MORIX: Machine learning-aided framework for lethality detection and MORtality inference with eXplainable artificial intelligence in MAFLD subjects
Metabolic dysfunction-associated fatty liver disease (MAFLD) introduces new diagnostic criteria for fatty liver disease that are independent of alcohol consumption and viral hepatitis infection. Therefore, investigating how biochemical and anthropometric factors influence mortality in MAFLD subjects...
Saved in:
| Published in | Computer methods and programs in biomedicine update Vol. 7; p. 100176 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
2025
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2666-9900 2666-9900 |
| DOI | 10.1016/j.cmpbup.2024.100176 |
Cover
| Abstract | Metabolic dysfunction-associated fatty liver disease (MAFLD) introduces new diagnostic criteria for fatty liver disease that are independent of alcohol consumption and viral hepatitis infection. Therefore, investigating how biochemical and anthropometric factors influence mortality in MAFLD subjects is of significant interest. In this work, we propose MORIX, an Artificial Intelligence-based framework capable of predicting fatal mortality outcomes in subjects with MAFLD. MORIX utilizes data from epidemiological datasets containing carefully selected anthropometric and biochemical information. This selection is achieved through Recursive Feature Elimination (RFE) using a Random Forest (RF) to train Machine Learning (ML) algorithms and provide a mortality risk (Yes/No) output. To provide physicians with a valuable tool, MORIX was trained and tested on a dataset of MAFLD subjects, comparing five different models: Random Forest (RF), eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Light Gradient Boosting Model (LGBM) in a 5-fold cross-validation training strategy. Experimental results identified the RF as the best model, achieving a high accuracy for both mortality risks predicted. Additionally, an eXplainable Artificial Intelligence (XAI) analysis was conducted to clarify the diagnostic logic of the RF model and to assess the impact of each feature to the prediction. Moreover, a web application was developed to predict mortality risk and provide explanations of how the input features influenced the final prediction. In conclusion, the MORIX framework is easy to apply, and the required parameters are readily available in healthcare datasets, making it a practical tool for medical professionals.
•Introduced MORIX, an AI-based framework for predicting mortality in MAFLD patients.•Utilized Recursive Feature Elimination (RFE) with Random Forest (RF) to optimize feature selection.•Compared five ML models, with RF demonstrating the highest accuracy (83%) and AUC (0.88).•Applied eXplainable AI (XAI) methods to enhance model transparency and support clinical decision-making.•Developed a user-friendly web application for real-time mortality risk prediction and explanation. |
|---|---|
| AbstractList | Metabolic dysfunction-associated fatty liver disease (MAFLD) introduces new diagnostic criteria for fatty liver disease that are independent of alcohol consumption and viral hepatitis infection. Therefore, investigating how biochemical and anthropometric factors influence mortality in MAFLD subjects is of significant interest. In this work, we propose MORIX, an Artificial Intelligence-based framework capable of predicting fatal mortality outcomes in subjects with MAFLD. MORIX utilizes data from epidemiological datasets containing carefully selected anthropometric and biochemical information. This selection is achieved through Recursive Feature Elimination (RFE) using a Random Forest (RF) to train Machine Learning (ML) algorithms and provide a mortality risk (Yes/No) output. To provide physicians with a valuable tool, MORIX was trained and tested on a dataset of MAFLD subjects, comparing five different models: Random Forest (RF), eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Light Gradient Boosting Model (LGBM) in a 5-fold cross-validation training strategy. Experimental results identified the RF as the best model, achieving a high accuracy for both mortality risks predicted. Additionally, an eXplainable Artificial Intelligence (XAI) analysis was conducted to clarify the diagnostic logic of the RF model and to assess the impact of each feature to the prediction. Moreover, a web application was developed to predict mortality risk and provide explanations of how the input features influenced the final prediction. In conclusion, the MORIX framework is easy to apply, and the required parameters are readily available in healthcare datasets, making it a practical tool for medical professionals. Metabolic dysfunction-associated fatty liver disease (MAFLD) introduces new diagnostic criteria for fatty liver disease that are independent of alcohol consumption and viral hepatitis infection. Therefore, investigating how biochemical and anthropometric factors influence mortality in MAFLD subjects is of significant interest. In this work, we propose MORIX, an Artificial Intelligence-based framework capable of predicting fatal mortality outcomes in subjects with MAFLD. MORIX utilizes data from epidemiological datasets containing carefully selected anthropometric and biochemical information. This selection is achieved through Recursive Feature Elimination (RFE) using a Random Forest (RF) to train Machine Learning (ML) algorithms and provide a mortality risk (Yes/No) output. To provide physicians with a valuable tool, MORIX was trained and tested on a dataset of MAFLD subjects, comparing five different models: Random Forest (RF), eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Light Gradient Boosting Model (LGBM) in a 5-fold cross-validation training strategy. Experimental results identified the RF as the best model, achieving a high accuracy for both mortality risks predicted. Additionally, an eXplainable Artificial Intelligence (XAI) analysis was conducted to clarify the diagnostic logic of the RF model and to assess the impact of each feature to the prediction. Moreover, a web application was developed to predict mortality risk and provide explanations of how the input features influenced the final prediction. In conclusion, the MORIX framework is easy to apply, and the required parameters are readily available in healthcare datasets, making it a practical tool for medical professionals. •Introduced MORIX, an AI-based framework for predicting mortality in MAFLD patients.•Utilized Recursive Feature Elimination (RFE) with Random Forest (RF) to optimize feature selection.•Compared five ML models, with RF demonstrating the highest accuracy (83%) and AUC (0.88).•Applied eXplainable AI (XAI) methods to enhance model transparency and support clinical decision-making.•Developed a user-friendly web application for real-time mortality risk prediction and explanation. |
| ArticleNumber | 100176 |
| Author | Lofù, Domenico Di Noia, Tommaso Di Sciascio, Eugenio Narducci, Fedelucio Colafiglio, Tommaso Giannelli, Gianluigi Lombardi, Angela Donghia, Rossella Sorino, Paolo Bonfiglio, Caterina |
| Author_xml | – sequence: 1 givenname: Domenico orcidid: 0000-0001-6413-9886 surname: Lofù fullname: Lofù, Domenico email: domenico.lofu@poliba.it organization: Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, BA, 70125, Italy – sequence: 2 givenname: Paolo orcidid: 0000-0002-9081-2648 surname: Sorino fullname: Sorino, Paolo email: paolo.sorino@poliba.it organization: Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, BA, 70125, Italy – sequence: 3 givenname: Tommaso surname: Colafiglio fullname: Colafiglio, Tommaso email: tommaso.colafiglio@uniroma1.it organization: Dept. of Computer, Automatic and Management Engineering (DIAG), Sapienza Università di Roma, Roma, RM, 00185, Italy – sequence: 4 givenname: Caterina surname: Bonfiglio fullname: Bonfiglio, Caterina email: catia.bonfiglio@irccsdebellis.it organization: Unit of Data Science, National Institute of Gastroenterology ”Saverio de Bellis”, IRCCS Hospital, Castellana Grotte, BA, 70013, Italy – sequence: 5 givenname: Rossella surname: Donghia fullname: Donghia, Rossella email: rossella.donghia@irccsdebellis.it organization: Unit of Data Science, National Institute of Gastroenterology ”Saverio de Bellis”, IRCCS Hospital, Castellana Grotte, BA, 70013, Italy – sequence: 6 givenname: Gianluigi surname: Giannelli fullname: Giannelli, Gianluigi email: gianluigi.giannelli@irccsdebellis.it organization: Scientific Direction, National Institute of Gastroenterology ”Saverio de Bellis”, IRCCS Hospital, Castellana Grotte, BA, 70013, Italy – sequence: 7 givenname: Angela surname: Lombardi fullname: Lombardi, Angela email: angela.lombardi@poliba.it organization: Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, BA, 70125, Italy – sequence: 8 givenname: Tommaso surname: Di Noia fullname: Di Noia, Tommaso email: tommaso.dinoia@poliba.it organization: Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, BA, 70125, Italy – sequence: 9 givenname: Eugenio surname: Di Sciascio fullname: Di Sciascio, Eugenio email: eugenio.disciascio@poliba.it organization: Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, BA, 70125, Italy – sequence: 10 givenname: Fedelucio surname: Narducci fullname: Narducci, Fedelucio email: fedelucio.narducci@poliba.it organization: Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, BA, 70125, Italy |
| BookMark | eNqNkdFq2zAUhs3oYF3XN9iFXsCZJMtyvItB6dYtkFAYG_ROHEvHyfEU2chOQ15jTzylLmVXY1cSv87_cfT_b7OL0AfMsveCLwQX-kO3sPuhOQwLyaVKEheVfpVdSq11XtecX_x1f5Ndj2PHOZelKCTXl9nvzf331cNHtgG7o4DMI8RAYZsDOXSsjbDHYx9_sbaP6XHagafpxBxOaCfqA4PgWGJMs06hxYjBIjvStGP4MHigAI1HBnGiliyBT1MTek_bp0EKbHNzt_7MxkPTJej4Lnvdgh_x-vm8yn7efflx-y1f339d3d6scyuXUucISw61qkRdFcIqZ9uiUaXWlVVK1FpLwAaXTlmsZSMqWbkGlOayLkpwLYfiKlvNXNdDZ4ZIe4gn0wOZJ6GPW3Pe2Xo0QiLwYqkrqWpV1BzQlULIUqJDyYVLrHJmHcIApyN4_wIU3Jx7Mp2ZezLnnszcU_Kp2WdjP44R2_-1fZptmPJ5JIxmtHRO01FMEaYP0L8BfwB5n7GW |
| Cites_doi | 10.1080/01431160412331269698 10.1111/j.1365-2559.2011.04145.x 10.1002/jhbp.972 10.1111/liv.14548 10.1111/liv.13970 10.1016/j.jhep.2023.07.031 10.1016/j.cmpb.2018.12.032 10.1016/j.metabol.2020.154433 10.3390/jcm11154339 10.1016/j.imu.2022.100924 10.1210/clinem/dgab339 10.1111/apt.16760 10.1186/s12933-022-01672-9 10.1016/S0140-6736(95)91804-3 10.1053/j.gastro.2019.11.312 10.3390/jcm13041181 10.3390/electronics10030249 10.1186/s40708-022-00165-5 10.2333/bhmk.12.17_1 10.1109/SMC53654.2022.9945542 10.1016/j.jhep.2021.07.035 10.1038/s41598-021-99400-y 10.1038/nbt1206-1565 10.1038/s41584-021-00719-7 10.1002/hep.28431 10.1038/ajg.2009.428 10.1016/j.metabol.2016.01.012 10.1007/s12603-016-0809-8 10.1371/journal.pone.0240867 10.1016/j.cgh.2021.05.029 10.3317/jraas.2006.011 10.1145/2939672.2939778 10.1016/j.jhep.2020.03.039 10.3390/nu13114002 10.1109/ACCESS.2024.3395512 10.1016/j.ejrad.2021.109717 10.1016/j.agwat.2019.105758 10.55730/1300-0632.4013 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.cmpbup.2024.100176 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals - DOAJ (NTUSG) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2666-9900 |
| ExternalDocumentID | oai_doaj_org_article_12ea038672494390aed511252ede201d 10.1016/j.cmpbup.2024.100176 10_1016_j_cmpbup_2024_100176 S2666990024000430 |
| GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M~E OK1 ROL AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2826-ea80a94719731c4dcf3b45667c4419662aebe8d4ce92b1727dba4602935adf0a3 |
| IEDL.DBID | UNPAY |
| ISSN | 2666-9900 |
| IngestDate | Fri Oct 03 12:53:20 EDT 2025 Tue Aug 19 23:38:27 EDT 2025 Wed Oct 01 05:51:29 EDT 2025 Sat Jul 05 17:11:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | MAFLD Machine learning techniques Interpretability Epidemiology Mortality |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2826-ea80a94719731c4dcf3b45667c4419662aebe8d4ce92b1727dba4602935adf0a3 |
| ORCID | 0000-0002-9081-2648 0000-0001-6413-9886 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.cmpbup.2024.100176 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_12ea038672494390aed511252ede201d unpaywall_primary_10_1016_j_cmpbup_2024_100176 crossref_primary_10_1016_j_cmpbup_2024_100176 elsevier_sciencedirect_doi_10_1016_j_cmpbup_2024_100176 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025 2025-00-00 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer methods and programs in biomedicine update |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Sorino, Caruso, Misciagna, Bonfiglio, Campanella, Mirizzi, Franco, Bianco, Buongiorno, Liuzzi (b18) 2020; 15 Baxt (b38) 1995; 346 Bonfiglio, Campanella, Donghia, Bianco, Franco, Curci, Bagnato, Tatoli, Giannelli, Cuccaro (b34) 2024; 13 Jayatilake, Ganegoda (b44) 2021; 2021 Levene, Goldin (b2) 2012; 61 Fan, Ma, Wu, Zhang, Yu, Zeng (b42) 2019; 225 Kushwaha, Kumaresan (b47) 2021 Eslam, Newsome, Sarin, Anstee, Targher, Romero-Gomez, Zelber-Sagi, Wong, Dufour, Schattenberg (b9) 2020; 73 Sarwar, Kamal, Hamid, Shah (b45) 2018 Efron, Tibshirani (b53) 1985; 12 Saihood, Sonuç (b20) 2023; 31 Younossi, Koenig, Abdelatif, Fazel, Henry, Wymer (b3) 2016; 64 F. Castellana, S. Aresta, P. Sorino, I. Bortone, D. Lofù, F. Narducci, T. Di Noia, E. Di Sciascio, R. Sardone, An Artificial Neural Network Model to Assess Nutritional Factors Associated with Frailty in the Aging Population from Southern Italy, in: 2022 IEEE International Conference on Systems, Man, and Cybernetics, SMC, 2022, pp. 3228–3233. Kim, Konyn, Sandhu, Dennis, Cheung, Ahmed (b28) 2021; 75 Calivà, Namiri, Dubreuil, Pedoia, Ozhinsky, Majumdar (b15) 2022; 18 De, Bhagat, Mehta, Taneja, Duseja (b23) 2024; 80 Semmler, Wernly, Bachmayer, Leitner, Wernly, Egger, Schwenoha, Datz, Balcar, Semmler (b10) 2021; 106 M.T. Ribeiro, S. Singh, C. Guestrin, ” Why should i trust you?” Explaining the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144. Calders, Jaroszewicz (b52) 2007 Huang, Zou, Wen, Zhou, Ji (b30) 2021; 8 Ferdous, Debnath, Chakraborty (b46) 2020 Eslam, Sanyal, George, Sanyal, Neuschwander-Tetri, Tiribelli, Kleiner, Brunt, Bugianesi, Yki-Järvinen (b8) 2020; 158 Fazel, Koenig, Sayiner, Goodman, Younossi (b1) 2016; 65 Shen, Chen, Yue, Xu (b17) 2021; 139 Noble (b40) 2006; 24 Dey, Hossain, Rahman (b37) 2018 Osella, del Pilar Díaz, Cozzolongo, Bonfiglio, Franco, Abbrescia, Bianco, Buongiorno, Elba, Petruzzi (b5) 2014; 71 Curci, Bianco, Franco, Campanella, Mirizzi, Bonfiglio, Sorino, Fucilli, Di Giovanni, Giampaolo (b22) 2022; 11 Misciagna, Del Pilar Diaz, Caramia, Bonfiglio, Franco, Noviello, Chiloiro, Abbrescia, Mirizzi, Tanzi (b6) 2017; 21 Sever (b32) 2006; 7 Feng, Zheng, Li, Rios, Zhu, Pan, Li, Ma, Tang, Byrne (b36) 2021; 28 Drożdż, Nabrdalik, Kwiendacz, Hendel, Olejarz, Tomasik, Bartman, Nalepa, Gumprecht, Lip (b29) 2022; 21 Lundberg, Lee (b50) 2017; 30 Lella, Pazienza, Lofù, Anglani, Vitulano (b13) 2021; 10 Casalino, Castellano, Zaza (b14) 2022 Nguyen, Le, Cheung, Nguyen (b27) 2021; 19 Wu, Yeh, Hsu, Islam, Nguyen, Poly, Wang, Yang, Li (b35) 2019; 170 Duckett (b54) 2011 Al-Jamimi (b21) 2024 Cozzolongo, Osella, Elba, Petruzzi, Buongiorno, Giannuzzi, Leone, Bonfiglio, Lanzilotta, Manghisi (b4) 2009; 104 Sorino, Campanella, Bonfiglio, Mirizzi, Franco, Bianco, Caruso, Misciagna, Aballay, Buongiorno (b19) 2021; 11 Došilović, Brčić, Hlupić (b48) 2018 Alanazi (b43) 2022; 30 Lin, Huang, Wang, Kumar, Liu, Liu, Wu, Wang, Zhu (b25) 2020; 40 Lombardi, Diacono, Amoroso, Biecek, Monaco, Bellantuono, Pantaleo, Logroscino, De Blasi, Tangaro (b51) 2022; 9 World Health Organization (b33) 2010 Casalino, Castellano, Consiglio, Nuzziello, Vessio (b11) 2021 Mirizzi, Aballay, Misciagna, Caruso, Bonfiglio, Sorino, Bianco, Campanella, Franco, Curci (b31) 2021; 13 Sun, Jin, Wang, Zheng, Rios, Zhang, Targher, Byrne, Yuan, Zheng (b24) 2021; 115 Decraecker, Dutartre, Hiriart, Irles-Depé, Chermak, Foucher, de Lédinghen (b26) 2022; 55 Sorino, Paparella, Lofu, Colafiglio, Di Sciascio, Narducci, Sardone, Di Noia (b16) 2023 Pal (b39) 2005; 26 Procino, Misciagna, Veronese, Caruso, Chiloiro, Cisternino, Notarnicola, Bonfiglio, Bruno, Buongiorno (b7) 2019; 39 Chen, He, Benesty, Khotilovich, Tang, Cho, Chen (b41) 2015 Casalino (10.1016/j.cmpbup.2024.100176_b14) 2022 Sarwar (10.1016/j.cmpbup.2024.100176_b45) 2018 Osella (10.1016/j.cmpbup.2024.100176_b5) 2014; 71 Mirizzi (10.1016/j.cmpbup.2024.100176_b31) 2021; 13 Sever (10.1016/j.cmpbup.2024.100176_b32) 2006; 7 Shen (10.1016/j.cmpbup.2024.100176_b17) 2021; 139 Dey (10.1016/j.cmpbup.2024.100176_b37) 2018 Alanazi (10.1016/j.cmpbup.2024.100176_b43) 2022; 30 Sorino (10.1016/j.cmpbup.2024.100176_b16) 2023 Lombardi (10.1016/j.cmpbup.2024.100176_b51) 2022; 9 10.1016/j.cmpbup.2024.100176_b49 Lella (10.1016/j.cmpbup.2024.100176_b13) 2021; 10 Cozzolongo (10.1016/j.cmpbup.2024.100176_b4) 2009; 104 Kushwaha (10.1016/j.cmpbup.2024.100176_b47) 2021 Huang (10.1016/j.cmpbup.2024.100176_b30) 2021; 8 Calders (10.1016/j.cmpbup.2024.100176_b52) 2007 Duckett (10.1016/j.cmpbup.2024.100176_b54) 2011 Ferdous (10.1016/j.cmpbup.2024.100176_b46) 2020 Younossi (10.1016/j.cmpbup.2024.100176_b3) 2016; 64 Drożdż (10.1016/j.cmpbup.2024.100176_b29) 2022; 21 Kim (10.1016/j.cmpbup.2024.100176_b28) 2021; 75 Nguyen (10.1016/j.cmpbup.2024.100176_b27) 2021; 19 Sorino (10.1016/j.cmpbup.2024.100176_b18) 2020; 15 Lin (10.1016/j.cmpbup.2024.100176_b25) 2020; 40 Levene (10.1016/j.cmpbup.2024.100176_b2) 2012; 61 Semmler (10.1016/j.cmpbup.2024.100176_b10) 2021; 106 Saihood (10.1016/j.cmpbup.2024.100176_b20) 2023; 31 Decraecker (10.1016/j.cmpbup.2024.100176_b26) 2022; 55 Bonfiglio (10.1016/j.cmpbup.2024.100176_b34) 2024; 13 Wu (10.1016/j.cmpbup.2024.100176_b35) 2019; 170 Sun (10.1016/j.cmpbup.2024.100176_b24) 2021; 115 Misciagna (10.1016/j.cmpbup.2024.100176_b6) 2017; 21 De (10.1016/j.cmpbup.2024.100176_b23) 2024; 80 Pal (10.1016/j.cmpbup.2024.100176_b39) 2005; 26 Al-Jamimi (10.1016/j.cmpbup.2024.100176_b21) 2024 Eslam (10.1016/j.cmpbup.2024.100176_b9) 2020; 73 Lundberg (10.1016/j.cmpbup.2024.100176_b50) 2017; 30 Baxt (10.1016/j.cmpbup.2024.100176_b38) 1995; 346 Eslam (10.1016/j.cmpbup.2024.100176_b8) 2020; 158 Chen (10.1016/j.cmpbup.2024.100176_b41) 2015 World Health Organization (10.1016/j.cmpbup.2024.100176_b33) 2010 Fan (10.1016/j.cmpbup.2024.100176_b42) 2019; 225 Procino (10.1016/j.cmpbup.2024.100176_b7) 2019; 39 Noble (10.1016/j.cmpbup.2024.100176_b40) 2006; 24 Došilović (10.1016/j.cmpbup.2024.100176_b48) 2018 Calivà (10.1016/j.cmpbup.2024.100176_b15) 2022; 18 Casalino (10.1016/j.cmpbup.2024.100176_b11) 2021 Fazel (10.1016/j.cmpbup.2024.100176_b1) 2016; 65 Feng (10.1016/j.cmpbup.2024.100176_b36) 2021; 28 Sorino (10.1016/j.cmpbup.2024.100176_b19) 2021; 11 Jayatilake (10.1016/j.cmpbup.2024.100176_b44) 2021; 2021 Efron (10.1016/j.cmpbup.2024.100176_b53) 1985; 12 10.1016/j.cmpbup.2024.100176_b12 Curci (10.1016/j.cmpbup.2024.100176_b22) 2022; 11 |
| References_xml | – volume: 18 start-page: 112 year: 2022 end-page: 121 ident: b15 article-title: Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging publication-title: Nat. Rev. Rheumatol. – volume: 39 start-page: 187 year: 2019 end-page: 196 ident: b7 article-title: Reducing NAFLD-screening time: A comparative study of eight diagnostic methods offering an alternative to ultrasound scans publication-title: Liver Int. – volume: 30 year: 2022 ident: b43 article-title: Using machine learning for healthcare challenges and opportunities publication-title: Inform. Med. Unlocked – volume: 104 start-page: 2740 year: 2009 end-page: 2746 ident: b4 article-title: Epidemiology of HCV infection in the general population: a survey in a southern Italian town publication-title: Off. J. Am. Coll. Gastroenterol. ACG – year: 2010 ident: b33 article-title: WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy – start-page: 1 year: 2015 end-page: 4 ident: b41 article-title: XGBoost: extreme gradient boosting – volume: 64 start-page: 73 year: 2016 end-page: 84 ident: b3 article-title: Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes publication-title: Hepatology – volume: 9 start-page: 1 year: 2022 end-page: 17 ident: b51 article-title: A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of mild cognitive impairment and Alzheimer’s disease publication-title: Brain Inform. – volume: 71 year: 2014 ident: b5 article-title: Overweight and obesity in southern Italy: their association with social and life-style characteristics and their effect on levels of biologic markers. publication-title: Rev. Fac. Cien. Méd. Córdoba – volume: 19 start-page: 2172 year: 2021 end-page: 2181 ident: b27 article-title: Differential clinical characteristics and mortality outcomes in persons with NAFLD and/or MAFLD publication-title: Clin. Gastroenterol. Hepatol. – year: 2024 ident: b21 article-title: Synergistic feature engineering and ensemble learning for early chronic disease prediction publication-title: IEEE Access – volume: 12 start-page: 1 year: 1985 end-page: 35 ident: b53 article-title: The bootstrap method for assessing statistical accuracy publication-title: Behaviormetrika – volume: 26 start-page: 217 year: 2005 end-page: 222 ident: b39 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. – volume: 7 start-page: 61 year: 2006 end-page: 63 ident: b32 article-title: New hypertension guidelines from the national institute for health and clinical excellence and the british hypertension society publication-title: J. Renin-Angiotensin-Aldosterone Syst. – volume: 139 year: 2021 ident: b17 article-title: Artificial intelligence in ultrasound publication-title: Eur. J. Radiol. – volume: 15 year: 2020 ident: b18 article-title: Selecting the best machine learning algorithm to support the diagnosis of non-alcoholic fatty liver disease: A meta learner study publication-title: PLoS One – volume: 75 start-page: 1284 year: 2021 end-page: 1291 ident: b28 article-title: Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States publication-title: J. Hepatol. – volume: 73 start-page: 202 year: 2020 end-page: 209 ident: b9 article-title: A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement publication-title: J. Hepatol. – volume: 31 start-page: 722 year: 2023 end-page: 738 ident: b20 article-title: A practical framework for early detection of diabetes using ensemble machine learning models publication-title: Turk. J. Electr. Eng. Comput. Sci. – year: 2011 ident: b54 publication-title: HTML & CSS: Design and Build Websites – volume: 61 start-page: 141 year: 2012 end-page: 152 ident: b2 article-title: The epidemiology, pathogenesis and histopathology of fatty liver disease publication-title: Histopathology – volume: 65 start-page: 1017 year: 2016 end-page: 1025 ident: b1 article-title: Epidemiology and natural history of non-alcoholic fatty liver disease publication-title: Metabolism – reference: F. Castellana, S. Aresta, P. Sorino, I. Bortone, D. Lofù, F. Narducci, T. Di Noia, E. Di Sciascio, R. Sardone, An Artificial Neural Network Model to Assess Nutritional Factors Associated with Frailty in the Aging Population from Southern Italy, in: 2022 IEEE International Conference on Systems, Man, and Cybernetics, SMC, 2022, pp. 3228–3233. – volume: 225 year: 2019 ident: b42 article-title: Light gradient boosting machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data publication-title: Agricult. Water. Manag. – start-page: 1 year: 2021 end-page: 10 ident: b11 article-title: Microrna expression classification for pediatric multiple sclerosis identification publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 24 start-page: 1565 year: 2006 end-page: 1567 ident: b40 article-title: What is a support vector machine? publication-title: Nature Biotechnol. – start-page: 1 year: 2020 end-page: 6 ident: b46 article-title: Machine learning algorithms in healthcare: A literature survey publication-title: 2020 11th International Conference on Computing, Communication and Networking Technologies – volume: 158 start-page: 1999 year: 2020 end-page: 2014 ident: b8 article-title: MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease publication-title: Gastroenterology – volume: 346 start-page: 1135 year: 1995 end-page: 1138 ident: b38 article-title: Application of artificial neural networks to clinical medicine publication-title: The Lancet – volume: 10 start-page: 249 year: 2021 ident: b13 article-title: An ensemble learning approach based on diffusion tensor imaging measures for Alzheimer’s disease classification publication-title: Electronics – volume: 2021 year: 2021 ident: b44 article-title: Involvement of machine learning tools in healthcare decision making publication-title: J. Healthc. Eng. – volume: 11 start-page: 4339 year: 2022 ident: b22 article-title: The effect of low glycemic index mediterranean diet and combined exercise program on metabolic-associated fatty liver disease: A joint modeling approach publication-title: J. Clin. Med. – volume: 8 year: 2021 ident: b30 article-title: NAFLD or MAFLD: which has closer association with all-cause and cause-specific mortality?—results from NHANES III publication-title: Front. Med. – start-page: 1 year: 2018 end-page: 6 ident: b45 article-title: Prediction of diabetes using machine learning algorithms in healthcare publication-title: 2018 24th International Conference on Automation and Computing – start-page: 3822 year: 2023 end-page: 3827 ident: b16 article-title: A Pareto-optimality-based approach for selecting the best machine learning models in mild cognitive impairment prediction publication-title: 2023 IEEE International Conference on Systems, Man, and Cybernetics – start-page: 1 year: 2018 end-page: 5 ident: b37 article-title: Implementation of a web application to predict diabetes disease: an approach using machine learning algorithm publication-title: 2018 21st International Conference of Computer and Information Technology – volume: 28 start-page: 593 year: 2021 end-page: 603 ident: b36 article-title: Machine learning algorithm outperforms fibrosis markers in predicting significant fibrosis in biopsy-confirmed NAFLD publication-title: J. Hepato-Biliary-Pancreatic Sci. – start-page: 478 year: 2021 end-page: 481 ident: b47 article-title: Machine learning algorithm in healthcare system: A review publication-title: 2021 International Conference on Technological Advancements and Innovations – volume: 55 start-page: 580 year: 2022 end-page: 592 ident: b26 article-title: Long-term prognosis of patients with metabolic (dysfunction)-associated fatty liver disease by non-invasive methods publication-title: Aliment. Pharmacol. Ther. – volume: 80 start-page: e61 year: 2024 end-page: e62 ident: b23 article-title: Metabolic dysfunction-associated steatotic liver disease (MASLD) definition is better than MAFLD criteria for lean patients with NAFLD publication-title: J. Hepatol. – volume: 40 start-page: 2082 year: 2020 end-page: 2089 ident: b25 article-title: Comparison of MAFLD and NAFLD diagnostic criteria in real world publication-title: Liver Int. – volume: 30 year: 2017 ident: b50 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 115 year: 2021 ident: b24 article-title: MAFLD and risk of CKD publication-title: Metabolism – volume: 13 start-page: 1181 year: 2024 ident: b34 article-title: Development and internal validation of a model for predicting overall survival in subjects with MAFLD: A cohort study publication-title: J. Clin. Med. – reference: M.T. Ribeiro, S. Singh, C. Guestrin, ” Why should i trust you?” Explaining the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144. – start-page: 0210 year: 2018 end-page: 0215 ident: b48 article-title: Explainable artificial intelligence: A survey publication-title: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics – volume: 170 start-page: 23 year: 2019 end-page: 29 ident: b35 article-title: Prediction of fatty liver disease using machine learning algorithms publication-title: Comput. Methods Programs Biomed. – start-page: 1 year: 2022 end-page: 10 ident: b14 article-title: Evaluating the robustness of a contact-less mhealth solution for personal and remote monitoring of blood oxygen saturation publication-title: J. Ambient Intell. Humaniz. Comput. – start-page: 42 year: 2007 end-page: 53 ident: b52 article-title: Efficient AUC optimization for classification publication-title: European Conference on Principles of Data Mining and Knowledge Discovery – volume: 11 start-page: 1 year: 2021 end-page: 13 ident: b19 article-title: Development and validation of a neural network for NAFLD diagnosis publication-title: Sci. Rep. – volume: 13 start-page: 4002 year: 2021 ident: b31 article-title: Modified WCRF/AICR score and all-cause, digestive system, cardiovascular, cancer and other-cause-related mortality: A competing risk analysis of two cohort studies conducted in southern Italy publication-title: Nutrients – volume: 106 start-page: 2670 year: 2021 end-page: 2677 ident: b10 article-title: Metabolic dysfunction-associated fatty liver disease (MAFLD)—rather a bystander than a driver of mortality publication-title: J. Clin. Endocrinol. Metab. – volume: 21 start-page: 404 year: 2017 end-page: 412 ident: b6 article-title: Effect of a low glycemic index mediterranean diet on non-alcoholic fatty liver disease. a randomized controlled clinici trial publication-title: J. Nutr. Health Aging – volume: 21 start-page: 240 year: 2022 ident: b29 article-title: Risk factors for cardiovascular disease in patients with metabolic-associated fatty liver disease: a machine learning approach publication-title: Cardiovasc. Diabetol. – volume: 26 start-page: 217 issue: 1 year: 2005 ident: 10.1016/j.cmpbup.2024.100176_b39 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331269698 – volume: 61 start-page: 141 issue: 2 year: 2012 ident: 10.1016/j.cmpbup.2024.100176_b2 article-title: The epidemiology, pathogenesis and histopathology of fatty liver disease publication-title: Histopathology doi: 10.1111/j.1365-2559.2011.04145.x – start-page: 1 year: 2018 ident: 10.1016/j.cmpbup.2024.100176_b45 article-title: Prediction of diabetes using machine learning algorithms in healthcare – volume: 28 start-page: 593 issue: 7 year: 2021 ident: 10.1016/j.cmpbup.2024.100176_b36 article-title: Machine learning algorithm outperforms fibrosis markers in predicting significant fibrosis in biopsy-confirmed NAFLD publication-title: J. Hepato-Biliary-Pancreatic Sci. doi: 10.1002/jhbp.972 – volume: 40 start-page: 2082 issue: 9 year: 2020 ident: 10.1016/j.cmpbup.2024.100176_b25 article-title: Comparison of MAFLD and NAFLD diagnostic criteria in real world publication-title: Liver Int. doi: 10.1111/liv.14548 – volume: 39 start-page: 187 issue: 1 year: 2019 ident: 10.1016/j.cmpbup.2024.100176_b7 article-title: Reducing NAFLD-screening time: A comparative study of eight diagnostic methods offering an alternative to ultrasound scans publication-title: Liver Int. doi: 10.1111/liv.13970 – volume: 80 start-page: e61 issue: 2 year: 2024 ident: 10.1016/j.cmpbup.2024.100176_b23 article-title: Metabolic dysfunction-associated steatotic liver disease (MASLD) definition is better than MAFLD criteria for lean patients with NAFLD publication-title: J. Hepatol. doi: 10.1016/j.jhep.2023.07.031 – volume: 170 start-page: 23 year: 2019 ident: 10.1016/j.cmpbup.2024.100176_b35 article-title: Prediction of fatty liver disease using machine learning algorithms publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.12.032 – volume: 115 year: 2021 ident: 10.1016/j.cmpbup.2024.100176_b24 article-title: MAFLD and risk of CKD publication-title: Metabolism doi: 10.1016/j.metabol.2020.154433 – volume: 11 start-page: 4339 issue: 15 year: 2022 ident: 10.1016/j.cmpbup.2024.100176_b22 article-title: The effect of low glycemic index mediterranean diet and combined exercise program on metabolic-associated fatty liver disease: A joint modeling approach publication-title: J. Clin. Med. doi: 10.3390/jcm11154339 – start-page: 0210 year: 2018 ident: 10.1016/j.cmpbup.2024.100176_b48 article-title: Explainable artificial intelligence: A survey – volume: 30 year: 2022 ident: 10.1016/j.cmpbup.2024.100176_b43 article-title: Using machine learning for healthcare challenges and opportunities publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2022.100924 – start-page: 1 year: 2022 ident: 10.1016/j.cmpbup.2024.100176_b14 article-title: Evaluating the robustness of a contact-less mhealth solution for personal and remote monitoring of blood oxygen saturation publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 106 start-page: 2670 issue: 9 year: 2021 ident: 10.1016/j.cmpbup.2024.100176_b10 article-title: Metabolic dysfunction-associated fatty liver disease (MAFLD)—rather a bystander than a driver of mortality publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/clinem/dgab339 – volume: 55 start-page: 580 issue: 5 year: 2022 ident: 10.1016/j.cmpbup.2024.100176_b26 article-title: Long-term prognosis of patients with metabolic (dysfunction)-associated fatty liver disease by non-invasive methods publication-title: Aliment. Pharmacol. Ther. doi: 10.1111/apt.16760 – volume: 21 start-page: 240 issue: 1 year: 2022 ident: 10.1016/j.cmpbup.2024.100176_b29 article-title: Risk factors for cardiovascular disease in patients with metabolic-associated fatty liver disease: a machine learning approach publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-022-01672-9 – start-page: 1 year: 2021 ident: 10.1016/j.cmpbup.2024.100176_b11 article-title: Microrna expression classification for pediatric multiple sclerosis identification publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 346 start-page: 1135 issue: 8983 year: 1995 ident: 10.1016/j.cmpbup.2024.100176_b38 article-title: Application of artificial neural networks to clinical medicine publication-title: The Lancet doi: 10.1016/S0140-6736(95)91804-3 – volume: 158 start-page: 1999 issue: 7 year: 2020 ident: 10.1016/j.cmpbup.2024.100176_b8 article-title: MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.11.312 – year: 2010 ident: 10.1016/j.cmpbup.2024.100176_b33 – volume: 13 start-page: 1181 issue: 4 year: 2024 ident: 10.1016/j.cmpbup.2024.100176_b34 article-title: Development and internal validation of a model for predicting overall survival in subjects with MAFLD: A cohort study publication-title: J. Clin. Med. doi: 10.3390/jcm13041181 – volume: 10 start-page: 249 issue: 3 year: 2021 ident: 10.1016/j.cmpbup.2024.100176_b13 article-title: An ensemble learning approach based on diffusion tensor imaging measures for Alzheimer’s disease classification publication-title: Electronics doi: 10.3390/electronics10030249 – start-page: 1 year: 2015 ident: 10.1016/j.cmpbup.2024.100176_b41 – volume: 9 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.cmpbup.2024.100176_b51 article-title: A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of mild cognitive impairment and Alzheimer’s disease publication-title: Brain Inform. doi: 10.1186/s40708-022-00165-5 – start-page: 1 year: 2018 ident: 10.1016/j.cmpbup.2024.100176_b37 article-title: Implementation of a web application to predict diabetes disease: an approach using machine learning algorithm – volume: 12 start-page: 1 issue: 17 year: 1985 ident: 10.1016/j.cmpbup.2024.100176_b53 article-title: The bootstrap method for assessing statistical accuracy publication-title: Behaviormetrika doi: 10.2333/bhmk.12.17_1 – ident: 10.1016/j.cmpbup.2024.100176_b12 doi: 10.1109/SMC53654.2022.9945542 – volume: 75 start-page: 1284 issue: 6 year: 2021 ident: 10.1016/j.cmpbup.2024.100176_b28 article-title: Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States publication-title: J. Hepatol. doi: 10.1016/j.jhep.2021.07.035 – volume: 30 year: 2017 ident: 10.1016/j.cmpbup.2024.100176_b50 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.cmpbup.2024.100176_b19 article-title: Development and validation of a neural network for NAFLD diagnosis publication-title: Sci. Rep. doi: 10.1038/s41598-021-99400-y – volume: 24 start-page: 1565 issue: 12 year: 2006 ident: 10.1016/j.cmpbup.2024.100176_b40 article-title: What is a support vector machine? publication-title: Nature Biotechnol. doi: 10.1038/nbt1206-1565 – volume: 18 start-page: 112 issue: 2 year: 2022 ident: 10.1016/j.cmpbup.2024.100176_b15 article-title: Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging publication-title: Nat. Rev. Rheumatol. doi: 10.1038/s41584-021-00719-7 – start-page: 1 year: 2020 ident: 10.1016/j.cmpbup.2024.100176_b46 article-title: Machine learning algorithms in healthcare: A literature survey – volume: 64 start-page: 73 issue: 1 year: 2016 ident: 10.1016/j.cmpbup.2024.100176_b3 article-title: Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes publication-title: Hepatology doi: 10.1002/hep.28431 – volume: 2021 issue: 1 year: 2021 ident: 10.1016/j.cmpbup.2024.100176_b44 article-title: Involvement of machine learning tools in healthcare decision making publication-title: J. Healthc. Eng. – volume: 104 start-page: 2740 issue: 11 year: 2009 ident: 10.1016/j.cmpbup.2024.100176_b4 article-title: Epidemiology of HCV infection in the general population: a survey in a southern Italian town publication-title: Off. J. Am. Coll. Gastroenterol. ACG doi: 10.1038/ajg.2009.428 – volume: 65 start-page: 1017 issue: 8 year: 2016 ident: 10.1016/j.cmpbup.2024.100176_b1 article-title: Epidemiology and natural history of non-alcoholic fatty liver disease publication-title: Metabolism doi: 10.1016/j.metabol.2016.01.012 – volume: 21 start-page: 404 issue: 4 year: 2017 ident: 10.1016/j.cmpbup.2024.100176_b6 article-title: Effect of a low glycemic index mediterranean diet on non-alcoholic fatty liver disease. a randomized controlled clinici trial publication-title: J. Nutr. Health Aging doi: 10.1007/s12603-016-0809-8 – volume: 15 issue: 10 year: 2020 ident: 10.1016/j.cmpbup.2024.100176_b18 article-title: Selecting the best machine learning algorithm to support the diagnosis of non-alcoholic fatty liver disease: A meta learner study publication-title: PLoS One doi: 10.1371/journal.pone.0240867 – volume: 19 start-page: 2172 issue: 10 year: 2021 ident: 10.1016/j.cmpbup.2024.100176_b27 article-title: Differential clinical characteristics and mortality outcomes in persons with NAFLD and/or MAFLD publication-title: Clin. Gastroenterol. Hepatol. doi: 10.1016/j.cgh.2021.05.029 – volume: 7 start-page: 61 issue: 2 year: 2006 ident: 10.1016/j.cmpbup.2024.100176_b32 article-title: New hypertension guidelines from the national institute for health and clinical excellence and the british hypertension society publication-title: J. Renin-Angiotensin-Aldosterone Syst. doi: 10.3317/jraas.2006.011 – ident: 10.1016/j.cmpbup.2024.100176_b49 doi: 10.1145/2939672.2939778 – start-page: 42 year: 2007 ident: 10.1016/j.cmpbup.2024.100176_b52 article-title: Efficient AUC optimization for classification – start-page: 3822 year: 2023 ident: 10.1016/j.cmpbup.2024.100176_b16 article-title: A Pareto-optimality-based approach for selecting the best machine learning models in mild cognitive impairment prediction – volume: 73 start-page: 202 issue: 1 year: 2020 ident: 10.1016/j.cmpbup.2024.100176_b9 article-title: A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement publication-title: J. Hepatol. doi: 10.1016/j.jhep.2020.03.039 – volume: 13 start-page: 4002 issue: 11 year: 2021 ident: 10.1016/j.cmpbup.2024.100176_b31 article-title: Modified WCRF/AICR score and all-cause, digestive system, cardiovascular, cancer and other-cause-related mortality: A competing risk analysis of two cohort studies conducted in southern Italy publication-title: Nutrients doi: 10.3390/nu13114002 – year: 2024 ident: 10.1016/j.cmpbup.2024.100176_b21 article-title: Synergistic feature engineering and ensemble learning for early chronic disease prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3395512 – year: 2011 ident: 10.1016/j.cmpbup.2024.100176_b54 – volume: 8 year: 2021 ident: 10.1016/j.cmpbup.2024.100176_b30 article-title: NAFLD or MAFLD: which has closer association with all-cause and cause-specific mortality?—results from NHANES III publication-title: Front. Med. – volume: 139 year: 2021 ident: 10.1016/j.cmpbup.2024.100176_b17 article-title: Artificial intelligence in ultrasound publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2021.109717 – volume: 225 year: 2019 ident: 10.1016/j.cmpbup.2024.100176_b42 article-title: Light gradient boosting machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data publication-title: Agricult. Water. Manag. doi: 10.1016/j.agwat.2019.105758 – volume: 71 issue: 3 year: 2014 ident: 10.1016/j.cmpbup.2024.100176_b5 article-title: Overweight and obesity in southern Italy: their association with social and life-style characteristics and their effect on levels of biologic markers. publication-title: Rev. Fac. Cien. Méd. Córdoba – volume: 31 start-page: 722 issue: 4 year: 2023 ident: 10.1016/j.cmpbup.2024.100176_b20 article-title: A practical framework for early detection of diabetes using ensemble machine learning models publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.55730/1300-0632.4013 – start-page: 478 year: 2021 ident: 10.1016/j.cmpbup.2024.100176_b47 article-title: Machine learning algorithm in healthcare system: A review |
| SSID | ssj0002513206 |
| Score | 2.281238 |
| Snippet | Metabolic dysfunction-associated fatty liver disease (MAFLD) introduces new diagnostic criteria for fatty liver disease that are independent of alcohol... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 100176 |
| SubjectTerms | Epidemiology Interpretability Machine learning techniques MAFLD Mortality |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - DOAJ (NTUSG) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA3iQt2ITxxfZOE2mkk7aetufAwqjoIozK4kTaojYy1OB_E3_GLvTVqpK124bFrakHvJOUlPziXkII5VZoKuZok0moVKW5bEPckAebuJzSwgtlNb3MiLh_Bq1Bu1Sn2hJszbA_uBO-oKq3gQywjWCQCeXFmDHKEnrLEAXgZnXx4nrcUUzsGA2oHgsjkr5wRd2UupZ2hRKULnPIQ2Iy0scpb9PyBpcVaU6uNdTSYtyBmskOWaK9K-7-MqmbPFGlkY1n_D18nn8PbucnRMh04QaWldAeKRoe2joXmju6JATOFm9eQ4NzW2cvqrgqrCUHhH5dvHzdk_ipuz1I7KSX20iuIweasJOm55eMIFHfYH12d0OtO4oTPdIA-D8_vTC1bXWGAZLLYksyrmKgGEwhJWWWiyPNDAqWSUQbRgKSQURDk2YWYToZHsGK1CyYEk9JTJuQo2yXzxWtgtQrs5sMuE5yJUMlRCowQw4DrSQaRlkssOYc1op6W30kgbjdlz6qOTYnRSH50OOcGQfD-LRtiuAdIjrdMj_S09OiRqAprWnMJzBXjV-JfPH37H_0_93f6P_u6QJYEVht0mzy6Zr95mdg9oT6X3XYZ_ATm__08 priority: 102 providerName: Directory of Open Access Journals |
| Title | MORIX: Machine learning-aided framework for lethality detection and MORtality inference with eXplainable artificial intelligence in MAFLD subjects |
| URI | https://dx.doi.org/10.1016/j.cmpbup.2024.100176 https://doi.org/10.1016/j.cmpbup.2024.100176 https://doaj.org/article/12ea038672494390aed511252ede201d |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2666-9900 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513206 issn: 2666-9900 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2666-9900 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513206 issn: 2666-9900 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2666-9900 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513206 issn: 2666-9900 databaseCode: AKRWK dateStart: 20210101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BkZYTz11RBMgHjrhK83CSvZVHBYgAQlTqniK_AmW7oVoSITjwI_jFjJ0EUSQEXCLFiR3LM858tme-AdiOIi6V1xU0ZkpQnwtN4yhgFC1vN9ZSo8W23han7HDgHw-D4QzsNLEwU-f31g9L_puI0jBLur4lDArZLMyxAJF3C-YGp-e9PyZ_HKJwij9Wp4mO-6DqlPWxJP1TRmi-zCf84Z6Px2-MTH8RkqZ7lW_J305ZiI58fMfc-NX-L8FCjTZJr1KPZZjR-Qr8SOrz9FV4Ts4ujoa_SWJdKjWpc0hcUUMcqUjWeG4RhLb4sLi2qJ0oXVgPrpzwXBFso6jKR030IDHbu0QPJ-M6OIsYDa3IKsjoDQso3pCk1z_ZJ3elMFtCdz9h0D-43DukdZYGKnG5xqjmkcNjtHEmCZb0lcw8gaiMhRLljYspl6OeRMqXOnaFgUtKcJ85CDMCrjKHe7-gld_meg1IN0N8GjuZ63Pmc1cYJ0LPEaHwQsHijLWBNtJLJxUZR9p4qd2k1UCnZqDTaqDbsGtE_PquodK2BSihtJ6ZadfV3PEiFuJCFNGZw7UyIDRwtdKIjlQbwkZB0hqVVGgDmxp98vnOqz59qb_r362wAa3if6k3ERcVYsvuJ-A1eTrYqqfGC8nZDcc |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkeDEjigC5ANHXKVZnIRbWSpABBCiUjlF3gKFEiqaCMFn8MWMsyCKhIBjnDixPOPMs_38BmAnCLhUTlvQkClBXS40DQOPUYy87VBLjRG7YFucs-Oee9r3-lOwW5-Fmdi_L3hY8nEkcqMsabuFYJDPpmGGeYi8GzDTO7_s3Jj8cYjCKf5Yrfp03A9VJ6JPIdI_EYTm8nTEX1_4cPglyHQXIKqbV3JLHlp5Jlry7Zty41_bvwjzFdokndI9lmBKp8swG1X76SvwHl1cnfT3SFRQKjWpckjcUiMcqUhSM7cIQlu8md0VqJ0onRUMrpTwVBF8R1aWD-rTg8Qs7xLdHw2rw1nEeGgpVkEGX1RA8YJEne7ZIRnnwiwJjVeh1z26PjimVZYGKnG6xqjmgcVDjHEmCZZ0lUwcgaiM-RLtjZMpm6OfBMqVOrSFgUtKcJdZCDM8rhKLO2vQSJ9SvQ6knSA-Da3EdjlzuS0MidCxhC8cX7AwYU2gtfXiUSnGEdcstfu47OjYdHRcdnQT9o2JP581UtpFAVoorkZm3LY1t5yA-TgRRXRmca0MCPVsrTSiI9UEv3aQuEIlJdrAVw1--Xzr05_-1N6N_1bYhEb2nOstxEWZ2K6Gwwc2TAuh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MORIX%3A+Machine+learning-aided+framework+for+lethality+detection+and+MORtality+inference+with+eXplainable+artificial+intelligence+in+MAFLD+subjects&rft.jtitle=Computer+methods+and+programs+in+biomedicine+update&rft.au=Lof%C3%B9%2C+Domenico&rft.au=Sorino%2C+Paolo&rft.au=Colafiglio%2C+Tommaso&rft.au=Bonfiglio%2C+Caterina&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=2666-9900&rft.eissn=2666-9900&rft.volume=7&rft_id=info:doi/10.1016%2Fj.cmpbup.2024.100176&rft.externalDocID=S2666990024000430 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-9900&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-9900&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-9900&client=summon |