Plant leaf disease classification using deep attention residual network optimized by opposition-based symbiotic organisms search algorithm

The main obstacle in front of the sustainable development of the agricultural sector is the considerable amount of economic loss due to reduced food production because of plant diseases. Computer-aided diagnosis of plant health conditions has paved its way in recent times by employing deep learning...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 34; no. 23; pp. 21049 - 21066
Main Authors Pandey, Akshay, Jain, Kamal
Format Journal Article
LanguageEnglish
Published London Springer London 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-022-07587-6

Cover

Abstract The main obstacle in front of the sustainable development of the agricultural sector is the considerable amount of economic loss due to reduced food production because of plant diseases. Computer-aided diagnosis of plant health conditions has paved its way in recent times by employing deep learning techniques especially convolutional neural networks (CNNs). The existing techniques mainly attained high classification accuracy if the images are captured in laboratory environments. Application on real world in-field images reduces their accuracy level significantly. To overcome the above shortcoming, this article merged the attention learning mechanism with the residual learning blocks and used the attention residual learning (ARL) mechanism for discriminative feature extraction from the RGB images of plant leaves. By employing the ARL strategy in the standard ResNet-50 CNN model, a new CNN module named AResNet-50 is designed for successful leaf disease recognition. Further, to reduce the chance of accuracy decrement due to erroneous choice of the training hyperparameters, Opposition-based Symbiotic Organisms Search (OSOS) algorithm is implemented for optimizing the values of learning rate and momentum during the training process. The efficacy of the proposed optimally tuned attention residual learning network, OSOS-AResNet-50, is checked on a leaf database created by the authors. Fifteen health conditions of citrus, guava, mango, and eggplant leaves are identified from their RGB images captured in real world or practical environment. The obtained classification accuracy is 98.20%. The experimental outcome reveals the superiority of OSOS-AResNet-50 over existing standard and largely used CNN models like AlexNet, VGG-16, VGG-19 and ResNet-50. Further, investigations disclose the importance of optimal training hyperparameter tuning and shows that approximately 2% more accuracy can be obtained by finding optimal values of learning rate and momentum with the help of OSOS.
AbstractList The main obstacle in front of the sustainable development of the agricultural sector is the considerable amount of economic loss due to reduced food production because of plant diseases. Computer-aided diagnosis of plant health conditions has paved its way in recent times by employing deep learning techniques especially convolutional neural networks (CNNs). The existing techniques mainly attained high classification accuracy if the images are captured in laboratory environments. Application on real world in-field images reduces their accuracy level significantly. To overcome the above shortcoming, this article merged the attention learning mechanism with the residual learning blocks and used the attention residual learning (ARL) mechanism for discriminative feature extraction from the RGB images of plant leaves. By employing the ARL strategy in the standard ResNet-50 CNN model, a new CNN module named AResNet-50 is designed for successful leaf disease recognition. Further, to reduce the chance of accuracy decrement due to erroneous choice of the training hyperparameters, Opposition-based Symbiotic Organisms Search (OSOS) algorithm is implemented for optimizing the values of learning rate and momentum during the training process. The efficacy of the proposed optimally tuned attention residual learning network, OSOS-AResNet-50, is checked on a leaf database created by the authors. Fifteen health conditions of citrus, guava, mango, and eggplant leaves are identified from their RGB images captured in real world or practical environment. The obtained classification accuracy is 98.20%. The experimental outcome reveals the superiority of OSOS-AResNet-50 over existing standard and largely used CNN models like AlexNet, VGG-16, VGG-19 and ResNet-50. Further, investigations disclose the importance of optimal training hyperparameter tuning and shows that approximately 2% more accuracy can be obtained by finding optimal values of learning rate and momentum with the help of OSOS.
Author Jain, Kamal
Pandey, Akshay
Author_xml – sequence: 1
  givenname: Akshay
  orcidid: 0000-0001-6272-8556
  surname: Pandey
  fullname: Pandey, Akshay
  email: apandey@dm.iitr.ac.in
  organization: Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee
– sequence: 2
  givenname: Kamal
  surname: Jain
  fullname: Jain, Kamal
  organization: Department of Civil Engineering, Indian Institute of Technology Roorkee
BookMark eNp9kMtqGzEUhkVwIHaSF8hK0PU0uoxmxstieoNAs0jWQldHyYw01ZEp7iPkqaPYgUIXXokj_d_5xbdCi5iiQ-iGks-UkP4WCBGMNoSxhvRi6JvuDC1py3nDiRgWaEnWbX3uWn6BVgDPhJC2G8QSvd6PKhY8OuWxDeAUOGxGBRB8MKqEFPEOQtxi69yMVSkuHi6zg2B3asTRlT8pv-A0lzCFv85iva_DnCC8BxtdN1oM-0mHVILBKW9VDDABrmXZPGE1blMO5Wm6QudejeCuP85L9Pjt68PmR3P36_vPzZe7xrCBlYYPa0GZoLqO7cCFFmttVU-9sVp0zGjCNXfec66tFaKjVvOWCtV745VnlF-iT8e9c06_dw6KfE67HGulZD1nw7oloq0pdkyZnACy83LOYVJ5LymR787l0bmszuXBuewqNPwHmVAOFktWYTyN8iMKtSduXf73qxPUG_DlnH8
CitedBy_id crossref_primary_10_1080_13682199_2023_2204036
crossref_primary_10_3389_fpls_2024_1382416
crossref_primary_10_1007_s11042_024_20348_y
crossref_primary_10_3390_biomimetics8070525
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1615_JFlowVisImageProc_2023047476
crossref_primary_10_3390_plants12142701
crossref_primary_10_1111_exsy_13473
crossref_primary_10_1038_s41598_025_93225_9
Cites_doi 10.1007/s41348-020-00403-0
10.1093/oso/9780195099713.001.0001
10.1109/TMI.2019.2893944
10.1016/j.compbiomed.2019.03.017
10.1109/TII.2022.3168043
10.1016/j.biosystemseng.2021.06.014
10.1016/j.compstruc.2014.03.007
10.1016/j.biosystemseng.2016.03.012
10.1109/ACCESS.2020.2982456
10.1016/j.compeleceng.2021.107023
10.1016/j.future.2015.08.006
10.1016/j.asoc.2007.07.010
10.1117/1.JEI.29.1.013004
10.1007/s00521-021-06726-9
10.1016/j.biosystemseng.2016.01.017
10.1016/j.ecoinf.2020.101182
10.1007/s00521-019-04236-3
10.1007/s11760-020-01780-7
10.1080/00051144.2020.1728911
10.1371/journal.pone.0066428
10.1016/j.biosystemseng.2008.09.030
10.1016/j.compag.2018.11.005
10.1007/s00500-016-2474-6
10.1016/j.compag.2018.04.002
10.1016/j.compag.2017.01.014
10.1016/j.envres.2021.111275
10.3389/fpls.2016.01419
10.1016/j.compag.2019.105146
10.1016/j.compag.2021.106543
10.1007/s00521-021-06714-z
10.1016/j.compag.2019.105162
10.1016/j.energy.2016.01.063
10.1016/j.compeleceng.2019.04.011
10.1109/ISAP48318.2019.9065963
10.1109/CVPR.2016.319
10.1109/PESGRE52268.2022.9715896
10.1109/PERVASIVE.2015.7086983
10.1109/CVPR.2016.90
10.1016/B978-0-12-803265-7.00004-X
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-022-07587-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 21066
ExternalDocumentID 10_1007_s00521_022_07587_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c282t-38951251bc284835b59bda71fcdb562cb03b3eff33bdd5561db3415a7fcfaf213
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Fri Jul 25 04:41:37 EDT 2025
Wed Oct 01 02:26:15 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Fri Feb 21 02:44:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Plant leaf disease
Attention residual learning
Convolutional neural network
Opposition-based symbiotic organisms search (OSOS) algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c282t-38951251bc284835b59bda71fcdb562cb03b3eff33bdd5561db3415a7fcfaf213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6272-8556
PQID 2732894054
PQPubID 2043988
PageCount 18
ParticipantIDs proquest_journals_2732894054
crossref_primary_10_1007_s00521_022_07587_6
crossref_citationtrail_10_1007_s00521_022_07587_6
springer_journals_10_1007_s00521_022_07587_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Zhang, Xie, Xia, Shen (CR30) 2019; 38
Barbedo, Koenigkan, Santos (CR5) 2016; 147
Nandhini, Ashokkumar (CR27) 2022; 34
Abdullahi, Ngadi, Abdulhamid (CR32) 2016; 56
Fang, Chen, Zhang, Wang (CR19) 2020; 29
Geetharamani, Pandian (CR23) 2019; 76
Thangaraj, Anandamurugan, Kaliappan (CR18) 2021; 128
Prabu, Chelliah (CR26) 2022; 34
Esgario, Krohling, Ventura (CR20) 2020; 169
CR37
Chung, Shin (CR43) 2020; 32
CR14
CR35
Tejani, Savsani, Patel (CR33) 2016; 3
Camargo, Smith (CR4) 2009; 102
Ray, Mueller, West, Foley (CR1) 2013; 8
Cheng, Prayogo (CR31) 2014; 139
Rahnamayan, Tizhoosh, Salama (CR36) 2008; 8
Zhong, Zhao (CR24) 2020; 168
Wang, Tan, Liu (CR39) 2018; 22
CR2
Hu, Wang, Zhang, Wan (CR21) 2021; 90
Zhang, Wu, You, Zhang (CR6) 2017; 134
CR29
CR28
Pantazi, Moshou, Tamouridou (CR7) 2019; 156
CR9
Back (CR41) 1996
Navaneeth, Suchetha (CR42) 2019; 108
Kamankesh, Agelidis, Kavousi-Fard (CR34) 2016; 100
Pandey, Jain (CR38) 2022; 192
Kurmi, Gangwar, Agarwal, Kumar, Srivastava (CR10) 2020; 15
Krishnamoorthy, Prasad, Kumar, Subedi, Abraha, Sathishkumar (CR15) 2021; 198
Mohanty, Hughes, Salathe (CR3) 2016; 7
CR40
Alagumariappan, Dewan, Muthukrishnan, Raju, Bilal, Sankaran (CR8) 2020; 2
Paul, Upadhyay, Padhy (CR11) 2022
Rangarajan, Purushothaman, Perez-Ruiz (CR16) 2021; 209
Atila, Ucar, Akyol, Ucar (CR17) 2021; 61
Picon, Alvarez-Gila, Seitz, Ortiz-Barredo, Echazarra, Johannes (CR25) 2019; 161
Aravind, Raja (CR13) 2020; 61
Barbedo (CR12) 2016; 144
Zhang, Song, Zhang (CR22) 2020; 8
Y Kurmi (7587_CR10) 2020; 15
AK Rangarajan (7587_CR16) 2021; 209
H Kamankesh (7587_CR34) 2016; 100
7587_CR9
T Back (7587_CR41) 1996
DK Ray (7587_CR1) 2013; 8
SP Mohanty (7587_CR3) 2016; 7
7587_CR2
G Hu (7587_CR21) 2021; 90
7587_CR14
7587_CR37
U Atila (7587_CR17) 2021; 61
A Picon (7587_CR25) 2019; 161
7587_CR35
XE Pantazi (7587_CR7) 2019; 156
R Thangaraj (7587_CR18) 2021; 128
D Wang (7587_CR39) 2018; 22
G Geetharamani (7587_CR23) 2019; 76
J Zhang (7587_CR30) 2019; 38
JGA Barbedo (7587_CR12) 2016; 144
JGA Barbedo (7587_CR5) 2016; 147
S Rahnamayan (7587_CR36) 2008; 8
S Zhang (7587_CR6) 2017; 134
KR Aravind (7587_CR13) 2020; 61
7587_CR40
M Abdullahi (7587_CR32) 2016; 56
A Camargo (7587_CR4) 2009; 102
GG Tejani (7587_CR33) 2016; 3
P Alagumariappan (7587_CR8) 2020; 2
Y Zhong (7587_CR24) 2020; 168
B Navaneeth (7587_CR42) 2019; 108
M Prabu (7587_CR26) 2022; 34
7587_CR28
MY Cheng (7587_CR31) 2014; 139
S Paul (7587_CR11) 2022
N Krishnamoorthy (7587_CR15) 2021; 198
A Pandey (7587_CR38) 2022; 192
S Nandhini (7587_CR27) 2022; 34
T Fang (7587_CR19) 2020; 29
H Chung (7587_CR43) 2020; 32
Y Zhang (7587_CR22) 2020; 8
7587_CR29
JGM Esgario (7587_CR20) 2020; 169
References_xml – volume: 128
  start-page: 73
  issue: 1
  year: 2021
  end-page: 86
  ident: CR18
  article-title: Automated tomato leaf disease classification using transfer learning-based deep convolution neural network
  publication-title: J Plant Dis Prot
  doi: 10.1007/s41348-020-00403-0
– year: 1996
  ident: CR41
  publication-title: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms
  doi: 10.1093/oso/9780195099713.001.0001
– volume: 38
  start-page: 2092
  issue: 9
  year: 2019
  end-page: 2103
  ident: CR30
  article-title: Attention residual learning for skin lesion classification
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2019.2893944
– ident: CR14
– ident: CR2
– volume: 2
  start-page: 1
  issue: 49
  year: 2020
  end-page: 7
  ident: CR8
  article-title: Intelligent plant disease identification system using machine learning
  publication-title: Eng Proc
– ident: CR37
– volume: 108
  start-page: 85
  year: 2019
  end-page: 92
  ident: CR42
  article-title: PSO optimized 1-D CNN-SVM architecture for real-time detection and classification applications
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.03.017
– year: 2022
  ident: CR11
  article-title: Residential appliance identification using 1-D convolutional neural network based on multiscale sinusoidal initializers
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2022.3168043
– volume: 209
  start-page: 139
  year: 2021
  end-page: 153
  ident: CR16
  article-title: Disease classification in aubergine with local symptomatic region using deep learning models
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2021.06.014
– volume: 139
  start-page: 98
  year: 2014
  end-page: 112
  ident: CR31
  article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2014.03.007
– volume: 147
  start-page: 104
  year: 2016
  end-page: 116
  ident: CR5
  article-title: Identifying multiple plant diseases using digital image processing
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2016.03.012
– volume: 8
  start-page: 56607
  year: 2020
  end-page: 56614
  ident: CR22
  article-title: Deep learning-based object detection improvement for tomato disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982456
– volume: 90
  year: 2021
  ident: CR21
  article-title: Detection and severity analysis of tea leaf blight based on deep learning
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2021.107023
– volume: 56
  start-page: 640
  year: 2016
  end-page: 650
  ident: CR32
  article-title: Symbiotic organism search optimization based task scheduling in cloud computing environment
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2015.08.006
– ident: CR35
– ident: CR29
– volume: 8
  start-page: 906
  issue: 2
  year: 2008
  end-page: 918
  ident: CR36
  article-title: Opposition versus randomness in soft computing techniques
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.07.010
– volume: 29
  start-page: 013004
  issue: 1
  year: 2020
  ident: CR19
  article-title: Crop leaf disease grade identification based on an improved convolutional neural network
  publication-title: J Electron Imaging
  doi: 10.1117/1.JEI.29.1.013004
– volume: 34
  start-page: 1
  year: 2022
  end-page: 14
  ident: CR26
  article-title: Mango leaf disease identification and classification using a CNN architecture optimized by crossover-based levy flight distribution algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06726-9
– volume: 3
  start-page: 226
  year: 2016
  end-page: 249
  ident: CR33
  article-title: Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization
  publication-title: J Comput Des Eng
– ident: CR40
– volume: 144
  start-page: 52
  year: 2016
  end-page: 60
  ident: CR12
  article-title: A review on the main challenges in automatic plant disease identification based on visible range images
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2016.01.017
– volume: 61
  year: 2021
  ident: CR17
  article-title: Plant leaf disease classification using EfficientNet deep learning model
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2020.101182
– volume: 32
  start-page: 7897
  issue: 12
  year: 2020
  end-page: 7914
  ident: CR43
  article-title: Genetic algorithm-optimized multi-channel convolutional neural network for stock market prediction
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04236-3
– volume: 15
  start-page: 589
  year: 2020
  end-page: 597
  ident: CR10
  article-title: Leaf image analysis-based crop diseases classification
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-020-01780-7
– volume: 61
  start-page: 260
  issue: 2
  year: 2020
  end-page: 272
  ident: CR13
  article-title: Automated disease classification in (selected) agricultural crops using transfer learning
  publication-title: Automatika
  doi: 10.1080/00051144.2020.1728911
– volume: 8
  issue: 6
  year: 2013
  ident: CR1
  article-title: Yield trends are insufficient to double global crop production by 2050
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0066428
– volume: 102
  start-page: 9
  issue: 1
  year: 2009
  end-page: 21
  ident: CR4
  article-title: An image processing based algorithm to automatically identify crop disease visual symptoms
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2008.09.030
– volume: 156
  start-page: 96
  year: 2019
  end-page: 104
  ident: CR7
  article-title: Automated leaf disease detection in different crop species through image features analysis and one class classifiers
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.11.005
– volume: 22
  start-page: 387
  issue: 2
  year: 2018
  end-page: 408
  ident: CR39
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2474-6
– volume: 161
  start-page: 280
  year: 2019
  end-page: 290
  ident: CR25
  article-title: Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.04.002
– volume: 134
  start-page: 135
  year: 2017
  end-page: 141
  ident: CR6
  article-title: Leaf image based cucumber disease recognition using sparse representation classification
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2017.01.014
– volume: 198
  year: 2021
  ident: CR15
  article-title: Rice leaf diseases prediction using deep neural networks with transfer learning
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.111275
– volume: 7
  start-page: 1419
  year: 2016
  ident: CR3
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01419
– ident: CR9
– volume: 168
  year: 2020
  ident: CR24
  article-title: Research on deep learning in apple leaf disease recognition
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.105146
– volume: 192
  year: 2022
  ident: CR38
  article-title: An intelligent system for crop identification and classification from UAV images using conjugated dense convolutional neural network
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2021.106543
– volume: 34
  start-page: 1
  year: 2022
  end-page: 22
  ident: CR27
  article-title: An automatic plant leaf disease identification using DenseNet-121 architecture with a mutation-based henry gas solubility optimization algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06714-z
– ident: CR28
– volume: 169
  year: 2020
  ident: CR20
  article-title: Deep learning for classification and severity estimation of coffee leaf biotic stress
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.105162
– volume: 100
  start-page: 285
  year: 2016
  end-page: 297
  ident: CR34
  article-title: Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.063
– volume: 76
  start-page: 323
  year: 2019
  end-page: 338
  ident: CR23
  article-title: Identification of plant leaf diseases using a nine-layer deep convolutional neural network
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2019.04.011
– volume: 168
  year: 2020
  ident: 7587_CR24
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.105146
– volume: 198
  year: 2021
  ident: 7587_CR15
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.111275
– ident: 7587_CR40
  doi: 10.1109/ISAP48318.2019.9065963
– volume: 139
  start-page: 98
  year: 2014
  ident: 7587_CR31
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2014.03.007
– volume: 8
  start-page: 906
  issue: 2
  year: 2008
  ident: 7587_CR36
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.07.010
– volume: 32
  start-page: 7897
  issue: 12
  year: 2020
  ident: 7587_CR43
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04236-3
– volume: 169
  year: 2020
  ident: 7587_CR20
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.105162
– volume: 34
  start-page: 1
  year: 2022
  ident: 7587_CR27
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06714-z
– volume: 3
  start-page: 226
  year: 2016
  ident: 7587_CR33
  publication-title: J Comput Des Eng
– volume: 15
  start-page: 589
  year: 2020
  ident: 7587_CR10
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-020-01780-7
– ident: 7587_CR35
– volume: 192
  year: 2022
  ident: 7587_CR38
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2021.106543
– ident: 7587_CR37
  doi: 10.1109/CVPR.2016.319
– volume: 134
  start-page: 135
  year: 2017
  ident: 7587_CR6
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2017.01.014
– volume: 156
  start-page: 96
  year: 2019
  ident: 7587_CR7
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.11.005
– ident: 7587_CR14
– volume: 38
  start-page: 2092
  issue: 9
  year: 2019
  ident: 7587_CR30
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2019.2893944
– volume: 2
  start-page: 1
  issue: 49
  year: 2020
  ident: 7587_CR8
  publication-title: Eng Proc
– volume: 8
  start-page: 56607
  year: 2020
  ident: 7587_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982456
– ident: 7587_CR29
  doi: 10.1109/PESGRE52268.2022.9715896
– ident: 7587_CR9
  doi: 10.1109/PERVASIVE.2015.7086983
– volume: 61
  start-page: 260
  issue: 2
  year: 2020
  ident: 7587_CR13
  publication-title: Automatika
  doi: 10.1080/00051144.2020.1728911
– year: 2022
  ident: 7587_CR11
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2022.3168043
– volume: 90
  year: 2021
  ident: 7587_CR21
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2021.107023
– volume-title: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms
  year: 1996
  ident: 7587_CR41
  doi: 10.1093/oso/9780195099713.001.0001
– volume: 147
  start-page: 104
  year: 2016
  ident: 7587_CR5
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2016.03.012
– volume: 7
  start-page: 1419
  year: 2016
  ident: 7587_CR3
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01419
– volume: 161
  start-page: 280
  year: 2019
  ident: 7587_CR25
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.04.002
– ident: 7587_CR28
  doi: 10.1109/CVPR.2016.90
– volume: 100
  start-page: 285
  year: 2016
  ident: 7587_CR34
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.063
– volume: 8
  issue: 6
  year: 2013
  ident: 7587_CR1
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0066428
– volume: 29
  start-page: 013004
  issue: 1
  year: 2020
  ident: 7587_CR19
  publication-title: J Electron Imaging
  doi: 10.1117/1.JEI.29.1.013004
– volume: 61
  year: 2021
  ident: 7587_CR17
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2020.101182
– volume: 76
  start-page: 323
  year: 2019
  ident: 7587_CR23
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2019.04.011
– volume: 22
  start-page: 387
  issue: 2
  year: 2018
  ident: 7587_CR39
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2474-6
– volume: 144
  start-page: 52
  year: 2016
  ident: 7587_CR12
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2016.01.017
– volume: 209
  start-page: 139
  year: 2021
  ident: 7587_CR16
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2021.06.014
– ident: 7587_CR2
  doi: 10.1016/B978-0-12-803265-7.00004-X
– volume: 108
  start-page: 85
  year: 2019
  ident: 7587_CR42
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.03.017
– volume: 34
  start-page: 1
  year: 2022
  ident: 7587_CR26
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06726-9
– volume: 56
  start-page: 640
  year: 2016
  ident: 7587_CR32
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2015.08.006
– volume: 102
  start-page: 9
  issue: 1
  year: 2009
  ident: 7587_CR4
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2008.09.030
– volume: 128
  start-page: 73
  issue: 1
  year: 2021
  ident: 7587_CR18
  publication-title: J Plant Dis Prot
  doi: 10.1007/s41348-020-00403-0
SSID ssj0004685
Score 2.3512754
Snippet The main obstacle in front of the sustainable development of the agricultural sector is the considerable amount of economic loss due to reduced food production...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21049
SubjectTerms Accuracy
Artificial Intelligence
Artificial neural networks
CAD/CAM
Color imagery
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Economic impact
Feature extraction
Image classification
Image Processing and Computer Vision
Machine learning
Medical imaging
Momentum
Optimization
Original Article
Plant diseases
Probability and Statistics in Computer Science
Search algorithms
Sustainable development
Training
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66Xrz4FtcXc_CmhW2apvYoooigJxe8lby6Lmy7Yuth_Qn-amfSdldFBY-haSiZmcyXzjczjJ0koUiSkMvAIHgPhIxcgFrCA5kaaaRMxbmifOe7e3kzFLeP8WObFFZ1bPcuJOlP6nmyG_3BxKsvJ7ZkjKYhl9lKTOW8UIuH_OJTNqRvxIn3FuL0iKhNlfl5ja_uaIExv4VFvbe53mBrLUyEi0aum2zJlVtsvWvBAK1FbrN3ajpUw8SpHNpYCxgCxMQA8psOxGwfgXXuGaiWpmc3Al6yfRYWlA0NHKZ4dBTjN2dBz3DQcbkC8nIWqlmhx1P8Fmi6QFVFBY2NgJqMpi_j-qnYYcPrq4fLm6BtrxAYvGfVAUKVmOCNxqFAIKbjVFuVhLmxGlGR0YNIRy7Po0hbS100rUaXF6skN7nKeRjtsl45Ld0eAzypVKgT5XTChUmE4hTuPMcVQ6ndwPZZ2O1yZtra49QCY5LNqyZ7yWQomcxLJpN9djp_57mpvPHn7MNOeFlrhVXGqRJRipBU9NlZJ9DF499X2__f9AO2ykmnPMvlkPXql1d3hFil1sdeNT8Ad83hlg
  priority: 102
  providerName: Springer Nature
Title Plant leaf disease classification using deep attention residual network optimized by opposition-based symbiotic organisms search algorithm
URI https://link.springer.com/article/10.1007/s00521-022-07587-6
https://www.proquest.com/docview/2732894054
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tthcuvBGFpZoDN7DYOI7THhAqqN0ViAohKi2nyK_srtQXNByWn8CvZsZxtoDEHu0kVuTx47Pnm_kAnpeZKstMauEIvAul8yBolEihx047rcdqZDje-eNcny7U-7Pi7ADmXSwM0yq7NTEu1H7j-I78leSsMmOCF-rN9ptg1Sj2rnYSGiZJK_jXMcXYIfQlZ8bqQf_tdP7p8x-RklGkk840zPdReQqjicF0fENKtZLZmAVNPf33VrXHn_-4TONONLsLtxOExElr83twENb34U4nz4Bptj6AXyxI1OAymBqTHwYdg2VmB0WDILPez9GHsEXOsxmZj0gH8BihheuWIo4bWlZWlz-DR3tFhY7nJXgH9Li7WtnLDf0LtgpRu9UO2_mDZnlOXdhcrB7CYjb98u5UJOkF4egM1giCMQVDH0tFRSDNFmPrTZnVzltCTM4e5zYPdZ3n1ntW2PSWtsPClLWrTS2z_BH01pt1eAxIq5jJbGmCLaVypTKSXaEjajHTNhz7AWRdL1cu5SVneYxldZ1ROVqmIstU0TKVHsCL62-2bVaOG98-6oxXpRm6q_bjaQAvO4PuH_-_tSc3t_YUbkkeQ5HxcgS95vuP8IxwS2OHcDianQyhPzn5-mE6TEOTahdy8hvMCe6Z
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2F5AAXdsRAgDrACSzidrsdHyLEkmhCkhFCiZSb6c0h0myJjdDwCXwU30ZVu50BJHLL0TOe1sivXEv3q3oAz4tUFkUqVGIpeU-kynxCViISVVpllSrlpuZ-54ORGh7Jj8f58Qr86nthmFbZ-8TgqN3M8h75a8FTZUpKL-Sb-VnCqlF8utpLaOgoreC2woix2Nix5xffqYRrtnY_EN4vhNjZPnw_TKLKQGKp3GgTitg5R3lDl5LyEZOXxukira0zlBxYs5GZzNd1lhnnWEzSGfL8uS5qW-tapBmtew3WZCZLKv7W3m2PPn3-ozMziIJSDcX8IpnFtp3QvMc7svSpYPZnTq-6-js0LvPdf45oQ-TbuQ03Y8qKbzsbuwMrfnoXbvVyEBi9wz34yQJILY69rjGe-6Dl5JzZSMEAkFn2J-i8nyPP9QxMS6SCP3SE4bSjpOOM3Njk9Id3aBZ00fPKEo64DpvFxJzO6L9gp0jVTBrsgEA9PiHI2q-T-3B0JSA8gNXpbOofApLX1KkptDeFkLaQWvDR6yatmCrjN9wA0v4pVzbOQWc5jnF1McE5IFMRMlVAplIDeHnxm3k3BeTSu9d78KroEZpqab8DeNUDuvz6_6s9uny1Z3B9eHiwX-3vjvYeww3B9hTYNuuw2p5_808oZ2rN02iYCF-u-l34DUIBKP8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsNADB2xSIgLO6KsPnCDCDKZTOgRARW7OFCJWzRboFKbVm04wCfw1diTpCwCJI5RJqMotsfP8bPN2G4SiiQJuQwMgvdAyMgFqCU8kE0jjZRNcaSo3vnmVp63xeVD_PCpit-z3euUZFnTQF2a8uJgYLODceEb_c3EMJgTczJGM5GTbFpQowTU6DY__lQZ6YdyYgxD_B4RVWUzP-_x1TV94M1vKVLveVoLbK6CjHBcyniRTbh8ic3X4xigss5l9kYDiAroOpVBlXcBQ-CY2EBeAEAs90ewzg2A-mp6piNgwO0rsiAvKeHQx2Ok13l1FvQLXtS8roA8noXRS093-vguUE6EGvVGUNoLqO5jf9gpnnorrN06uz85D6pRC4HBmKsIELbEBHU0XgoEZTpuaquSMDNWI0Iy-jDSkcuyKNLW0kRNq9H9xSrJTKYyHkarbCrv526NAZ5aKtSJcjrhwiRCcUp9HuGOodTu0DZYWH_l1FR9yGkcRjcdd1D2kklRMqmXTCobbG_8zKDswvHn6s1aeGllkaOUU1eiJsJT0WD7tUA_bv--2_r_lu-wmbvTVnp9cXu1wWY5qZcnv2yyqWL47LYQwhR622vpO01h6L4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+leaf+disease+classification+using+deep+attention+residual+network+optimized+by+opposition-based+symbiotic+organisms+search+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Pandey%2C+Akshay&rft.au=Jain%2C+Kamal&rft.date=2022-12-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=23&rft.spage=21049&rft.epage=21066&rft_id=info:doi/10.1007%2Fs00521-022-07587-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_022_07587_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon