Convergence sets and relative stability to perturbations of a branched continued fraction with positive elements

In the paper, the problems of convergence and relative stability to perturbations of a branched continued fraction with positive elements and a fixed number of branching branches are investigated. The conditions under which the sets of elements \[\Omega_0 = ( {0,\mu _0^{(2)}} ] \times [ {\nu _0^{(1)...

Full description

Saved in:
Bibliographic Details
Published inKarpats'kì matematinì publìkacìï Vol. 16; no. 1; pp. 16 - 31
Main Authors Hladun, V.R., Bodnar, D.I., Rusyn, R.S.
Format Journal Article
LanguageEnglish
Published 30.06.2024
Online AccessGet full text
ISSN2075-9827
2313-0210
2313-0210
DOI10.15330/cmp.16.1.16-31

Cover

Abstract In the paper, the problems of convergence and relative stability to perturbations of a branched continued fraction with positive elements and a fixed number of branching branches are investigated. The conditions under which the sets of elements \[\Omega_0 = ( {0,\mu _0^{(2)}} ] \times [ {\nu _0^{(1)}, + \infty } ),\quad \Omega _{i(k)}=[ {\mu _k^{(1)},\mu _k^{(2)}} ] \times [ {\nu _k^{(1)},\nu _k^{(2)}} ],\]\[i(k) \in {I_k}, \quad k = 1,2,\ldots,\] where $\nu _0^{(1)}>0,$ $0 < \mu _k^{(1)} < \mu _k^{(2)},$ $0 < \nu _k^{(1)} < \nu _k^{(2)},$ $k = 1,2,\ldots,$ are a sequence of sets of convergence and relative stability to perturbations of the branched continued fraction \[\frac{a_0}{b_0}{\atop+}\sum_{i_1=1}^N\frac{a_{i(1)}}{b_{i(1)}}{\atop+}\sum_{i_2=1}^N\frac{a_{i(2)}}{b_{i(2)}}{\atop+}\ldots{\atop+} \sum_{i_k=1}^N\frac{a_{i(k)}}{b_{i(k)}}{\atop+}\ldots\] have been established. The obtained conditions require the boundedness or convergence of the sequences whose members depend on the values $\mu _k^{(j)},$ $\nu _k^{(j)},$ $j=1,2.$ If the sets of elements of the branched continued fraction are sets ${\Omega _{i(k)}} = ( {0,{\mu _k}} ] \times [ {{\nu _k}, + \infty } )$, $i(k) \in {I_k}$, $k = 0,1,\ldots,$ where ${\mu _k} > 0$, ${\nu _k} > 0$, $k = 0,1,\ldots,$ then the conditions of convergence and stability to perturbations are formulated through the convergence of series whose terms depend on the values $\mu _k,$ $\nu _k.$ The conditions of relative resistance to perturbations of the branched continued fraction are also established if the partial numerators on the even floors of the fraction are perturbed by a shortage and on the odd ones by an excess, i.e. under the condition that the relative errors of the partial numerators alternate in sign. In all cases, we obtained estimates of the relative errors of the approximants that arise as a result of perturbation of the elements of the branched continued fraction.
AbstractList In the paper, the problems of convergence and relative stability to perturbations of a branched continued fraction with positive elements and a fixed number of branching branches are investigated. The conditions under which the sets of elements \[\Omega_0 = ( {0,\mu _0^{(2)}} ] \times [ {\nu _0^{(1)}, + \infty } ),\quad \Omega _{i(k)}=[ {\mu _k^{(1)},\mu _k^{(2)}} ] \times [ {\nu _k^{(1)},\nu _k^{(2)}} ],\]\[i(k) \in {I_k}, \quad k = 1,2,\ldots,\] where $\nu _0^{(1)}>0,$ $0 < \mu _k^{(1)} < \mu _k^{(2)},$ $0 < \nu _k^{(1)} < \nu _k^{(2)},$ $k = 1,2,\ldots,$ are a sequence of sets of convergence and relative stability to perturbations of the branched continued fraction \[\frac{a_0}{b_0}{\atop+}\sum_{i_1=1}^N\frac{a_{i(1)}}{b_{i(1)}}{\atop+}\sum_{i_2=1}^N\frac{a_{i(2)}}{b_{i(2)}}{\atop+}\ldots{\atop+} \sum_{i_k=1}^N\frac{a_{i(k)}}{b_{i(k)}}{\atop+}\ldots\] have been established. The obtained conditions require the boundedness or convergence of the sequences whose members depend on the values $\mu _k^{(j)},$ $\nu _k^{(j)},$ $j=1,2.$ If the sets of elements of the branched continued fraction are sets ${\Omega _{i(k)}} = ( {0,{\mu _k}} ] \times [ {{\nu _k}, + \infty } )$, $i(k) \in {I_k}$, $k = 0,1,\ldots,$ where ${\mu _k} > 0$, ${\nu _k} > 0$, $k = 0,1,\ldots,$ then the conditions of convergence and stability to perturbations are formulated through the convergence of series whose terms depend on the values $\mu _k,$ $\nu _k.$ The conditions of relative resistance to perturbations of the branched continued fraction are also established if the partial numerators on the even floors of the fraction are perturbed by a shortage and on the odd ones by an excess, i.e. under the condition that the relative errors of the partial numerators alternate in sign. In all cases, we obtained estimates of the relative errors of the approximants that arise as a result of perturbation of the elements of the branched continued fraction.
Author Hladun, V.R.
Bodnar, D.I.
Rusyn, R.S.
Author_xml – sequence: 1
  givenname: V.R.
  surname: Hladun
  fullname: Hladun, V.R.
– sequence: 2
  givenname: D.I.
  surname: Bodnar
  fullname: Bodnar, D.I.
– sequence: 3
  givenname: R.S.
  surname: Rusyn
  fullname: Rusyn, R.S.
BookMark eNqNkE9rAjEQxUOxUGs995ovsJpJzO56LNJ_IPTSnpdsMqkpa3ZJouK3b9SeCoVeZh4z83sM75aMfO-RkHtgM5BCsLneDjMoZ5BLIeCKjLkAUTAObJQ1q2SxrHl1Q6YxfjHGQHDJaz4mw6r3ewyf6DXSiClS5Q0N2Knk9nmSVOs6l4409XTAkHahzZveR9pbqmgblNcbNFT3Pjm_y8oGpU8X9ODShg59dGcn7HCLPsU7cm1VF3H60yfk4-nxffVSrN-eX1cP60Lnv1LBF7IypQZtUCpRipozbQUwBGO1qCrgwoCW2GK7wGVr6rbEhURWV9LyyhoxIeziu_ODOh5U1zVDcFsVjg2w5hxak0NroGzgVHJcEzK_IDr0MQa0_yDkL0K7dM4nBeW6P7lvZEOGpg
CitedBy_id crossref_primary_10_3390_fractalfract9020089
crossref_primary_10_3390_axioms14010067
crossref_primary_10_30970_ms_61_1_51_60
crossref_primary_10_33205_cma_1545452
crossref_primary_10_23939_mmc2024_04_1152
crossref_primary_10_3390_axioms13110759
crossref_primary_10_30970_ms_62_2_168_183
crossref_primary_10_3390_sym16111480
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.15330/cmp.16.1.16-31
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2313-0210
EndPage 31
ExternalDocumentID 10.15330/cmp.16.1.16-31
10_15330_cmp_16_1_16_31
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
KQ8
OK1
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c282t-2457d6c1cde5a363820cf310e1dfc377123d1c5ebeb4e9bd8b6e45e0875f27fd3
IEDL.DBID UNPAY
ISSN 2075-9827
2313-0210
IngestDate Tue Aug 19 15:55:53 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Tue Jul 01 01:42:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c282t-2457d6c1cde5a363820cf310e1dfc377123d1c5ebeb4e9bd8b6e45e0875f27fd3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.pnu.edu.ua/index.php/cmp/article/download/7627/7887
PageCount 16
ParticipantIDs unpaywall_primary_10_15330_cmp_16_1_16_31
crossref_primary_10_15330_cmp_16_1_16_31
crossref_citationtrail_10_15330_cmp_16_1_16_31
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-30
PublicationDateYYYYMMDD 2024-06-30
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-30
  day: 30
PublicationDecade 2020
PublicationTitle Karpats'kì matematinì publìkacìï
PublicationYear 2024
SSID ssj0001325282
Score 2.3090835
Snippet In the paper, the problems of convergence and relative stability to perturbations of a branched continued fraction with positive elements and a fixed number of...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 16
Title Convergence sets and relative stability to perturbations of a branched continued fraction with positive elements
URI https://journals.pnu.edu.ua/index.php/cmp/article/download/7627/7887
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2313-0210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325282
  issn: 2313-0210
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-0210
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0001325282
  issn: 2313-0210
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BOEAPLY9WpQ-0Bw7twY-113ZyRLQIIYE4EImerH2MRUXqWIkNor--M1knKkgIVb1Ylr27svfh-Xb8zTcAhwptQobHEHJTVaCkscEQbRzYWKkiti5VyK6B84v8dKzOrrPrNfi2jIXpe5D2iH3gbaejhW4gi0VE9lcT9T0aORaTn2oX0XIuIibFrcNGnhEiH8DG-OLy6AfnlSOLGIyGi8ythGT4l6WMe4Uf5lVyi6HMQ0mHIJWPjNNmVzf64V5PJn9ZnJM3gMtn9UST27BrTWh_P5Fx_N-X2YbXPSQVR77QDqxhvQuvzld6rvM9aI6ZnL6I00Qxx3YudO2Ej4O5oyutV_t-EO1UNDgjM2a8J1BMK6GF4ewdN-gEE-N_1h2dVTMfUSHYESw8dYxaQs9mn7-F8cn3q-PToM_VEFjatLVBorLC5VZah5lOaVEnsa0IOqJ0lU2LggykkzajKWMUjowbmhxVhqynXyVF5dJ3MKinNb4HkfNdHGlVIH1hEjTGDPNRZQk4UaVM70O4HKTS9kLmnE9jUvKGhke1pK4tZV5KPqRyH76sKjRew-P5ol9Xo_5S2Q__UPYjbCWEhjzR8BMM2lmHnwnNtOZg4QU46KfsH-kn-VM
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RcKA9tJS2KpSiPfQABz_WXtvJEUERQgJxIBKcrH2MRdXUsRK7Ff31zGSdCJAqVHGxLHt2Ze_D8-36m28Avim0CTkeQ8hNVYGSxgZDtHFgY6WK2LpUIW8NnF_kp2N1dp1dr8HxMhamb0FaI_aBt52OFrqBLBYR2V9N1Ldo5FhMfqpdRNO5iJgU9wrW84wQ-QDWxxeXhzecV448YjAaLjK3EpLhX5Yy7hV-mFfJNYYyDyUdglQ-ck4bXd3ouz96MnngcU7eAS6f1RNNfoZda0L794mM40tfZhPe9pBUHHqj97CG9Ra8OV_puc4_QHPE5PRFnCaKObZzoWsnfBzMb7rSerXvO9FORYMzcmPG7wSKaSW0MJy94xadYGL8j7qjs2rmIyoEbwQLTx2jmtCz2ecfYXzy_eroNOhzNQSWFm1tkKiscLmV1mGmU5rUSWwrgo4oXWXToiAH6aTNaMgYhSPjhiZHlSHr6VdJUbn0EwzqaY2fQeR8F0daFUhfmASNMcN8VFkCTlQo09sQLjuptL2QOefTmJS8oOFeLalpS5mXkg-p3Ib9VYHGa3j82_Rg1evP2e78h-0XeJ0QGvJEw10YtLMOvxKaac1eP1jvARa1-F4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+sets+and+relative+stability+to+perturbations+of+a+branched+continued+fraction+with+positive+elements&rft.jtitle=Karpats%27k%C3%AC+matematin%C3%AC+publ%C3%ACkac%C3%AC%C3%AF&rft.au=Hladun%2C+V.R.&rft.au=Bodnar%2C+D.I.&rft.au=Rusyn%2C+R.S.&rft.date=2024-06-30&rft.issn=2075-9827&rft.eissn=2313-0210&rft.volume=16&rft.issue=1&rft.spage=16&rft.epage=31&rft_id=info:doi/10.15330%2Fcmp.16.1.16-31&rft.externalDBID=n%2Fa&rft.externalDocID=10_15330_cmp_16_1_16_31
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-9827&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-9827&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-9827&client=summon