Plant leaf disease classification using deep attention residual network optimized by opposition-based symbiotic organisms search algorithm
The main obstacle in front of the sustainable development of the agricultural sector is the considerable amount of economic loss due to reduced food production because of plant diseases. Computer-aided diagnosis of plant health conditions has paved its way in recent times by employing deep learning...
        Saved in:
      
    
          | Published in | Neural computing & applications Vol. 34; no. 23; pp. 21049 - 21066 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer London
    
        01.12.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0941-0643 1433-3058  | 
| DOI | 10.1007/s00521-022-07587-6 | 
Cover
| Abstract | The main obstacle in front of the sustainable development of the agricultural sector is the considerable amount of economic loss due to reduced food production because of plant diseases. Computer-aided diagnosis of plant health conditions has paved its way in recent times by employing deep learning techniques especially convolutional neural networks (CNNs). The existing techniques mainly attained high classification accuracy if the images are captured in laboratory environments. Application on real world in-field images reduces their accuracy level significantly. To overcome the above shortcoming, this article merged the attention learning mechanism with the residual learning blocks and used the attention residual learning (ARL) mechanism for discriminative feature extraction from the RGB images of plant leaves. By employing the ARL strategy in the standard ResNet-50 CNN model, a new CNN module named AResNet-50 is designed for successful leaf disease recognition. Further, to reduce the chance of accuracy decrement due to erroneous choice of the training hyperparameters, Opposition-based Symbiotic Organisms Search (OSOS) algorithm is implemented for optimizing the values of learning rate and momentum during the training process. The efficacy of the proposed optimally tuned attention residual learning network, OSOS-AResNet-50, is checked on a leaf database created by the authors. Fifteen health conditions of citrus, guava, mango, and eggplant leaves are identified from their RGB images captured in real world or practical environment. The obtained classification accuracy is 98.20%. The experimental outcome reveals the superiority of OSOS-AResNet-50 over existing standard and largely used CNN models like AlexNet, VGG-16, VGG-19 and ResNet-50. Further, investigations disclose the importance of optimal training hyperparameter tuning and shows that approximately 2% more accuracy can be obtained by finding optimal values of learning rate and momentum with the help of OSOS. | 
    
|---|---|
| AbstractList | The main obstacle in front of the sustainable development of the agricultural sector is the considerable amount of economic loss due to reduced food production because of plant diseases. Computer-aided diagnosis of plant health conditions has paved its way in recent times by employing deep learning techniques especially convolutional neural networks (CNNs). The existing techniques mainly attained high classification accuracy if the images are captured in laboratory environments. Application on real world in-field images reduces their accuracy level significantly. To overcome the above shortcoming, this article merged the attention learning mechanism with the residual learning blocks and used the attention residual learning (ARL) mechanism for discriminative feature extraction from the RGB images of plant leaves. By employing the ARL strategy in the standard ResNet-50 CNN model, a new CNN module named AResNet-50 is designed for successful leaf disease recognition. Further, to reduce the chance of accuracy decrement due to erroneous choice of the training hyperparameters, Opposition-based Symbiotic Organisms Search (OSOS) algorithm is implemented for optimizing the values of learning rate and momentum during the training process. The efficacy of the proposed optimally tuned attention residual learning network, OSOS-AResNet-50, is checked on a leaf database created by the authors. Fifteen health conditions of citrus, guava, mango, and eggplant leaves are identified from their RGB images captured in real world or practical environment. The obtained classification accuracy is 98.20%. The experimental outcome reveals the superiority of OSOS-AResNet-50 over existing standard and largely used CNN models like AlexNet, VGG-16, VGG-19 and ResNet-50. Further, investigations disclose the importance of optimal training hyperparameter tuning and shows that approximately 2% more accuracy can be obtained by finding optimal values of learning rate and momentum with the help of OSOS. | 
    
| Author | Jain, Kamal Pandey, Akshay  | 
    
| Author_xml | – sequence: 1 givenname: Akshay orcidid: 0000-0001-6272-8556 surname: Pandey fullname: Pandey, Akshay email: apandey@dm.iitr.ac.in organization: Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee – sequence: 2 givenname: Kamal surname: Jain fullname: Jain, Kamal organization: Department of Civil Engineering, Indian Institute of Technology Roorkee  | 
    
| BookMark | eNp9kMtqGzEUhkVwIHaSF8hK0PU0uoxmxstieoNAs0jWQldHyYw01ZEp7iPkqaPYgUIXXokj_d_5xbdCi5iiQ-iGks-UkP4WCBGMNoSxhvRi6JvuDC1py3nDiRgWaEnWbX3uWn6BVgDPhJC2G8QSvd6PKhY8OuWxDeAUOGxGBRB8MKqEFPEOQtxi69yMVSkuHi6zg2B3asTRlT8pv-A0lzCFv85iva_DnCC8BxtdN1oM-0mHVILBKW9VDDABrmXZPGE1blMO5Wm6QudejeCuP85L9Pjt68PmR3P36_vPzZe7xrCBlYYPa0GZoLqO7cCFFmttVU-9sVp0zGjCNXfec66tFaKjVvOWCtV745VnlF-iT8e9c06_dw6KfE67HGulZD1nw7oloq0pdkyZnACy83LOYVJ5LymR787l0bmszuXBuewqNPwHmVAOFktWYTyN8iMKtSduXf73qxPUG_DlnH8 | 
    
| CitedBy_id | crossref_primary_10_1080_13682199_2023_2204036 crossref_primary_10_3389_fpls_2024_1382416 crossref_primary_10_1007_s11042_024_20348_y crossref_primary_10_3390_biomimetics8070525 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1615_JFlowVisImageProc_2023047476 crossref_primary_10_3390_plants12142701 crossref_primary_10_1111_exsy_13473 crossref_primary_10_1038_s41598_025_93225_9  | 
    
| Cites_doi | 10.1007/s41348-020-00403-0 10.1093/oso/9780195099713.001.0001 10.1109/TMI.2019.2893944 10.1016/j.compbiomed.2019.03.017 10.1109/TII.2022.3168043 10.1016/j.biosystemseng.2021.06.014 10.1016/j.compstruc.2014.03.007 10.1016/j.biosystemseng.2016.03.012 10.1109/ACCESS.2020.2982456 10.1016/j.compeleceng.2021.107023 10.1016/j.future.2015.08.006 10.1016/j.asoc.2007.07.010 10.1117/1.JEI.29.1.013004 10.1007/s00521-021-06726-9 10.1016/j.biosystemseng.2016.01.017 10.1016/j.ecoinf.2020.101182 10.1007/s00521-019-04236-3 10.1007/s11760-020-01780-7 10.1080/00051144.2020.1728911 10.1371/journal.pone.0066428 10.1016/j.biosystemseng.2008.09.030 10.1016/j.compag.2018.11.005 10.1007/s00500-016-2474-6 10.1016/j.compag.2018.04.002 10.1016/j.compag.2017.01.014 10.1016/j.envres.2021.111275 10.3389/fpls.2016.01419 10.1016/j.compag.2019.105146 10.1016/j.compag.2021.106543 10.1007/s00521-021-06714-z 10.1016/j.compag.2019.105162 10.1016/j.energy.2016.01.063 10.1016/j.compeleceng.2019.04.011 10.1109/ISAP48318.2019.9065963 10.1109/CVPR.2016.319 10.1109/PESGRE52268.2022.9715896 10.1109/PERVASIVE.2015.7086983 10.1109/CVPR.2016.90 10.1016/B978-0-12-803265-7.00004-X  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.  | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS  | 
    
| DOI | 10.1007/s00521-022-07587-6 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1433-3058 | 
    
| EndPage | 21066 | 
    
| ExternalDocumentID | 10_1007_s00521_022_07587_6 | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS  | 
    
| ID | FETCH-LOGICAL-c282t-38951251bc284835b59bda71fcdb562cb03b3eff33bdd5561db3415a7fcfaf213 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0941-0643 | 
    
| IngestDate | Fri Jul 25 04:41:37 EDT 2025 Wed Oct 01 02:26:15 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Fri Feb 21 02:44:42 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 23 | 
    
| Keywords | Plant leaf disease Attention residual learning Convolutional neural network Opposition-based symbiotic organisms search (OSOS) algorithm  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c282t-38951251bc284835b59bda71fcdb562cb03b3eff33bdd5561db3415a7fcfaf213 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-6272-8556 | 
    
| PQID | 2732894054 | 
    
| PQPubID | 2043988 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | proquest_journals_2732894054 crossref_primary_10_1007_s00521_022_07587_6 crossref_citationtrail_10_1007_s00521_022_07587_6 springer_journals_10_1007_s00521_022_07587_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20221200 2022-12-00 20221201  | 
    
| PublicationDateYYYYMMDD | 2022-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2022 text: 20221200  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: Heidelberg  | 
    
| PublicationTitle | Neural computing & applications | 
    
| PublicationTitleAbbrev | Neural Comput & Applic | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer London Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer London – name: Springer Nature B.V  | 
    
| References | Zhang, Xie, Xia, Shen (CR30) 2019; 38 Barbedo, Koenigkan, Santos (CR5) 2016; 147 Nandhini, Ashokkumar (CR27) 2022; 34 Abdullahi, Ngadi, Abdulhamid (CR32) 2016; 56 Fang, Chen, Zhang, Wang (CR19) 2020; 29 Geetharamani, Pandian (CR23) 2019; 76 Thangaraj, Anandamurugan, Kaliappan (CR18) 2021; 128 Prabu, Chelliah (CR26) 2022; 34 Esgario, Krohling, Ventura (CR20) 2020; 169 CR37 Chung, Shin (CR43) 2020; 32 CR14 CR35 Tejani, Savsani, Patel (CR33) 2016; 3 Camargo, Smith (CR4) 2009; 102 Ray, Mueller, West, Foley (CR1) 2013; 8 Cheng, Prayogo (CR31) 2014; 139 Rahnamayan, Tizhoosh, Salama (CR36) 2008; 8 Zhong, Zhao (CR24) 2020; 168 Wang, Tan, Liu (CR39) 2018; 22 CR2 Hu, Wang, Zhang, Wan (CR21) 2021; 90 Zhang, Wu, You, Zhang (CR6) 2017; 134 CR29 CR28 Pantazi, Moshou, Tamouridou (CR7) 2019; 156 CR9 Back (CR41) 1996 Navaneeth, Suchetha (CR42) 2019; 108 Kamankesh, Agelidis, Kavousi-Fard (CR34) 2016; 100 Pandey, Jain (CR38) 2022; 192 Kurmi, Gangwar, Agarwal, Kumar, Srivastava (CR10) 2020; 15 Krishnamoorthy, Prasad, Kumar, Subedi, Abraha, Sathishkumar (CR15) 2021; 198 Mohanty, Hughes, Salathe (CR3) 2016; 7 CR40 Alagumariappan, Dewan, Muthukrishnan, Raju, Bilal, Sankaran (CR8) 2020; 2 Paul, Upadhyay, Padhy (CR11) 2022 Rangarajan, Purushothaman, Perez-Ruiz (CR16) 2021; 209 Atila, Ucar, Akyol, Ucar (CR17) 2021; 61 Picon, Alvarez-Gila, Seitz, Ortiz-Barredo, Echazarra, Johannes (CR25) 2019; 161 Aravind, Raja (CR13) 2020; 61 Barbedo (CR12) 2016; 144 Zhang, Song, Zhang (CR22) 2020; 8 Y Kurmi (7587_CR10) 2020; 15 AK Rangarajan (7587_CR16) 2021; 209 H Kamankesh (7587_CR34) 2016; 100 7587_CR9 T Back (7587_CR41) 1996 DK Ray (7587_CR1) 2013; 8 SP Mohanty (7587_CR3) 2016; 7 7587_CR2 G Hu (7587_CR21) 2021; 90 7587_CR14 7587_CR37 U Atila (7587_CR17) 2021; 61 A Picon (7587_CR25) 2019; 161 7587_CR35 XE Pantazi (7587_CR7) 2019; 156 R Thangaraj (7587_CR18) 2021; 128 D Wang (7587_CR39) 2018; 22 G Geetharamani (7587_CR23) 2019; 76 J Zhang (7587_CR30) 2019; 38 JGA Barbedo (7587_CR12) 2016; 144 JGA Barbedo (7587_CR5) 2016; 147 S Rahnamayan (7587_CR36) 2008; 8 S Zhang (7587_CR6) 2017; 134 KR Aravind (7587_CR13) 2020; 61 7587_CR40 M Abdullahi (7587_CR32) 2016; 56 A Camargo (7587_CR4) 2009; 102 GG Tejani (7587_CR33) 2016; 3 P Alagumariappan (7587_CR8) 2020; 2 Y Zhong (7587_CR24) 2020; 168 B Navaneeth (7587_CR42) 2019; 108 M Prabu (7587_CR26) 2022; 34 7587_CR28 MY Cheng (7587_CR31) 2014; 139 S Paul (7587_CR11) 2022 N Krishnamoorthy (7587_CR15) 2021; 198 A Pandey (7587_CR38) 2022; 192 S Nandhini (7587_CR27) 2022; 34 T Fang (7587_CR19) 2020; 29 H Chung (7587_CR43) 2020; 32 Y Zhang (7587_CR22) 2020; 8 7587_CR29 JGM Esgario (7587_CR20) 2020; 169  | 
    
| References_xml | – volume: 128 start-page: 73 issue: 1 year: 2021 end-page: 86 ident: CR18 article-title: Automated tomato leaf disease classification using transfer learning-based deep convolution neural network publication-title: J Plant Dis Prot doi: 10.1007/s41348-020-00403-0 – year: 1996 ident: CR41 publication-title: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms doi: 10.1093/oso/9780195099713.001.0001 – volume: 38 start-page: 2092 issue: 9 year: 2019 end-page: 2103 ident: CR30 article-title: Attention residual learning for skin lesion classification publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2019.2893944 – ident: CR14 – ident: CR2 – volume: 2 start-page: 1 issue: 49 year: 2020 end-page: 7 ident: CR8 article-title: Intelligent plant disease identification system using machine learning publication-title: Eng Proc – ident: CR37 – volume: 108 start-page: 85 year: 2019 end-page: 92 ident: CR42 article-title: PSO optimized 1-D CNN-SVM architecture for real-time detection and classification applications publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.03.017 – year: 2022 ident: CR11 article-title: Residential appliance identification using 1-D convolutional neural network based on multiscale sinusoidal initializers publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2022.3168043 – volume: 209 start-page: 139 year: 2021 end-page: 153 ident: CR16 article-title: Disease classification in aubergine with local symptomatic region using deep learning models publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2021.06.014 – volume: 139 start-page: 98 year: 2014 end-page: 112 ident: CR31 article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm publication-title: Comput Struct doi: 10.1016/j.compstruc.2014.03.007 – volume: 147 start-page: 104 year: 2016 end-page: 116 ident: CR5 article-title: Identifying multiple plant diseases using digital image processing publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2016.03.012 – volume: 8 start-page: 56607 year: 2020 end-page: 56614 ident: CR22 article-title: Deep learning-based object detection improvement for tomato disease publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982456 – volume: 90 year: 2021 ident: CR21 article-title: Detection and severity analysis of tea leaf blight based on deep learning publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2021.107023 – volume: 56 start-page: 640 year: 2016 end-page: 650 ident: CR32 article-title: Symbiotic organism search optimization based task scheduling in cloud computing environment publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2015.08.006 – ident: CR35 – ident: CR29 – volume: 8 start-page: 906 issue: 2 year: 2008 end-page: 918 ident: CR36 article-title: Opposition versus randomness in soft computing techniques publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.07.010 – volume: 29 start-page: 013004 issue: 1 year: 2020 ident: CR19 article-title: Crop leaf disease grade identification based on an improved convolutional neural network publication-title: J Electron Imaging doi: 10.1117/1.JEI.29.1.013004 – volume: 34 start-page: 1 year: 2022 end-page: 14 ident: CR26 article-title: Mango leaf disease identification and classification using a CNN architecture optimized by crossover-based levy flight distribution algorithm publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06726-9 – volume: 3 start-page: 226 year: 2016 end-page: 249 ident: CR33 article-title: Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization publication-title: J Comput Des Eng – ident: CR40 – volume: 144 start-page: 52 year: 2016 end-page: 60 ident: CR12 article-title: A review on the main challenges in automatic plant disease identification based on visible range images publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2016.01.017 – volume: 61 year: 2021 ident: CR17 article-title: Plant leaf disease classification using EfficientNet deep learning model publication-title: Eco Inform doi: 10.1016/j.ecoinf.2020.101182 – volume: 32 start-page: 7897 issue: 12 year: 2020 end-page: 7914 ident: CR43 article-title: Genetic algorithm-optimized multi-channel convolutional neural network for stock market prediction publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04236-3 – volume: 15 start-page: 589 year: 2020 end-page: 597 ident: CR10 article-title: Leaf image analysis-based crop diseases classification publication-title: Signal Image Video Process doi: 10.1007/s11760-020-01780-7 – volume: 61 start-page: 260 issue: 2 year: 2020 end-page: 272 ident: CR13 article-title: Automated disease classification in (selected) agricultural crops using transfer learning publication-title: Automatika doi: 10.1080/00051144.2020.1728911 – volume: 8 issue: 6 year: 2013 ident: CR1 article-title: Yield trends are insufficient to double global crop production by 2050 publication-title: PLoS ONE doi: 10.1371/journal.pone.0066428 – volume: 102 start-page: 9 issue: 1 year: 2009 end-page: 21 ident: CR4 article-title: An image processing based algorithm to automatically identify crop disease visual symptoms publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2008.09.030 – volume: 156 start-page: 96 year: 2019 end-page: 104 ident: CR7 article-title: Automated leaf disease detection in different crop species through image features analysis and one class classifiers publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.11.005 – volume: 22 start-page: 387 issue: 2 year: 2018 end-page: 408 ident: CR39 article-title: Particle swarm optimization algorithm: an overview publication-title: Soft Comput doi: 10.1007/s00500-016-2474-6 – volume: 161 start-page: 280 year: 2019 end-page: 290 ident: CR25 article-title: Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.04.002 – volume: 134 start-page: 135 year: 2017 end-page: 141 ident: CR6 article-title: Leaf image based cucumber disease recognition using sparse representation classification publication-title: Comput Electron Agric doi: 10.1016/j.compag.2017.01.014 – volume: 198 year: 2021 ident: CR15 article-title: Rice leaf diseases prediction using deep neural networks with transfer learning publication-title: Environ Res doi: 10.1016/j.envres.2021.111275 – volume: 7 start-page: 1419 year: 2016 ident: CR3 article-title: Using deep learning for image-based plant disease detection publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01419 – ident: CR9 – volume: 168 year: 2020 ident: CR24 article-title: Research on deep learning in apple leaf disease recognition publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.105146 – volume: 192 year: 2022 ident: CR38 article-title: An intelligent system for crop identification and classification from UAV images using conjugated dense convolutional neural network publication-title: Comput Electron Agric doi: 10.1016/j.compag.2021.106543 – volume: 34 start-page: 1 year: 2022 end-page: 22 ident: CR27 article-title: An automatic plant leaf disease identification using DenseNet-121 architecture with a mutation-based henry gas solubility optimization algorithm publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06714-z – ident: CR28 – volume: 169 year: 2020 ident: CR20 article-title: Deep learning for classification and severity estimation of coffee leaf biotic stress publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.105162 – volume: 100 start-page: 285 year: 2016 end-page: 297 ident: CR34 article-title: Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand publication-title: Energy doi: 10.1016/j.energy.2016.01.063 – volume: 76 start-page: 323 year: 2019 end-page: 338 ident: CR23 article-title: Identification of plant leaf diseases using a nine-layer deep convolutional neural network publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.04.011 – volume: 168 year: 2020 ident: 7587_CR24 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.105146 – volume: 198 year: 2021 ident: 7587_CR15 publication-title: Environ Res doi: 10.1016/j.envres.2021.111275 – ident: 7587_CR40 doi: 10.1109/ISAP48318.2019.9065963 – volume: 139 start-page: 98 year: 2014 ident: 7587_CR31 publication-title: Comput Struct doi: 10.1016/j.compstruc.2014.03.007 – volume: 8 start-page: 906 issue: 2 year: 2008 ident: 7587_CR36 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.07.010 – volume: 32 start-page: 7897 issue: 12 year: 2020 ident: 7587_CR43 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04236-3 – volume: 169 year: 2020 ident: 7587_CR20 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.105162 – volume: 34 start-page: 1 year: 2022 ident: 7587_CR27 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06714-z – volume: 3 start-page: 226 year: 2016 ident: 7587_CR33 publication-title: J Comput Des Eng – volume: 15 start-page: 589 year: 2020 ident: 7587_CR10 publication-title: Signal Image Video Process doi: 10.1007/s11760-020-01780-7 – ident: 7587_CR35 – volume: 192 year: 2022 ident: 7587_CR38 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2021.106543 – ident: 7587_CR37 doi: 10.1109/CVPR.2016.319 – volume: 134 start-page: 135 year: 2017 ident: 7587_CR6 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2017.01.014 – volume: 156 start-page: 96 year: 2019 ident: 7587_CR7 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.11.005 – ident: 7587_CR14 – volume: 38 start-page: 2092 issue: 9 year: 2019 ident: 7587_CR30 publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2019.2893944 – volume: 2 start-page: 1 issue: 49 year: 2020 ident: 7587_CR8 publication-title: Eng Proc – volume: 8 start-page: 56607 year: 2020 ident: 7587_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982456 – ident: 7587_CR29 doi: 10.1109/PESGRE52268.2022.9715896 – ident: 7587_CR9 doi: 10.1109/PERVASIVE.2015.7086983 – volume: 61 start-page: 260 issue: 2 year: 2020 ident: 7587_CR13 publication-title: Automatika doi: 10.1080/00051144.2020.1728911 – year: 2022 ident: 7587_CR11 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2022.3168043 – volume: 90 year: 2021 ident: 7587_CR21 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2021.107023 – volume-title: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms year: 1996 ident: 7587_CR41 doi: 10.1093/oso/9780195099713.001.0001 – volume: 147 start-page: 104 year: 2016 ident: 7587_CR5 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2016.03.012 – volume: 7 start-page: 1419 year: 2016 ident: 7587_CR3 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01419 – volume: 161 start-page: 280 year: 2019 ident: 7587_CR25 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.04.002 – ident: 7587_CR28 doi: 10.1109/CVPR.2016.90 – volume: 100 start-page: 285 year: 2016 ident: 7587_CR34 publication-title: Energy doi: 10.1016/j.energy.2016.01.063 – volume: 8 issue: 6 year: 2013 ident: 7587_CR1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0066428 – volume: 29 start-page: 013004 issue: 1 year: 2020 ident: 7587_CR19 publication-title: J Electron Imaging doi: 10.1117/1.JEI.29.1.013004 – volume: 61 year: 2021 ident: 7587_CR17 publication-title: Eco Inform doi: 10.1016/j.ecoinf.2020.101182 – volume: 76 start-page: 323 year: 2019 ident: 7587_CR23 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.04.011 – volume: 22 start-page: 387 issue: 2 year: 2018 ident: 7587_CR39 publication-title: Soft Comput doi: 10.1007/s00500-016-2474-6 – volume: 144 start-page: 52 year: 2016 ident: 7587_CR12 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2016.01.017 – volume: 209 start-page: 139 year: 2021 ident: 7587_CR16 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2021.06.014 – ident: 7587_CR2 doi: 10.1016/B978-0-12-803265-7.00004-X – volume: 108 start-page: 85 year: 2019 ident: 7587_CR42 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.03.017 – volume: 34 start-page: 1 year: 2022 ident: 7587_CR26 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06726-9 – volume: 56 start-page: 640 year: 2016 ident: 7587_CR32 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2015.08.006 – volume: 102 start-page: 9 issue: 1 year: 2009 ident: 7587_CR4 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2008.09.030 – volume: 128 start-page: 73 issue: 1 year: 2021 ident: 7587_CR18 publication-title: J Plant Dis Prot doi: 10.1007/s41348-020-00403-0  | 
    
| SSID | ssj0004685 | 
    
| Score | 2.3512754 | 
    
| Snippet | The main obstacle in front of the sustainable development of the agricultural sector is the considerable amount of economic loss due to reduced food production... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 21049 | 
    
| SubjectTerms | Accuracy Artificial Intelligence Artificial neural networks CAD/CAM Color imagery Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Deep learning Economic impact Feature extraction Image classification Image Processing and Computer Vision Machine learning Medical imaging Momentum Optimization Original Article Plant diseases Probability and Statistics in Computer Science Search algorithms Sustainable development Training  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66Xrz4FtcXc_CmhW2apvYoooigJxe8lby6Lmy7Yuth_Qn-amfSdldFBY-haSiZmcyXzjczjJ0koUiSkMvAIHgPhIxcgFrCA5kaaaRMxbmifOe7e3kzFLeP8WObFFZ1bPcuJOlP6nmyG_3BxKsvJ7ZkjKYhl9lKTOW8UIuH_OJTNqRvxIn3FuL0iKhNlfl5ja_uaIExv4VFvbe53mBrLUyEi0aum2zJlVtsvWvBAK1FbrN3ajpUw8SpHNpYCxgCxMQA8psOxGwfgXXuGaiWpmc3Al6yfRYWlA0NHKZ4dBTjN2dBz3DQcbkC8nIWqlmhx1P8Fmi6QFVFBY2NgJqMpi_j-qnYYcPrq4fLm6BtrxAYvGfVAUKVmOCNxqFAIKbjVFuVhLmxGlGR0YNIRy7Po0hbS100rUaXF6skN7nKeRjtsl45Ld0eAzypVKgT5XTChUmE4hTuPMcVQ6ndwPZZ2O1yZtra49QCY5LNqyZ7yWQomcxLJpN9djp_57mpvPHn7MNOeFlrhVXGqRJRipBU9NlZJ9DF499X2__f9AO2ykmnPMvlkPXql1d3hFil1sdeNT8Ad83hlg priority: 102 providerName: Springer Nature  | 
    
| Title | Plant leaf disease classification using deep attention residual network optimized by opposition-based symbiotic organisms search algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s00521-022-07587-6 https://www.proquest.com/docview/2732894054  | 
    
| Volume | 34 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tthcuvBGFpZoDN7DYOI7THhAqqN0ViAohKi2nyK_srtQXNByWn8CvZsZxtoDEHu0kVuTx47Pnm_kAnpeZKstMauEIvAul8yBolEihx047rcdqZDje-eNcny7U-7Pi7ADmXSwM0yq7NTEu1H7j-I78leSsMmOCF-rN9ptg1Sj2rnYSGiZJK_jXMcXYIfQlZ8bqQf_tdP7p8x-RklGkk840zPdReQqjicF0fENKtZLZmAVNPf33VrXHn_-4TONONLsLtxOExElr83twENb34U4nz4Bptj6AXyxI1OAymBqTHwYdg2VmB0WDILPez9GHsEXOsxmZj0gH8BihheuWIo4bWlZWlz-DR3tFhY7nJXgH9Li7WtnLDf0LtgpRu9UO2_mDZnlOXdhcrB7CYjb98u5UJOkF4egM1giCMQVDH0tFRSDNFmPrTZnVzltCTM4e5zYPdZ3n1ntW2PSWtsPClLWrTS2z_BH01pt1eAxIq5jJbGmCLaVypTKSXaEjajHTNhz7AWRdL1cu5SVneYxldZ1ROVqmIstU0TKVHsCL62-2bVaOG98-6oxXpRm6q_bjaQAvO4PuH_-_tSc3t_YUbkkeQ5HxcgS95vuP8IxwS2OHcDianQyhPzn5-mE6TEOTahdy8hvMCe6Z | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2F5AAXdsRAgDrACSzidrsdHyLEkmhCkhFCiZSb6c0h0myJjdDwCXwU30ZVu50BJHLL0TOe1sivXEv3q3oAz4tUFkUqVGIpeU-kynxCViISVVpllSrlpuZ-54ORGh7Jj8f58Qr86nthmFbZ-8TgqN3M8h75a8FTZUpKL-Sb-VnCqlF8utpLaOgoreC2woix2Nix5xffqYRrtnY_EN4vhNjZPnw_TKLKQGKp3GgTitg5R3lDl5LyEZOXxukira0zlBxYs5GZzNd1lhnnWEzSGfL8uS5qW-tapBmtew3WZCZLKv7W3m2PPn3-ozMziIJSDcX8IpnFtp3QvMc7svSpYPZnTq-6-js0LvPdf45oQ-TbuQ03Y8qKbzsbuwMrfnoXbvVyEBi9wz34yQJILY69rjGe-6Dl5JzZSMEAkFn2J-i8nyPP9QxMS6SCP3SE4bSjpOOM3Njk9Id3aBZ00fPKEo64DpvFxJzO6L9gp0jVTBrsgEA9PiHI2q-T-3B0JSA8gNXpbOofApLX1KkptDeFkLaQWvDR6yatmCrjN9wA0v4pVzbOQWc5jnF1McE5IFMRMlVAplIDeHnxm3k3BeTSu9d78KroEZpqab8DeNUDuvz6_6s9uny1Z3B9eHiwX-3vjvYeww3B9hTYNuuw2p5_808oZ2rN02iYCF-u-l34DUIBKP8 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsNADB2xSIgLO6KsPnCDCDKZTOgRARW7OFCJWzRboFKbVm04wCfw1diTpCwCJI5RJqMotsfP8bPN2G4SiiQJuQwMgvdAyMgFqCU8kE0jjZRNcaSo3vnmVp63xeVD_PCpit-z3euUZFnTQF2a8uJgYLODceEb_c3EMJgTczJGM5GTbFpQowTU6DY__lQZ6YdyYgxD_B4RVWUzP-_x1TV94M1vKVLveVoLbK6CjHBcyniRTbh8ic3X4xigss5l9kYDiAroOpVBlXcBQ-CY2EBeAEAs90ewzg2A-mp6piNgwO0rsiAvKeHQx2Ok13l1FvQLXtS8roA8noXRS093-vguUE6EGvVGUNoLqO5jf9gpnnorrN06uz85D6pRC4HBmKsIELbEBHU0XgoEZTpuaquSMDNWI0Iy-jDSkcuyKNLW0kRNq9H9xSrJTKYyHkarbCrv526NAZ5aKtSJcjrhwiRCcUp9HuGOodTu0DZYWH_l1FR9yGkcRjcdd1D2kklRMqmXTCobbG_8zKDswvHn6s1aeGllkaOUU1eiJsJT0WD7tUA_bv--2_r_lu-wmbvTVnp9cXu1wWY5qZcnv2yyqWL47LYQwhR622vpO01h6L4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+leaf+disease+classification+using+deep+attention+residual+network+optimized+by+opposition-based+symbiotic+organisms+search+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Pandey%2C+Akshay&rft.au=Jain%2C+Kamal&rft.date=2022-12-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=23&rft.spage=21049&rft.epage=21066&rft_id=info:doi/10.1007%2Fs00521-022-07587-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_022_07587_6 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |