Authors Niño‐González, María, Duque, Paula
Format Journal Article
LanguageEnglish
Published England 01.02.2025
Subjects
Online AccessGet full text
ISSN0960-7412
1365-313X
1365-313X
DOI10.1111/tpj.17262

Cover

Abstract SUMMARY The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi‐layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved. Significance Statement Plant membrane transporters are tightly regulated to maintain the precise fluxes required for cellular function. Although existing examples demonstrate the crucial role of posttranslational modifications (PTMs) in modulating key transporter properties, they remain limited with few recent advances. This review consolidates current knowledge on PTMs affecting plant membrane transporters and suggests future research directions to clarify how gradual modulation of transporter function is achieved.
AbstractList The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi-layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved.The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi-layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved.
The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi-layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved.
The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi‐layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved. Plant membrane transporters are tightly regulated to maintain the precise fluxes required for cellular function. Although existing examples demonstrate the crucial role of posttranslational modifications (PTMs) in modulating key transporter properties, they remain limited with few recent advances. This review consolidates current knowledge on PTMs affecting plant membrane transporters and suggests future research directions to clarify how gradual modulation of transporter function is achieved.
SUMMARY The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi‐layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved. Significance Statement Plant membrane transporters are tightly regulated to maintain the precise fluxes required for cellular function. Although existing examples demonstrate the crucial role of posttranslational modifications (PTMs) in modulating key transporter properties, they remain limited with few recent advances. This review consolidates current knowledge on PTMs affecting plant membrane transporters and suggests future research directions to clarify how gradual modulation of transporter function is achieved.
Author Niño‐González, María
Duque, Paula
Author_xml – sequence: 1
  givenname: María
  surname: Niño‐González
  fullname: Niño‐González, María
  email: mfninog@gmail.com
  organization: GIMM – Gulbenkian Institute for Molecular Medicine
– sequence: 2
  givenname: Paula
  surname: Duque
  fullname: Duque, Paula
  email: paula.duque@gimm.pt
  organization: GIMM – Gulbenkian Institute for Molecular Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39931795$$D View this record in MEDLINE/PubMed
BookMark eNqF0EtLAzEQB_AgFfvQg19A9qiHrXlnF09SfFKwhwreQro7kS37MtlF-u2N3epNzGXI8Jth-E_RqG5qQOic4DkJ77prt3OiqKRHaEKYFDEj7G2EJjiVOFac0DGaer_FmCgm-QkaszRlRKVigm5Wje86Z2pfmq5oalNGDt774RM1NmpLU3dRBdUmIIj2tG1cB86fomNrSg9nhzpDr_d368VjvHx5eFrcLuOMJozGFPM8xZwDFTlVuQWiFBiRWKkkBpNQmoPNWOilLMmz0N9QmpA8k1YoYgWbocthb-uajx58p6vCZ1CGy6DpvWYUY0ZTrtj_lEjBieBSBXpxoP2mgly3rqiM2-mfbAK4GkDmGu8d2F9CsP7OXYfc9T73YK8H-1mUsPsb6vXqeZj4AsJag2E
Cites_doi 10.1105/tpc.108.061994
10.1104/pp.106.094243
10.1093/jxb/erz230
10.1038/s41477‐021‐01040‐7
10.1093/plphys/kiae124
10.1016/j.cell.2023.04.027
10.1093/plcell/koab141
10.1105/tpc.009787
10.1111/pce.13100
10.1042/BJ20060569
10.1371/journal.pbio.1001076
10.1105/tpc.110.078360
10.1016/j.mcpro.2023.100685
10.1073/pnas.1200824109
10.1038/s41598‐020‐70230‐8
10.1038/nature13116
10.1093/plcell/koae177
10.1073/pnas.1100659108
10.1016/j.cub.2023.04.029
10.1073/pnas.1912754117
10.1105/tpc.10.3.451
10.1105/tpc.112.105999
10.1074/jbc.M307982200
10.1105/tpc.113.115998
10.1074/mcp.M700566-MCP200
10.1105/tpc.109.068593
10.1111/jipb.12858
10.1038/ncomms10430
10.1021/bi050565d
10.1111/tpj.15239
10.1111/pbi.13003
10.1016/j.febslet.2005.06.082
10.1093/nar/gkab945
10.1111/pbi.13414
10.1186/s12284‐023‐00666‐9
10.1016/j.pbi.2017.06.006
10.1111/tpj.13516
10.1038/ncb1369
10.1038/nature05579
10.1038/nature04316
10.1038/s41477‐019‐0376‐1
10.1105/tpc.17.00452
10.1093/plcell/koaa020
10.1104/pp.113.232496
10.1016/j.jplph.2014.06.009
10.1038/s41467‐024‐53411‐1
10.1016/j.envexpbot.2020.104367
10.1093/plphys/kiab023
10.1093/pcp/pcab008
10.1093/jxb/ery165
10.1038/nature13074
10.1002/1873‐3468.12576
10.1016/j.cell.2009.07.004
10.1074/jbc.RA120.014104
10.3390/plants11243572
10.3390/cells11223651
10.1105/tpc.110.081067
10.1083/jcb.118.2.481
10.1071/FP21153
10.1111/j.1365‐313X.2009.03964.x
10.1105/tpc.113.116012
10.1105/tpc.114.135335
10.1105/tpc.113.120311
10.1104/pp.104.044891
10.1002/1873‐3468.14706
10.1074/mcp.M113.028241
10.1073/pnas.2204574119
10.1016/j.molcel.2018.02.009
10.1111/pce.12522
10.1038/s41467‐024‐45236‐9
10.15252/msb.20177819
10.1038/s41467‐024‐45248‐5
10.1074/jbc.M110.184929
10.1111/pce.13349
10.1073/pnas.1018921108
10.1038/emboj.2012.120
10.1016/j.pbi.2021.102146
10.3390/ijms241813798
10.1016/j.plaphy.2020.02.009
10.1016/j.molp.2015.11.002
10.1016/j.molp.2020.11.004
10.1111/nph.19712
10.1016/j.cub.2019.09.018
ContentType Journal Article
Copyright 2025 Society for Experimental Biology and John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 Society for Experimental Biology and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1111/tpj.17262
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage n/a
ExternalDocumentID 39931795
10_1111_tpj_17262
TPJ17262
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia
  funderid: 2022.03584.PTDC; PTDC/ASP‐PLA/2550/2021; PTDC/ASP‐PLA/6105/2020; UIDB/04551/2020
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: UIDB/04551/2020
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: 2022.03584.PTDC
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: PTDC/ASP-PLA/2550/2021
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: PTDC/ASP-PLA/6105/2020
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7S9
L.6
ID FETCH-LOGICAL-c2832-204d9044e25d27dfe177ea58f6760ea822defc37ea938dc8f6b2281dc6f571f53
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Fri Jul 11 18:30:29 EDT 2025
Fri Jul 11 06:38:26 EDT 2025
Thu May 08 05:29:44 EDT 2025
Tue Jul 01 05:11:48 EDT 2025
Fri Feb 14 09:50:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Arabidopsis thaliana
membrane transporter
posttranslational modifications
ubiquitination
phosphorylation
Language English
License 2025 Society for Experimental Biology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2832-204d9044e25d27dfe177ea58f6760ea822defc37ea938dc8f6b2281dc6f571f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doi.org/10.1111/tpj.17262
PMID 39931795
PQID 3165415467
PQPubID 23479
PageCount 3
ParticipantIDs proquest_miscellaneous_3200329473
proquest_miscellaneous_3165415467
pubmed_primary_39931795
crossref_primary_10_1111_tpj_17262
wiley_primary_10_1111_tpj_17262_TPJ17262
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
2025-Feb
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2025
References 2015; 38
2013; 25
2023; 33
2023; 186
2020; 62
2007; 143
2005; 579
2019; 17
2014; 26
2003; 15
2008; 7
2017; 591
2018; 41
2022; 65
2020; 10
2014; 171
2024; 36
2020; 18
2010; 22
2023; 24
2021; 33
2004; 135
2020; 295
2017; 39
2013; 12
2024; 195
2019; 29
2011; 23
2024; 23
1998; 10
2014; 164
1992; 2
2011; 286
2006; 400
2021; 48
2006; 439
2019; 70
2009; 21
2007; 446
2019; 5
2022; 50
2009; 60
2023; 16
2021; 106
2006; 8
2020; 149
2021; 184
2006
2024; 243
2017; 29
2021; 185
2022; 119
2024; 15
2005; 44
2012; 31
2018; 69
2009; 138
2012; 109
2011; 9
2021; 14
2016; 7
2014; 507
2011; 108
2015; 27
2017; 90
2004; 279
2019; 42
2023; 597
2022; 8
2017; 13
2020; 117
2022; 11
2021; 62
2016; 9
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Taiz L. (e_1_2_9_61_1) 2006
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 90
  start-page: 1040
  year: 2017
  end-page: 1051
  article-title: OsNLA1, a RING‐type ubiquitin ligase, maintains phosphate homeostasis in via degradation of phosphate transporters
  publication-title: The Plant Journal
– volume: 41
  start-page: 1139
  year: 2018
  end-page: 1153
  article-title: Oxidative stress‐triggered interactions between the succinyl‐ and acetyl‐proteomes of rice leaves
  publication-title: Plant, Cell & Environment
– volume: 62
  start-page: 865
  year: 2020
  end-page: 876
  article-title: Phosphorylation at Ser28 stabilizes the Arabidopsis nitrate transporter NRT2.1 in response to nitrate limitation
  publication-title: Journal of Integrative Plant Biology
– volume: 27
  start-page: 711
  year: 2015
  end-page: 723
  article-title: The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels
  publication-title: Plant Cell
– volume: 9
  start-page: 323
  year: 2016
  end-page: 337
  article-title: Plasma membrane H+‐ATPase regulation in the center of plant physiology
  publication-title: Molecular Plant
– volume: 185
  start-page: 1483
  year: 2021
  end-page: 1488
  article-title: Large‐scale identification of ubiquitination sites on membrane‐associated proteins in seedlings
  publication-title: Plant Physiology
– volume: 108
  start-page: E450
  year: 2011
  end-page: E458
  article-title: Monoubiquitin‐dependent endocytosis of the IRON‐REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 8
  start-page: 68
  year: 2022
  end-page: 77
  article-title: Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought
  publication-title: Nature Plants
– volume: 7
  year: 2016
  article-title: Pin1At regulates PIN1 polar localization and root gravitropism
  publication-title: Nature Communications
– volume: 117
  start-page: 6223
  year: 2020
  end-page: 6230
  article-title: Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 42
  start-page: 918
  year: 2019
  end-page: 930
  article-title: A CIPK protein kinase targets sucrose transporter MdSUT2.2 at Ser254 for phosphorylation to enhance salt tolerance
  publication-title: Plant, Cell & Environment
– volume: 24
  year: 2023
  article-title: Plant aquaporin gating is reversed by phosphorylation on intracellular loop D—evidence from molecular dynamics simulations
  publication-title: International Journal of Molecular Sciences
– volume: 25
  start-page: 4044
  year: 2013
  end-page: 4060
  article-title: Identification of downstream components of ubiquitin‐conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots
  publication-title: Plant Cell
– volume: 29
  start-page: 2552
  year: 2017
  end-page: 2569
  article-title: ABA‐induced stomatal closure involves ALMT4, a phosphorylation‐dependent vacuolar anion channel of Arabidopsis
  publication-title: Plant Cell
– volume: 25
  start-page: 202
  year: 2013
  end-page: 214
  article-title: Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane
  publication-title: Plant Cell
– volume: 69
  start-page: 953
  year: 2018
  end-page: 964.e5
  article-title: Metal sensing by the IRT1 transporter‐receptor orchestrates its own degradation and plant metal nutrition
  publication-title: Molecular Cell
– volume: 7
  start-page: 1019
  year: 2008
  end-page: 1030
  article-title: Multiple phosphorylations in the C‐terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of AtPIP2;1 in response to salt stress
  publication-title: Molecular & Cellular Proteomics
– volume: 9
  year: 2011
  article-title: phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism
  publication-title: PLoS Biology
– volume: 50
  start-page: D1491
  year: 2022
  end-page: D1499
  article-title: qPTMplants: an integrative database of quantitative post‐translational modifications in plants
  publication-title: Nucleic Acids Research
– volume: 70
  start-page: 4919
  year: 2019
  end-page: 4930
  article-title: Ammonium and nitrate regulate NH4+ uptake activity of Arabidopsis ammonium transporter AtAMT1;3 via phosphorylation at multiple C‐terminal sites
  publication-title: Journal of Experimental Botany
– volume: 15
  start-page: 1194
  year: 2024
  article-title: Phosphorylation of plasma membrane H+‐ATPase Thr881 participates in light‐induced stomatal opening
  publication-title: Nature Communications
– volume: 15
  start-page: 1195
  year: 2024
  article-title: Light‐induced stomatal opening requires phosphorylation of the C‐terminal autoinhibitory domain of plasma membrane H+‐ATPase
  publication-title: Nature Communications
– volume: 143
  start-page: 1651
  year: 2007
  end-page: 1659
  article-title: Regulation of NH4+ transport by essential cross talk between AMT monomers through the carboxyl tails
  publication-title: Plant Physiology
– volume: 579
  start-page: 4417
  year: 2005
  end-page: 4422
  article-title: Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation
  publication-title: FEBS Letters
– volume: 22
  start-page: 3295
  year: 2010
  end-page: 3304
  article-title: The ER‐localized TWD1 Immunophilin is necessary for localization of multidrug resistance‐like proteins required for polar auxin transport in Arabidopsis roots
  publication-title: Plant Cell
– volume: 279
  start-page: 207
  year: 2004
  end-page: 215
  article-title: Regulation of vacuolar Na+/H+ exchange in by the salt‐overly‐sensitive (SOS) pathway
  publication-title: Journal of Biological Chemistry
– volume: 65
  year: 2022
  article-title: Phosphorylation control of PIN auxin transporters
  publication-title: Current Opinion in Plant Biology
– volume: 597
  start-page: 2048
  year: 2023
  end-page: 2058
  article-title: Phosphorylation by CIPK23 regulates the high‐affinity Mn transporter NRAMP1 in Arabidopsis
  publication-title: FEBS Letters
– volume: 15
  start-page: 9090
  year: 2024
  article-title: The Bor1 elevator transport cycle is subject to autoinhibition and activation
  publication-title: Nature Communications
– volume: 106
  start-page: 1328
  year: 2021
  end-page: 1337
  article-title: Manganese triggers phosphorylation‐mediated endocytosis of the Arabidopsis metal transporter NRAMP1
  publication-title: The Plant Journal
– volume: 39
  start-page: 123
  year: 2017
  end-page: 128
  article-title: Regulation of potassium transport and signaling in plants
  publication-title: Current Opinion in Plant Biology
– volume: 23
  start-page: 1523
  year: 2011
  end-page: 1535
  article-title: high‐affinity phosphate transporters exhibit multiple levels of posttranslational regulation
  publication-title: Plant Cell
– volume: 31
  start-page: 2965
  year: 2012
  end-page: 2980 2980
  article-title: Regulation of ABCB1/PGP1‐catalysed auxin transport by linker phosphorylation
  publication-title: The EMBO Journal
– volume: 29
  start-page: 3778
  year: 2019
  end-page: 3790.e8
  article-title: The receptor kinases BAK1/SERK4 regulate Ca2+ channel‐mediated cellular homeostasis for cell death containment
  publication-title: Current Biology
– volume: 33
  start-page: 420
  year: 2021
  end-page: 438
  article-title: Transport‐coupled ubiquitination of the borate transporter BOR1 for its boron‐dependent degradation
  publication-title: Plant Cell
– volume: 38
  start-page: 2012
  year: 2015
  end-page: 2022
  article-title: Increased phosphate transport of Pht1;1 by site‐directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions
  publication-title: Plant, Cell & Environment
– volume: 16
  start-page: 54
  year: 2023
  article-title: Phosphate transporter OsPT4, ubiquitinated by E3 ligase OsAIRP2, plays a crucial role in phosphorus and nitrogen translocation and consumption in germinating seed
  publication-title: Rice
– volume: 14
  start-page: 151
  year: 2021
  end-page: 165
  article-title: Pho‐view of auxin: reversible protein phosphorylation in auxin biosynthesis, transport and signaling
  publication-title: Molecular Plant
– volume: 48
  start-page: 1199
  year: 2021
  end-page: 1212
  article-title: Post‐translational regulation of the membrane transporters contributing to salt tolerance in plants
  publication-title: Functional Plant Biology
– volume: 33
  start-page: 2008
  year: 2023
  end-page: 2023.e8
  article-title: An LRR receptor kinase controls ABC transporter substrate preferences during plant growth‐defense decisions
  publication-title: Current Biology
– volume: 25
  start-page: 4061
  year: 2013
  end-page: 4074
  article-title: NITROGEN LIMITATION ADAPTATION, a target of MicroRNA827, mediates degradation of plasma membrane–localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis
  publication-title: Plant Cell
– volume: 108
  start-page: 2611
  year: 2011
  end-page: 2616
  article-title: Activation of the plasma membrane Na/H antiporter salt‐overly‐sensitive 1 (SOS1) by phosphorylation of an auto‐inhibitory C‐terminal domain
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 439
  start-page: 688
  year: 2006
  end-page: 694
  article-title: Structural mechanism of plant aquaporin gating
  publication-title: Nature
– volume: 18
  start-page: 2406
  year: 2020
  end-page: 2419
  article-title: Maize ZmPT7 regulates pi uptake and redistribution which is modulated by phosphorylation
  publication-title: Plant Biotechnology Journal
– volume: 62
  start-page: 543
  year: 2021
  end-page: 552
  article-title: Posttranslational modifications: regulation of nitrogen utilization and signaling
  publication-title: Plant & Cell Physiology
– volume: 507
  start-page: 73
  year: 2014
  end-page: 77
  article-title: Crystal structure of the plant dual‐affinity nitrate transporter NRT1.1
  publication-title: Nature
– volume: 109
  start-page: 8322
  year: 2012
  end-page: 8327
  article-title: Lysine63‐linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 17
  start-page: 625
  year: 2019
  end-page: 637
  article-title: An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought
  publication-title: Plant Biotechnology Journal
– volume: 69
  start-page: 4511
  year: 2018
  end-page: 4527
  article-title: Ubiquitylation in plants: signaling hub for the integration of environmental signals
  publication-title: Journal of Experimental Botany
– volume: 591
  start-page: 656
  year: 2017
  end-page: 666
  article-title: Identification of amino acid residues important for the arsenic resistance function of Arabidopsis ABCC1
  publication-title: FEBS Letters
– volume: 195
  start-page: 1005
  year: 2024
  end-page: 1024
  article-title: Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato
  publication-title: Plant Physiology
– volume: 295
  start-page: 13094
  year: 2020
  end-page: 13105
  article-title: Auxin‐transporting ABC transporters are defined by a conserved D/E‐P motif regulated by a prolylisomerase
  publication-title: Journal of Biological Chemistry
– volume: 119
  year: 2022
  article-title: Ca ‐dependent phosphorylation of NRAMP1 by CPK21 and CPK23 facilitates manganese uptake and homeostasis in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 21
  start-page: 3610
  year: 2009
  end-page: 3622
  article-title: Feedback inhibition of ammonium uptake by a phospho‐dependent allosteric mechanism in Arabidopsis
  publication-title: Plant Cell
– volume: 13
  start-page: 949
  year: 2017
  article-title: Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis
  publication-title: Molecular Systems Biology
– volume: 8
  start-page: 249
  year: 2006
  end-page: 256
  article-title: Intracellular trafficking and proteolysis of the Arabidopsis auxin‐efflux facilitator PIN2 are involved in root gravitropism
  publication-title: Nature Cell Biology
– volume: 26
  start-page: 454
  year: 2014
  end-page: 464
  article-title: NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the PHOSPHATE transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis
  publication-title: Plant Cell
– volume: 507
  start-page: 68
  year: 2014
  end-page: 72
  article-title: Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1
  publication-title: Nature
– volume: 184
  year: 2021
  article-title: Dynamic role of aquaporin transport system under drought stress in plants
  publication-title: Environmental and Experimental Botany
– start-page: 95
  year: 2006
  end-page: 121
– volume: 44
  start-page: 14443
  year: 2005
  end-page: 14454
  article-title: Phosphorylation of aquaporin PvTIP3;1 defined by mass spectrometry and molecular modeling
  publication-title: Biochemistry
– volume: 60
  start-page: 411
  year: 2009
  end-page: 423
  article-title: Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat
  publication-title: The Plant Journal
– volume: 36
  start-page: 4356
  year: 2024
  end-page: 4371
  article-title: Differential phosphorylation of Ca2+‐permeable channel CYCLIC NUCLEOTIDE–GATED CHANNEL20 modulates calcium‐mediated freezing tolerance in Arabidopsis
  publication-title: Plant Cell
– volume: 10
  start-page: 451
  year: 1998
  end-page: 459
  article-title: Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation
  publication-title: Plant Cell
– volume: 446
  start-page: 195
  year: 2007
  end-page: 198
  article-title: A cytosolic trans‐activation domain essential for ammonium uptake
  publication-title: Nature
– volume: 400
  start-page: 189
  year: 2006
  end-page: 197
  article-title: Methylation of aquaporins in plant plasma membrane
  publication-title: Biochemical Journal
– volume: 12
  start-page: 3886
  year: 2013
  end-page: 3897
  article-title: Coordinated post‐translational responses of aquaporins to abiotic and nutritional stimuli in Arabidopsis roots
  publication-title: Molecular & Cellular Proteomics
– volume: 171
  start-page: 1401
  year: 2014
  end-page: 1412
  article-title: The Camelina aquaporin CsPIP2;1 is regulated by phosphorylation at Ser273, but not at Ser277, of the C‐terminus and is involved in salt‐ and drought‐stress responses
  publication-title: Journal of Plant Physiology
– volume: 135
  start-page: 2318
  year: 2004
  end-page: 2329
  article-title: Novel regulation of Aquaporins during osmotic stress
  publication-title: Plant Physiology
– volume: 10
  start-page: 13454
  year: 2020
  article-title: Proteome and lysine acetylome analysis reveals insights into the molecular mechanism of seed germination in wheat
  publication-title: Scientific Reports
– volume: 186
  start-page: 2329
  year: 2023
  end-page: 2344.e20
  article-title: A phospho‐switch constrains BTL2‐mediated phytocytokine signaling in plant immunity
  publication-title: Cell
– volume: 33
  start-page: 2883
  year: 2021
  end-page: 2898
  article-title: ERAD‐related E2 and E3 enzymes modulate the drought response by regulating the stability of PIP2 aquaporins
  publication-title: Plant Cell
– volume: 2
  start-page: 481
  year: 1992
  end-page: 490
  article-title: Topology and phosphorylation of soybean nodulin‐26, an intrinsic protein of the peribacteroid membrane
  publication-title: The Journal of Cell Biology
– volume: 23
  year: 2024
  article-title: Protein phosphorylation orchestrates acclimations of Arabidopsis plants to environmental pH
  publication-title: Molecular & Cellular Proteomics
– volume: 5
  start-page: 290
  year: 2019
  end-page: 299
  article-title: In rose, transcription factor PTM balances growth and drought survival via PIP2;1 aquaporin
  publication-title: Nature Plants
– volume: 21
  start-page: 622
  year: 2009
  end-page: 641
  article-title: Drought stress‐induced Rma1H1, a RING membrane‐anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants
  publication-title: Plant Cell
– volume: 15
  start-page: 981
  year: 2003
  end-page: 991
  article-title: Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals
  publication-title: Plant Cell
– volume: 164
  start-page: 1401
  year: 2014
  end-page: 1414
  article-title: The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism
  publication-title: Plant Physiology
– volume: 286
  start-page: 6175
  year: 2011
  end-page: 6183
  article-title: High boron‐induced ubiquitination regulates vacuolar sorting of the BOR1 borate transporter in
  publication-title: Journal of Biological Chemistry
– volume: 11
  year: 2022
  article-title: Single‐molecule and vesicle trafficking analysis of ubiquitination involved in the activity of ammonium transporter AMT1;3 in Arbidopsis under high ammonium stress
  publication-title: Cells
– volume: 149
  start-page: 178
  year: 2020
  end-page: 189
  article-title: Versatile roles of aquaporin in physiological processes and stress tolerance in plants
  publication-title: Plant Physiology and Biochemistry
– volume: 138
  start-page: 1184
  year: 2009
  end-page: 1194
  article-title: CHL1 functions as a nitrate sensor in plants
  publication-title: Cell
– volume: 11
  year: 2022
  article-title: Histone acetyltransferase GCN5 affects auxin transport during root growth by modulating histone acetylation and gene expression of PINs
  publication-title: Plants
– volume: 243
  start-page: 1795
  issue: 5
  year: 2024
  end-page: 1809
  article-title: CPK10 protein kinase regulates Arabidopsis tolerance to boron deficiency through phosphorylation and activation of BOR1 transporter
  publication-title: New Phytologist
– ident: e_1_2_9_38_1
  doi: 10.1105/tpc.108.061994
– ident: e_1_2_9_48_1
  doi: 10.1104/pp.106.094243
– ident: e_1_2_9_72_1
  doi: 10.1093/jxb/erz230
– ident: e_1_2_9_9_1
  doi: 10.1038/s41477‐021‐01040‐7
– ident: e_1_2_9_84_1
  doi: 10.1093/plphys/kiae124
– ident: e_1_2_9_77_1
  doi: 10.1016/j.cell.2023.04.027
– ident: e_1_2_9_10_1
  doi: 10.1093/plcell/koab141
– ident: e_1_2_9_21_1
  doi: 10.1105/tpc.009787
– ident: e_1_2_9_83_1
  doi: 10.1111/pce.13100
– ident: e_1_2_9_56_1
  doi: 10.1042/BJ20060569
– ident: e_1_2_9_11_1
  doi: 10.1371/journal.pbio.1001076
– ident: e_1_2_9_71_1
  doi: 10.1105/tpc.110.078360
– ident: e_1_2_9_30_1
  doi: 10.1016/j.mcpro.2023.100685
– ident: e_1_2_9_39_1
  doi: 10.1073/pnas.1200824109
– ident: e_1_2_9_22_1
  doi: 10.1038/s41598‐020‐70230‐8
– ident: e_1_2_9_50_1
  doi: 10.1038/nature13116
– ident: e_1_2_9_51_1
  doi: 10.1093/plcell/koae177
– ident: e_1_2_9_4_1
  doi: 10.1073/pnas.1100659108
– ident: e_1_2_9_3_1
  doi: 10.1016/j.cub.2023.04.029
– ident: e_1_2_9_74_1
  doi: 10.1073/pnas.1912754117
– ident: e_1_2_9_33_1
  doi: 10.1105/tpc.10.3.451
– ident: e_1_2_9_66_1
  doi: 10.1105/tpc.112.105999
– ident: e_1_2_9_54_1
  doi: 10.1074/jbc.M307982200
– ident: e_1_2_9_29_1
  doi: 10.1105/tpc.113.115998
– ident: e_1_2_9_53_1
  doi: 10.1074/mcp.M700566-MCP200
– ident: e_1_2_9_37_1
  doi: 10.1105/tpc.109.068593
– ident: e_1_2_9_85_1
  doi: 10.1111/jipb.12858
– ident: e_1_2_9_73_1
  doi: 10.1038/ncomms10430
– ident: e_1_2_9_12_1
  doi: 10.1021/bi050565d
– ident: e_1_2_9_7_1
  doi: 10.1111/tpj.15239
– ident: e_1_2_9_44_1
  doi: 10.1111/pbi.13003
– ident: e_1_2_9_63_1
  doi: 10.1016/j.febslet.2005.06.082
– ident: e_1_2_9_75_1
  doi: 10.1093/nar/gkab945
– ident: e_1_2_9_67_1
  doi: 10.1111/pbi.13414
– ident: e_1_2_9_60_1
  doi: 10.1186/s12284‐023‐00666‐9
– ident: e_1_2_9_69_1
  doi: 10.1016/j.pbi.2017.06.006
– ident: e_1_2_9_79_1
  doi: 10.1111/tpj.13516
– ident: e_1_2_9_2_1
  doi: 10.1038/ncb1369
– ident: e_1_2_9_42_1
  doi: 10.1038/nature05579
– ident: e_1_2_9_64_1
  doi: 10.1038/nature04316
– ident: e_1_2_9_81_1
  doi: 10.1038/s41477‐019‐0376‐1
– ident: e_1_2_9_15_1
  doi: 10.1105/tpc.17.00452
– ident: e_1_2_9_76_1
  doi: 10.1093/plcell/koaa020
– ident: e_1_2_9_35_1
  doi: 10.1104/pp.113.232496
– ident: e_1_2_9_31_1
  doi: 10.1016/j.jplph.2014.06.009
– ident: e_1_2_9_32_1
  doi: 10.1038/s41467‐024‐53411‐1
– ident: e_1_2_9_57_1
  doi: 10.1016/j.envexpbot.2020.104367
– ident: e_1_2_9_20_1
  doi: 10.1093/plphys/kiab023
– ident: e_1_2_9_68_1
  doi: 10.1093/pcp/pcab008
– ident: e_1_2_9_46_1
  doi: 10.1093/jxb/ery165
– ident: e_1_2_9_59_1
  doi: 10.1038/nature13074
– ident: e_1_2_9_80_1
  doi: 10.1002/1873‐3468.12576
– ident: e_1_2_9_28_1
  doi: 10.1016/j.cell.2009.07.004
– start-page: 95
  volume-title: Plant Physiology
  year: 2006
  ident: e_1_2_9_61_1
– ident: e_1_2_9_24_1
  doi: 10.1074/jbc.RA120.014104
– ident: e_1_2_9_52_1
  doi: 10.3390/plants11243572
– ident: e_1_2_9_82_1
  doi: 10.3390/cells11223651
– ident: e_1_2_9_6_1
  doi: 10.1105/tpc.110.081067
– ident: e_1_2_9_45_1
  doi: 10.1083/jcb.118.2.481
– ident: e_1_2_9_23_1
  doi: 10.1071/FP21153
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1365‐313X.2009.03964.x
– ident: e_1_2_9_41_1
  doi: 10.1105/tpc.113.116012
– ident: e_1_2_9_8_1
  doi: 10.1105/tpc.114.135335
– ident: e_1_2_9_49_1
  doi: 10.1105/tpc.113.120311
– ident: e_1_2_9_65_1
  doi: 10.1104/pp.104.044891
– ident: e_1_2_9_36_1
  doi: 10.1002/1873‐3468.14706
– ident: e_1_2_9_13_1
  doi: 10.1074/mcp.M113.028241
– ident: e_1_2_9_18_1
  doi: 10.1073/pnas.2204574119
– ident: e_1_2_9_14_1
  doi: 10.1016/j.molcel.2018.02.009
– ident: e_1_2_9_17_1
  doi: 10.1111/pce.12522
– ident: e_1_2_9_19_1
  doi: 10.1038/s41467‐024‐45236‐9
– ident: e_1_2_9_25_1
  doi: 10.15252/msb.20177819
– ident: e_1_2_9_26_1
  doi: 10.1038/s41467‐024‐45248‐5
– ident: e_1_2_9_34_1
  doi: 10.1074/jbc.M110.184929
– ident: e_1_2_9_43_1
  doi: 10.1111/pce.13349
– ident: e_1_2_9_55_1
  doi: 10.1073/pnas.1018921108
– ident: e_1_2_9_27_1
  doi: 10.1038/emboj.2012.120
– ident: e_1_2_9_5_1
  doi: 10.1016/j.pbi.2021.102146
– ident: e_1_2_9_47_1
  doi: 10.3390/ijms241813798
– ident: e_1_2_9_58_1
  doi: 10.1016/j.plaphy.2020.02.009
– ident: e_1_2_9_16_1
  doi: 10.1016/j.molp.2015.11.002
– ident: e_1_2_9_62_1
  doi: 10.1016/j.molp.2020.11.004
– ident: e_1_2_9_70_1
  doi: 10.1111/nph.19712
– ident: e_1_2_9_78_1
  doi: 10.1016/j.cub.2019.09.018
SSID ssj0017364
Score 2.4723692
SecondaryResourceType review_article
Snippet SUMMARY The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter...
The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e17262
SubjectTerms Arabidopsis thaliana
Biological Transport
endocytosis
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
membrane transporter
Phosphorylation
Plant Proteins - genetics
Plant Proteins - metabolism
Plants - genetics
Plants - metabolism
posttranslational modifications
Protein Processing, Post-Translational
substrate specificity
Ubiquitination
vacuoles
Title Posttranslational regulation of plant membrane transporters
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.17262
https://www.ncbi.nlm.nih.gov/pubmed/39931795
https://www.proquest.com/docview/3165415467
https://www.proquest.com/docview/3200329473
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1ViAMX9iVsCogDl1SJlyzqia2qekAItVIPSFEW-0KbVm16gK9nJpsoCIS4JZYj2zMez7MzfgNwFduasUjalnLs1BJSJ1aAuNmyhZapcGLKbU7RFo9ubyj6IzlqQae-C1PyQzQHbmQZxXpNBh7Fi09Gns8oGocV66_DXeLNv39uqKMcj5fUUYjQLfSarGIVoiie5stVX_QNYK7i1cLhdLfgpe5qGWfy2l7mcTt5_8Li-M-xbMNmBUTNm3Lm7EBLZbuwfjtFsPi2Bx1K4puTHxtXp4XmvMxajy_mVJuzMarEnKgJNpspM2840ueLfRh2HwZ3PavKs2AllKgIDUWkgS2EYjJlXqqV43kqkr52PddWEUKIVOmEY1nA_TTB8pgxxLmJq6XnaMkPYC2bZuoITF8qBA0R0ZIFQkUiVtrlBNocO_Z9RxtwWUs8nJV0GmG9DUEhhIUQDLiodRHiZKc_GDiS6XIRcrp7haDP9X6pQ-F2LBAeN-CwVGTTFKExXIGkAdeFOn7uQzh46hcPx3-vegIbjLIDFzHdp7CWz5fqDCFLHp8Xc_MDq-_l6w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KFfTi-1GfUTx4iSSb3TzQi4ql1lpEWuhFQh67F9umtOlBf70zSROsooi3ZNmwj9nZ-TI7-w3AWWgoxgJh6NI0Yp0LFeke4mbd4ErE3AwptzlFW7TtRpc3e6JXgaviLkzOD1E63Egzsv2aFJwc0p-0PB1ROA6jDXghO58jSPRckkeZjpWTRyFG19FushmvEMXxlJ_OW6NvEHMesWYmp74KL0Vn80iT14tpGl5E7194HP87mjVYmWFR7TpfPOtQkcMNWLxJEC--bcIl5fFNyZT1Zw5DbZwnrscXLVHaqI9S0QZygO0OpZaWNOnjyRZ063ed24Y-S7WgR5SrCHWFx57BuWQiZk6spOk4MhCush3bkAGiiFiqyMIyz3LjCMtDxhDqRrYSjqmEtQ3VYTKUu6C5QiJuCIiZzOMy4KFUtkW4zTRC1zVVDU6LKfdHOaOGX_yJ4CT42STU4KQQho_rnQ4xcCTJdOJbdP0KcZ_t_FKHIu6Yxx2rBju5JMumCJDhJiRqcJ7J4-c--J2nZvaw9_eqx7DU6Dy2_NZ9-2EflhklC85CvA-gmo6n8hARTBoeZQv1AxZ_6gk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1VBSEu7EtZA-LAJShx7Czqia0qBVUVaqUekKIs9oUuUZse4OuZSZqIgkCIW2I5sj3j8Tw74zcAF6GhGAuEoUvTiHUuVKR7iJt1gysRczOk3OYUbdG2mz3e6ot-BerFXZicH6I8cCPLyNZrMvAkVp-MPE0oGofR-rvEbXSThIieS-4o07Fy7iiE6Dq6TTanFaIwnvLTRWf0DWEuAtbM4zTW4aXoax5o8no1S8Or6P0LjeM_B7MBa3Mkql3nU2cTKnK0Bcs3Y0SLb9tQpyy-KTmywfy4UJvkaevxRRsrLRmgTrShHGKzI6mlJUn6ZLoDvcZ997apzxMt6BFlKkJL4bFncC6ZiJkTK2k6jgyEq2zHNmSAGCKWKrKwzLPcOMLykDEEupGthGMqYe1CdTQeyX3QXCERNQTES-ZxGfBQKtsi1GYaoeuaqgbnhcT9JOfT8It9CArBz4RQg7NCFz7OdvqFgSMZz6a-RZevEPXZzi91KN6OedyxarCXK7JsiuAYLkGiBpeZOn7ug9_ttLKHg79XPYWVzl3Df3poPx7CKqNMwVl89xFU08lMHiN8ScOTbJp-AG546Lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Posttranslational+regulation+of+plant+membrane+transporters&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Ni%C3%B1o%E2%80%90Gonz%C3%A1lez%2C+Mar%C3%ADa&rft.au=Duque%2C+Paula&rft.date=2025-02-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=121&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Ftpj.17262&rft.externalDBID=10.1111%252Ftpj.17262&rft.externalDocID=TPJ17262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon