Identification and quantification of gases and their mixtures using GaN sensor array and artificial neural network

Accurate identification and quantification of gas mixtures are almost unattainable utilizing only a metal-oxide/GaN sensor because of its cross-sensitivity to many gases. Here, an array of sensors has been formed consisting of Ag and Pt incorporated ZnO, In 2 O 3 and TiO 2 coated two terminal GaN ph...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 32; no. 5; p. 55111
Main Authors Khan, Md Ashfaque Hossain, Motayed, Abhishek, Rao, Mulpuri V
Format Journal Article
LanguageEnglish
Published 01.05.2021
Online AccessGet full text
ISSN0957-0233
1361-6501
DOI10.1088/1361-6501/abd5f0

Cover

Abstract Accurate identification and quantification of gas mixtures are almost unattainable utilizing only a metal-oxide/GaN sensor because of its cross-sensitivity to many gases. Here, an array of sensors has been formed consisting of Ag and Pt incorporated ZnO, In 2 O 3 and TiO 2 coated two terminal GaN photoconductors. The common environmental toxic gases, such as SO 2 , NO 2 , H 2 , ethanol and their mixtures have been chosen as the gas analytes. All the gas responses have been obtained at 20 °C under UV illumination. Temporal responses have been post-processed to develop the training and test dataset. Then, four different artificial neural network models have been analyzed and optimized for gas classification study, which is done for the first time on GaN sensors. Statistical and computational complexity results indicate that back-propagation neural network (NN) stands out as the optimal classifier among the considered algorithms. Then, ppm concentrations of the identified gases have been estimated using the optimal model. Furthermore, implementation of the developed sensor array in combination with NN algorithm for real-time gas monitoring applications has been discussed.
AbstractList Accurate identification and quantification of gas mixtures are almost unattainable utilizing only a metal-oxide/GaN sensor because of its cross-sensitivity to many gases. Here, an array of sensors has been formed consisting of Ag and Pt incorporated ZnO, In 2 O 3 and TiO 2 coated two terminal GaN photoconductors. The common environmental toxic gases, such as SO 2 , NO 2 , H 2 , ethanol and their mixtures have been chosen as the gas analytes. All the gas responses have been obtained at 20 °C under UV illumination. Temporal responses have been post-processed to develop the training and test dataset. Then, four different artificial neural network models have been analyzed and optimized for gas classification study, which is done for the first time on GaN sensors. Statistical and computational complexity results indicate that back-propagation neural network (NN) stands out as the optimal classifier among the considered algorithms. Then, ppm concentrations of the identified gases have been estimated using the optimal model. Furthermore, implementation of the developed sensor array in combination with NN algorithm for real-time gas monitoring applications has been discussed.
Author Motayed, Abhishek
Khan, Md Ashfaque Hossain
Rao, Mulpuri V
Author_xml – sequence: 1
  givenname: Md Ashfaque Hossain
  orcidid: 0000-0002-0070-8872
  surname: Khan
  fullname: Khan, Md Ashfaque Hossain
– sequence: 2
  givenname: Abhishek
  surname: Motayed
  fullname: Motayed, Abhishek
– sequence: 3
  givenname: Mulpuri V
  surname: Rao
  fullname: Rao, Mulpuri V
BookMark eNp1kMFOwzAQRC1UJNLCnaN_IHRtx0l8RBWUShVc4BxtErsYUgdsR9C_p00RQkgcViPN7MzhTcnE9U4TcsngikFZzpnIWZpLYHOsW2nghCQ_1oQkoGSRAhfijExDeAGAApRKiF-12kVrbIPR9o6ia-n7gL-t3tANBh3GLD5r6-nWfsbB760hWLehS7ynQbvQe4re4278RD9uWOyo04MfJX70_vWcnBrsgr741hl5ur15XNyl64flanG9Thte8pjKVjImCw0SCoWFyWRWitzwmkleGyawqVkL-2OgFddCK1EInmVZq0rOGyVmBI67je9D8NpUb95u0e8qBtWBWXUAVB0AVUdm-0r-p9LYOFKIHm33f_ELSfx1Mw
CitedBy_id crossref_primary_10_1016_j_sna_2024_115768
crossref_primary_10_3390_s20143889
crossref_primary_10_1109_JSEN_2024_3349862
crossref_primary_10_1109_TIM_2021_3120150
crossref_primary_10_1109_JSEN_2024_3407741
crossref_primary_10_1149_2754_2726_ad0cd6
crossref_primary_10_7831_ras_12_0_128
crossref_primary_10_1109_JSEN_2022_3211289
crossref_primary_10_3390_s21020624
crossref_primary_10_1039_D1CP02394B
crossref_primary_10_1016_j_jhazmat_2023_132153
crossref_primary_10_3390_s21144826
crossref_primary_10_1021_acsami_4c14793
crossref_primary_10_1016_j_snb_2023_133767
crossref_primary_10_1371_journal_pone_0310101
Cites_doi 10.1016/j.snb.2017.08.203
10.1561/2000000039
10.1088/0957-4484/22/29/295503
10.1021/am4018835
10.1016/S0169-7439(97)00061-0
10.1023/A:1008074223811
10.3390/s18051446
10.1126/science.aaa8415
10.1109/72.105422
10.1007/s11270-014-2063-1
10.1149/1.2069145
10.1109/JSEN.2020.2978221
10.1109/ECBS.2005.35
10.1088/1361-6528/ab6685
10.1109/JSEN.2020.2972542
10.1109/ICECS.2010.5724624
10.3390/s20143889
10.1109/TDMR.2020.3028786
10.1164/arrd.1986.134.6.1203
10.3390/s19040905
10.1021/ac9510954
10.1088/0957-4484/23/17/175501
10.1023/A:1011117102175
10.1128/BR.30.3.604-614.1966
10.1117/12.2557971
10.1063/1.5116677
10.1016/j.mseb.2017.12.036
10.3390/s19112551
10.1109/JSEN.2013.2241423
10.1109/30.920433
10.1016/j.snb.2020.128223
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/abd5f0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_abd5f0
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
ID FETCH-LOGICAL-c282t-5d51157e05079a7f454836f2b152bf13acb1d0b1d10e92e3e93732444d9822c93
ISSN 0957-0233
IngestDate Thu Apr 24 23:12:47 EDT 2025
Tue Jul 01 03:54:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c282t-5d51157e05079a7f454836f2b152bf13acb1d0b1d10e92e3e93732444d9822c93
ORCID 0000-0002-0070-8872
ParticipantIDs crossref_primary_10_1088_1361_6501_abd5f0
crossref_citationtrail_10_1088_1361_6501_abd5f0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2021
References Nakata (mstabd5f0bib14) 1996; 68
Khan (mstabd5f0bib12) 2020; 20
Aluri (mstabd5f0bib9) 2013; 13
Azid (mstabd5f0bib31) 2014; 225
Lee (mstabd5f0bib4) 2018; 255
Aluri (mstabd5f0bib13) 2011; 22
Yuanyuan (mstabd5f0bib30) 2001; 47
Svozil (mstabd5f0bib24) 1997; 39
Khan (mstabd5f0bib18) 2020; 318
Livingstone (mstabd5f0bib23) 1997; 11
Khan (mstabd5f0bib16) 2020; 31
Khan (mstabd5f0bib21) 2020; 20
Deng (mstabd5f0bib27) 2014; 7
Shahid (mstabd5f0bib15) 2018; 18
Khan (mstabd5f0bib11) 2020
Rani (mstabd5f0bib7) 2019; 19
Aluri (mstabd5f0bib10) 2012; 23
Logaras (mstabd5f0bib32) 2010
Ehrlich (mstabd5f0bib2) 1966; 30
Talarico (mstabd5f0bib33) 2005
Azad (mstabd5f0bib5) 1992; 139
Breuel (mstabd5f0bib26) 2010
Bauer (mstabd5f0bib1) 1986; 134
Choi (mstabd5f0bib25) 1992; 3
Jordan (mstabd5f0bib28) 2015; 349
Dey (mstabd5f0bib6) 2018; 229
Khan (mstabd5f0bib22) 2020; 20
Khan (mstabd5f0bib8) 2019; 19
Shi (mstabd5f0bib17) 2019; 115
Webb (mstabd5f0bib29) 2001; 11
Khan (mstabd5f0bib19) 2020; 20
Khan (mstabd5f0bib20) 2020
Nisar (mstabd5f0bib3) 2013; 5
References_xml – volume: 255
  start-page: 1788
  year: 2018
  ident: mstabd5f0bib4
  article-title: Recent advances in carbon material-based NO2 gas sensors
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2017.08.203
– volume: 7
  start-page: 197
  year: 2014
  ident: mstabd5f0bib27
  article-title: Deep learning: methods and applications
  publication-title: FNT Signal Process.
  doi: 10.1561/2000000039
– volume: 22
  year: 2011
  ident: mstabd5f0bib13
  article-title: Highly selective GaN-nanowire/TiO2-nanocluster hybrid sensors for detection of benzene and related environment pollutants
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/29/295503
– volume: 5
  start-page: 8516
  year: 2013
  ident: mstabd5f0bib3
  article-title: TiO2-based gas sensor: a possible application to SO2
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4018835
– volume: 39
  start-page: 43
  year: 1997
  ident: mstabd5f0bib24
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00061-0
– volume: 11
  start-page: 135
  year: 1997
  ident: mstabd5f0bib23
  article-title: Data modelling with neural networks: advantages and limitations
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1023/A:1008074223811
– volume: 18
  start-page: 1446
  year: 2018
  ident: mstabd5f0bib15
  article-title: Least squares neural network-based wireless E-nose system using an SnO2 sensor array
  publication-title: Sensors
  doi: 10.3390/s18051446
– volume: 349
  start-page: 255
  year: 2015
  ident: mstabd5f0bib28
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 3
  start-page: 101
  year: 1992
  ident: mstabd5f0bib25
  article-title: Sensitivity analysis of multilayer perceptron with differentiable activation functions
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.105422
– volume: 225
  start-page: 2063
  year: 2014
  ident: mstabd5f0bib31
  article-title: Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: a case study in Malaysia
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-014-2063-1
– volume: 139
  start-page: 3690
  year: 1992
  ident: mstabd5f0bib5
  article-title: Solid-state gas sensors: a review
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2069145
– volume: 20
  start-page: 7138
  year: 2020
  ident: mstabd5f0bib21
  article-title: Functionalization of GaN nanowire sensors with metal oxides: an experimental and DFT investigation
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2978221
– start-page: 81
  year: 2005
  ident: mstabd5f0bib33
  article-title: Embedded system engineering using C/C++ based design methodologies
  doi: 10.1109/ECBS.2005.35
– volume: 31
  year: 2020
  ident: mstabd5f0bib16
  article-title: Reliable anatase-titania nanoclusters functionalized GaN sensor devices for UV assisted NO2 gas-sensing in ppb level
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab6685
– year: 2020
  ident: mstabd5f0bib11
  article-title: Back-gate GaN nanowire-based FET device for enhancing gas selectivity at room temperature
– volume: 20
  start-page: 6020
  year: 2020
  ident: mstabd5f0bib22
  article-title: Nanowire-based sensor array for detection of cross-sensitive gases using PCA and machine learning algorithms
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2972542
– start-page: 762
  year: 2010
  ident: mstabd5f0bib32
  article-title: SysPy: using Python for processor-centric SoC design
  doi: 10.1109/ICECS.2010.5724624
– volume: 20
  start-page: 3889
  year: 2020
  ident: mstabd5f0bib19
  article-title: Gallium nitride (GaN) nanostructures and their gas sensing properties: a review
  publication-title: Sensors
  doi: 10.3390/s20143889
– volume: 20
  start-page: 742
  year: 2020
  ident: mstabd5f0bib12
  article-title: Accelerated stress tests and statistical reliability analysis of metal-oxide/GaN nanostructured sensor devices
  publication-title: IEEE Trans. Device Mater. Reliab.
  doi: 10.1109/TDMR.2020.3028786
– volume: 134
  start-page: 1203
  year: 1986
  ident: mstabd5f0bib1
  article-title: Inhalation of 0.30 ppm nitrogen dioxide potentiates exercise-induced bronchospasm in asthmatics
  publication-title: Am. Rev. Respir. Dis.
  doi: 10.1164/arrd.1986.134.6.1203
– volume: 19
  start-page: 905
  year: 2019
  ident: mstabd5f0bib8
  article-title: Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S
  publication-title: Sensors
  doi: 10.3390/s19040905
– volume: 68
  start-page: 2067
  year: 1996
  ident: mstabd5f0bib14
  article-title: Gas sensing based on a nonlinear response: discrimination between hydrocarbons and quantification of individual components in a gas mixture
  publication-title: Anal. Chem.
  doi: 10.1021/ac9510954
– volume: 23
  year: 2012
  ident: mstabd5f0bib10
  article-title: Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO2–Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/17/175501
– volume: 11
  start-page: 19
  year: 2001
  ident: mstabd5f0bib29
  article-title: Machine learning for user modeling
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1023/A:1011117102175
– volume: 30
  start-page: 604
  year: 1966
  ident: mstabd5f0bib2
  article-title: Effect of nitrogen dioxide on resistance to respiratory infection
  publication-title: Bacteriol. Rev.
  doi: 10.1128/BR.30.3.604-614.1966
– start-page: p 103
  year: 2020
  ident: mstabd5f0bib20
  article-title: Metal-oxide/GaN based NO2 gas detection at room temperature: an experimental and density functional theory investigation
  doi: 10.1117/12.2557971
– volume: 115
  year: 2019
  ident: mstabd5f0bib17
  article-title: High-performance room-temperature TiO2-functionalized GaN nanowire gas sensors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5116677
– volume: 229
  start-page: 206
  year: 2018
  ident: mstabd5f0bib6
  article-title: Semiconductor metal oxide gas sensors: a review
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2017.12.036
– volume: 19
  start-page: 2551
  year: 2019
  ident: mstabd5f0bib7
  article-title: Tuning the polarity of MoTe2 FETs by varying the channel thickness for gas-sensing applications
  publication-title: Sensors
  doi: 10.3390/s19112551
– volume: 13
  start-page: 1883
  year: 2013
  ident: mstabd5f0bib9
  article-title: Nitro-aromatic explosive sensing using GaN nanowire-titania nanocluster hybrids
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2241423
– year: 2010
  ident: mstabd5f0bib26
  article-title: AutoMLP: simple, effective, fully automated learning rate and size adjustment
– volume: 47
  start-page: 149
  year: 2001
  ident: mstabd5f0bib30
  article-title: Single-chip speech recognition system based on 8051 microcontroller core
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/30.920433
– volume: 318
  year: 2020
  ident: mstabd5f0bib18
  article-title: Scalable metal oxide functionalized GaN nanowire for precise SO2 detection
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2020.128223
SSID ssj0007099
Score 2.4214368
Snippet Accurate identification and quantification of gas mixtures are almost unattainable utilizing only a metal-oxide/GaN sensor because of its cross-sensitivity to...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 55111
Title Identification and quantification of gases and their mixtures using GaN sensor array and artificial neural network
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: AUTh Library subscriptions: IOP Publishing
  customDbUrl:
  eissn: 1361-6501
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007099
  issn: 0957-0233
  databaseCode: IOP
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZSqkq9IKCtCgXkQw-gaMm-s3tECAhUS6sKJG4r79puItGE7kNq-Sf8W2Zs74OXBD1kEznO5DFfZsbfjMeEfJUscDg4fisUto8LlMgCtyAx4chDJN5sgXxHchZOLvzTy-ByMLjtVS3VVbaX3zy5r-R_tApjoFfcJfsKzbZCYQAeg37hChqG64t0rHfZSkO7qTzAn5r1hyAU_AV-qmwKJWfF8PfsL2YNymGtaIJjdjYsYS2LxZRFwXQ7Jnwv01oCG16qO1Uu3o9lk45eHDa7gxBI1SO2_ttU06wJBzhMJcOWsRPwzmzWQjNZVOyfJl73sykW6rdbiH4yRecm9dV1XcxMVa4hKlynKwtsGcexBSGCtmdC21svdCwIEp2-Qe4Izy7lrawrRHfaMj-y-2ArkYJopKGDy3gg7c7LNZn9B86vLUlUyfgoSlFGijJSLeENeeuOwxAPxzj5_qN18mM7Nm0c9XcyGXCQMGo_xUhL6EU8vdDlfIUsmzUH3dcAWiUDMV8j71Ttb16ukVVj30u6Y5qQ734gxX1sUUAFvY8tupBUYUs9p7BFG2xRhS0K2KIaW1RhS83ssEU1tqjB1kdycXR4fjCxzPkcVg4L9coKeICtmoQNa4qYjaUPq18vlG4GMWEmHY_lmcNtuMEfPnaFJyAUhvjd9zk2jcxj7xNZmi_m4jOheRTFbsRsn8UxZupjN5Acu9ZKDi6Vs3Uyan7DNDfN6_EMlav0Ob2tk932Fde6ccuzczdeMfcLed-Be5MsVUUttiAurbJthZA7qSGNwQ
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+quantification+of+gases+and+their+mixtures+using+GaN+sensor+array+and+artificial+neural+network&rft.jtitle=Measurement+science+%26+technology&rft.au=Khan%2C+Md+Ashfaque+Hossain&rft.au=Motayed%2C+Abhishek&rft.au=Rao%2C+Mulpuri+V&rft.date=2021-05-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=32&rft.issue=5&rft.spage=55111&rft_id=info:doi/10.1088%2F1361-6501%2Fabd5f0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_abd5f0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon