Convergence sets and relative stability to perturbations of a branched continued fraction with positive elements
In the paper, the problems of convergence and relative stability to perturbations of a branched continued fraction with positive elements and a fixed number of branching branches are investigated. The conditions under which the sets of elements \[\Omega_0 = ( {0,\mu _0^{(2)}} ] \times [ {\nu _0^{(1)...
        Saved in:
      
    
          | Published in | Karpats'kì matematinì publìkacìï Vol. 16; no. 1; pp. 16 - 31 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        30.06.2024
     | 
| Online Access | Get full text | 
| ISSN | 2075-9827 2313-0210 2313-0210  | 
| DOI | 10.15330/cmp.16.1.16-31 | 
Cover
| Abstract | In the paper, the problems of convergence and relative stability to perturbations of a branched continued fraction with positive elements and a fixed number of branching branches are investigated. The conditions under which the sets of elements \[\Omega_0 = ( {0,\mu _0^{(2)}} ] \times [ {\nu _0^{(1)}, + \infty } ),\quad \Omega _{i(k)}=[ {\mu _k^{(1)},\mu _k^{(2)}} ] \times [ {\nu _k^{(1)},\nu _k^{(2)}} ],\]\[i(k) \in {I_k}, \quad k = 1,2,\ldots,\] where $\nu _0^{(1)}>0,$ $0 < \mu _k^{(1)} < \mu _k^{(2)},$ $0 < \nu _k^{(1)} < \nu _k^{(2)},$ $k = 1,2,\ldots,$ are a sequence of sets of convergence and relative stability to perturbations of the branched continued fraction \[\frac{a_0}{b_0}{\atop+}\sum_{i_1=1}^N\frac{a_{i(1)}}{b_{i(1)}}{\atop+}\sum_{i_2=1}^N\frac{a_{i(2)}}{b_{i(2)}}{\atop+}\ldots{\atop+} \sum_{i_k=1}^N\frac{a_{i(k)}}{b_{i(k)}}{\atop+}\ldots\] have been established. The obtained conditions require the boundedness or convergence of the sequences whose members depend on the values $\mu _k^{(j)},$ $\nu _k^{(j)},$ $j=1,2.$ If the sets of elements of the branched continued fraction are sets ${\Omega _{i(k)}} = ( {0,{\mu _k}} ] \times [ {{\nu _k}, + \infty } )$, $i(k) \in {I_k}$, $k = 0,1,\ldots,$ where ${\mu _k} > 0$, ${\nu _k} > 0$, $k = 0,1,\ldots,$ then the conditions of convergence and stability to perturbations are formulated through the convergence of series whose terms depend on the values $\mu _k,$ $\nu _k.$ The conditions of relative resistance to perturbations of the branched continued fraction are also established if the partial numerators on the even floors of the fraction are perturbed by a shortage and on the odd ones by an excess, i.e. under the condition that the relative errors of the partial numerators alternate in sign. In all cases, we obtained estimates of the relative errors of the approximants that arise as a result of perturbation of the elements of the branched continued fraction. | 
    
|---|---|
| AbstractList | In the paper, the problems of convergence and relative stability to perturbations of a branched continued fraction with positive elements and a fixed number of branching branches are investigated. The conditions under which the sets of elements \[\Omega_0 = ( {0,\mu _0^{(2)}} ] \times [ {\nu _0^{(1)}, + \infty } ),\quad \Omega _{i(k)}=[ {\mu _k^{(1)},\mu _k^{(2)}} ] \times [ {\nu _k^{(1)},\nu _k^{(2)}} ],\]\[i(k) \in {I_k}, \quad k = 1,2,\ldots,\] where $\nu _0^{(1)}>0,$ $0 < \mu _k^{(1)} < \mu _k^{(2)},$ $0 < \nu _k^{(1)} < \nu _k^{(2)},$ $k = 1,2,\ldots,$ are a sequence of sets of convergence and relative stability to perturbations of the branched continued fraction \[\frac{a_0}{b_0}{\atop+}\sum_{i_1=1}^N\frac{a_{i(1)}}{b_{i(1)}}{\atop+}\sum_{i_2=1}^N\frac{a_{i(2)}}{b_{i(2)}}{\atop+}\ldots{\atop+} \sum_{i_k=1}^N\frac{a_{i(k)}}{b_{i(k)}}{\atop+}\ldots\] have been established. The obtained conditions require the boundedness or convergence of the sequences whose members depend on the values $\mu _k^{(j)},$ $\nu _k^{(j)},$ $j=1,2.$ If the sets of elements of the branched continued fraction are sets ${\Omega _{i(k)}} = ( {0,{\mu _k}} ] \times [ {{\nu _k}, + \infty } )$, $i(k) \in {I_k}$, $k = 0,1,\ldots,$ where ${\mu _k} > 0$, ${\nu _k} > 0$, $k = 0,1,\ldots,$ then the conditions of convergence and stability to perturbations are formulated through the convergence of series whose terms depend on the values $\mu _k,$ $\nu _k.$ The conditions of relative resistance to perturbations of the branched continued fraction are also established if the partial numerators on the even floors of the fraction are perturbed by a shortage and on the odd ones by an excess, i.e. under the condition that the relative errors of the partial numerators alternate in sign. In all cases, we obtained estimates of the relative errors of the approximants that arise as a result of perturbation of the elements of the branched continued fraction. | 
    
| Author | Hladun, V.R. Bodnar, D.I. Rusyn, R.S.  | 
    
| Author_xml | – sequence: 1 givenname: V.R. surname: Hladun fullname: Hladun, V.R. – sequence: 2 givenname: D.I. surname: Bodnar fullname: Bodnar, D.I. – sequence: 3 givenname: R.S. surname: Rusyn fullname: Rusyn, R.S.  | 
    
| BookMark | eNqNkE9rAjEQxUOxUGs995ovsJpJzO56LNJ_IPTSnpdsMqkpa3ZJouK3b9SeCoVeZh4z83sM75aMfO-RkHtgM5BCsLneDjMoZ5BLIeCKjLkAUTAObJQ1q2SxrHl1Q6YxfjHGQHDJaz4mw6r3ewyf6DXSiClS5Q0N2Knk9nmSVOs6l4409XTAkHahzZveR9pbqmgblNcbNFT3Pjm_y8oGpU8X9ODShg59dGcn7HCLPsU7cm1VF3H60yfk4-nxffVSrN-eX1cP60Lnv1LBF7IypQZtUCpRipozbQUwBGO1qCrgwoCW2GK7wGVr6rbEhURWV9LyyhoxIeziu_ODOh5U1zVDcFsVjg2w5hxak0NroGzgVHJcEzK_IDr0MQa0_yDkL0K7dM4nBeW6P7lvZEOGpg | 
    
| CitedBy_id | crossref_primary_10_3390_fractalfract9020089 crossref_primary_10_3390_axioms14010067 crossref_primary_10_30970_ms_61_1_51_60 crossref_primary_10_33205_cma_1545452 crossref_primary_10_23939_mmc2024_04_1152 crossref_primary_10_3390_axioms13110759 crossref_primary_10_30970_ms_62_2_168_183 crossref_primary_10_3390_sym16111480  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.15330/cmp.16.1.16-31 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 2313-0210 | 
    
| EndPage | 31 | 
    
| ExternalDocumentID | 10.15330/cmp.16.1.16-31 10_15330_cmp_16_1_16_31  | 
    
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ KQ8 OK1 ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c282t-2457d6c1cde5a363820cf310e1dfc377123d1c5ebeb4e9bd8b6e45e0875f27fd3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2075-9827 2313-0210  | 
    
| IngestDate | Tue Aug 19 15:55:53 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Tue Jul 01 01:42:24 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | cc-by-nc-nd | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c282t-2457d6c1cde5a363820cf310e1dfc377123d1c5ebeb4e9bd8b6e45e0875f27fd3 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journals.pnu.edu.ua/index.php/cmp/article/download/7627/7887 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | unpaywall_primary_10_15330_cmp_16_1_16_31 crossref_primary_10_15330_cmp_16_1_16_31 crossref_citationtrail_10_15330_cmp_16_1_16_31  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-06-30 | 
    
| PublicationDateYYYYMMDD | 2024-06-30 | 
    
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-30 day: 30  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Karpats'kì matematinì publìkacìï | 
    
| PublicationYear | 2024 | 
    
| SSID | ssj0001325282 | 
    
| Score | 2.3090835 | 
    
| Snippet | In the paper, the problems of convergence and relative stability to perturbations of a branched continued fraction with positive elements and a fixed number of... | 
    
| SourceID | unpaywall crossref  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database  | 
    
| StartPage | 16 | 
    
| Title | Convergence sets and relative stability to perturbations of a branched continued fraction with positive elements | 
    
| URI | https://journals.pnu.edu.ua/index.php/cmp/article/download/7627/7887 | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 16 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2313-0210 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325282 issn: 2313-0210 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2313-0210 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0001325282 issn: 2313-0210 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BOEAPLY9WpQ-0Bw7twY-113ZyRLQIIYE4EImerH2MRUXqWIkNor--M1knKkgIVb1Ylr27svfh-Xb8zTcAhwptQobHEHJTVaCkscEQbRzYWKkiti5VyK6B84v8dKzOrrPrNfi2jIXpe5D2iH3gbaejhW4gi0VE9lcT9T0aORaTn2oX0XIuIibFrcNGnhEiH8DG-OLy6AfnlSOLGIyGi8ythGT4l6WMe4Uf5lVyi6HMQ0mHIJWPjNNmVzf64V5PJn9ZnJM3gMtn9UST27BrTWh_P5Fx_N-X2YbXPSQVR77QDqxhvQuvzld6rvM9aI6ZnL6I00Qxx3YudO2Ej4O5oyutV_t-EO1UNDgjM2a8J1BMK6GF4ewdN-gEE-N_1h2dVTMfUSHYESw8dYxaQs9mn7-F8cn3q-PToM_VEFjatLVBorLC5VZah5lOaVEnsa0IOqJ0lU2LggykkzajKWMUjowbmhxVhqynXyVF5dJ3MKinNb4HkfNdHGlVIH1hEjTGDPNRZQk4UaVM70O4HKTS9kLmnE9jUvKGhke1pK4tZV5KPqRyH76sKjRew-P5ol9Xo_5S2Q__UPYjbCWEhjzR8BMM2lmHnwnNtOZg4QU46KfsH-kn-VM | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RcKA9tJS2KpSiPfQABz_WXtvJEUERQgJxIBKcrH2MRdXUsRK7Ff31zGSdCJAqVHGxLHt2Ze_D8-36m28Avim0CTkeQ8hNVYGSxgZDtHFgY6WK2LpUIW8NnF_kp2N1dp1dr8HxMhamb0FaI_aBt52OFrqBLBYR2V9N1Ldo5FhMfqpdRNO5iJgU9wrW84wQ-QDWxxeXhzecV448YjAaLjK3EpLhX5Yy7hV-mFfJNYYyDyUdglQ-ck4bXd3ouz96MnngcU7eAS6f1RNNfoZda0L794mM40tfZhPe9pBUHHqj97CG9Ra8OV_puc4_QHPE5PRFnCaKObZzoWsnfBzMb7rSerXvO9FORYMzcmPG7wSKaSW0MJy94xadYGL8j7qjs2rmIyoEbwQLTx2jmtCz2ecfYXzy_eroNOhzNQSWFm1tkKiscLmV1mGmU5rUSWwrgo4oXWXToiAH6aTNaMgYhSPjhiZHlSHr6VdJUbn0EwzqaY2fQeR8F0daFUhfmASNMcN8VFkCTlQo09sQLjuptL2QOefTmJS8oOFeLalpS5mXkg-p3Ib9VYHGa3j82_Rg1evP2e78h-0XeJ0QGvJEw10YtLMOvxKaac1eP1jvARa1-F4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+sets+and+relative+stability+to+perturbations+of+a+branched+continued+fraction+with+positive+elements&rft.jtitle=Karpats%27k%C3%AC+matematin%C3%AC+publ%C3%ACkac%C3%AC%C3%AF&rft.au=Hladun%2C+V.R.&rft.au=Bodnar%2C+D.I.&rft.au=Rusyn%2C+R.S.&rft.date=2024-06-30&rft.issn=2075-9827&rft.eissn=2313-0210&rft.volume=16&rft.issue=1&rft.spage=16&rft.epage=31&rft_id=info:doi/10.15330%2Fcmp.16.1.16-31&rft.externalDBID=n%2Fa&rft.externalDocID=10_15330_cmp_16_1_16_31 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-9827&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-9827&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-9827&client=summon |