MORIX: Machine learning-aided framework for lethality detection and MORtality inference with eXplainable artificial intelligence in MAFLD subjects

Metabolic dysfunction-associated fatty liver disease (MAFLD) introduces new diagnostic criteria for fatty liver disease that are independent of alcohol consumption and viral hepatitis infection. Therefore, investigating how biochemical and anthropometric factors influence mortality in MAFLD subjects...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine update Vol. 7; p. 100176
Main Authors Lofù, Domenico, Sorino, Paolo, Colafiglio, Tommaso, Bonfiglio, Caterina, Donghia, Rossella, Giannelli, Gianluigi, Lombardi, Angela, Di Noia, Tommaso, Di Sciascio, Eugenio, Narducci, Fedelucio
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2025
Elsevier
Subjects
Online AccessGet full text
ISSN2666-9900
2666-9900
DOI10.1016/j.cmpbup.2024.100176

Cover

Abstract Metabolic dysfunction-associated fatty liver disease (MAFLD) introduces new diagnostic criteria for fatty liver disease that are independent of alcohol consumption and viral hepatitis infection. Therefore, investigating how biochemical and anthropometric factors influence mortality in MAFLD subjects is of significant interest. In this work, we propose MORIX, an Artificial Intelligence-based framework capable of predicting fatal mortality outcomes in subjects with MAFLD. MORIX utilizes data from epidemiological datasets containing carefully selected anthropometric and biochemical information. This selection is achieved through Recursive Feature Elimination (RFE) using a Random Forest (RF) to train Machine Learning (ML) algorithms and provide a mortality risk (Yes/No) output. To provide physicians with a valuable tool, MORIX was trained and tested on a dataset of MAFLD subjects, comparing five different models: Random Forest (RF), eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Light Gradient Boosting Model (LGBM) in a 5-fold cross-validation training strategy. Experimental results identified the RF as the best model, achieving a high accuracy for both mortality risks predicted. Additionally, an eXplainable Artificial Intelligence (XAI) analysis was conducted to clarify the diagnostic logic of the RF model and to assess the impact of each feature to the prediction. Moreover, a web application was developed to predict mortality risk and provide explanations of how the input features influenced the final prediction. In conclusion, the MORIX framework is easy to apply, and the required parameters are readily available in healthcare datasets, making it a practical tool for medical professionals. •Introduced MORIX, an AI-based framework for predicting mortality in MAFLD patients.•Utilized Recursive Feature Elimination (RFE) with Random Forest (RF) to optimize feature selection.•Compared five ML models, with RF demonstrating the highest accuracy (83%) and AUC (0.88).•Applied eXplainable AI (XAI) methods to enhance model transparency and support clinical decision-making.•Developed a user-friendly web application for real-time mortality risk prediction and explanation.
AbstractList Metabolic dysfunction-associated fatty liver disease (MAFLD) introduces new diagnostic criteria for fatty liver disease that are independent of alcohol consumption and viral hepatitis infection. Therefore, investigating how biochemical and anthropometric factors influence mortality in MAFLD subjects is of significant interest. In this work, we propose MORIX, an Artificial Intelligence-based framework capable of predicting fatal mortality outcomes in subjects with MAFLD. MORIX utilizes data from epidemiological datasets containing carefully selected anthropometric and biochemical information. This selection is achieved through Recursive Feature Elimination (RFE) using a Random Forest (RF) to train Machine Learning (ML) algorithms and provide a mortality risk (Yes/No) output. To provide physicians with a valuable tool, MORIX was trained and tested on a dataset of MAFLD subjects, comparing five different models: Random Forest (RF), eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Light Gradient Boosting Model (LGBM) in a 5-fold cross-validation training strategy. Experimental results identified the RF as the best model, achieving a high accuracy for both mortality risks predicted. Additionally, an eXplainable Artificial Intelligence (XAI) analysis was conducted to clarify the diagnostic logic of the RF model and to assess the impact of each feature to the prediction. Moreover, a web application was developed to predict mortality risk and provide explanations of how the input features influenced the final prediction. In conclusion, the MORIX framework is easy to apply, and the required parameters are readily available in healthcare datasets, making it a practical tool for medical professionals.
Metabolic dysfunction-associated fatty liver disease (MAFLD) introduces new diagnostic criteria for fatty liver disease that are independent of alcohol consumption and viral hepatitis infection. Therefore, investigating how biochemical and anthropometric factors influence mortality in MAFLD subjects is of significant interest. In this work, we propose MORIX, an Artificial Intelligence-based framework capable of predicting fatal mortality outcomes in subjects with MAFLD. MORIX utilizes data from epidemiological datasets containing carefully selected anthropometric and biochemical information. This selection is achieved through Recursive Feature Elimination (RFE) using a Random Forest (RF) to train Machine Learning (ML) algorithms and provide a mortality risk (Yes/No) output. To provide physicians with a valuable tool, MORIX was trained and tested on a dataset of MAFLD subjects, comparing five different models: Random Forest (RF), eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Light Gradient Boosting Model (LGBM) in a 5-fold cross-validation training strategy. Experimental results identified the RF as the best model, achieving a high accuracy for both mortality risks predicted. Additionally, an eXplainable Artificial Intelligence (XAI) analysis was conducted to clarify the diagnostic logic of the RF model and to assess the impact of each feature to the prediction. Moreover, a web application was developed to predict mortality risk and provide explanations of how the input features influenced the final prediction. In conclusion, the MORIX framework is easy to apply, and the required parameters are readily available in healthcare datasets, making it a practical tool for medical professionals. •Introduced MORIX, an AI-based framework for predicting mortality in MAFLD patients.•Utilized Recursive Feature Elimination (RFE) with Random Forest (RF) to optimize feature selection.•Compared five ML models, with RF demonstrating the highest accuracy (83%) and AUC (0.88).•Applied eXplainable AI (XAI) methods to enhance model transparency and support clinical decision-making.•Developed a user-friendly web application for real-time mortality risk prediction and explanation.
ArticleNumber 100176
Author Lofù, Domenico
Di Noia, Tommaso
Di Sciascio, Eugenio
Narducci, Fedelucio
Colafiglio, Tommaso
Giannelli, Gianluigi
Lombardi, Angela
Donghia, Rossella
Sorino, Paolo
Bonfiglio, Caterina
Author_xml – sequence: 1
  givenname: Domenico
  orcidid: 0000-0001-6413-9886
  surname: Lofù
  fullname: Lofù, Domenico
  email: domenico.lofu@poliba.it
  organization: Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, BA, 70125, Italy
– sequence: 2
  givenname: Paolo
  orcidid: 0000-0002-9081-2648
  surname: Sorino
  fullname: Sorino, Paolo
  email: paolo.sorino@poliba.it
  organization: Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, BA, 70125, Italy
– sequence: 3
  givenname: Tommaso
  surname: Colafiglio
  fullname: Colafiglio, Tommaso
  email: tommaso.colafiglio@uniroma1.it
  organization: Dept. of Computer, Automatic and Management Engineering (DIAG), Sapienza Università di Roma, Roma, RM, 00185, Italy
– sequence: 4
  givenname: Caterina
  surname: Bonfiglio
  fullname: Bonfiglio, Caterina
  email: catia.bonfiglio@irccsdebellis.it
  organization: Unit of Data Science, National Institute of Gastroenterology ”Saverio de Bellis”, IRCCS Hospital, Castellana Grotte, BA, 70013, Italy
– sequence: 5
  givenname: Rossella
  surname: Donghia
  fullname: Donghia, Rossella
  email: rossella.donghia@irccsdebellis.it
  organization: Unit of Data Science, National Institute of Gastroenterology ”Saverio de Bellis”, IRCCS Hospital, Castellana Grotte, BA, 70013, Italy
– sequence: 6
  givenname: Gianluigi
  surname: Giannelli
  fullname: Giannelli, Gianluigi
  email: gianluigi.giannelli@irccsdebellis.it
  organization: Scientific Direction, National Institute of Gastroenterology ”Saverio de Bellis”, IRCCS Hospital, Castellana Grotte, BA, 70013, Italy
– sequence: 7
  givenname: Angela
  surname: Lombardi
  fullname: Lombardi, Angela
  email: angela.lombardi@poliba.it
  organization: Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, BA, 70125, Italy
– sequence: 8
  givenname: Tommaso
  surname: Di Noia
  fullname: Di Noia, Tommaso
  email: tommaso.dinoia@poliba.it
  organization: Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, BA, 70125, Italy
– sequence: 9
  givenname: Eugenio
  surname: Di Sciascio
  fullname: Di Sciascio, Eugenio
  email: eugenio.disciascio@poliba.it
  organization: Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, BA, 70125, Italy
– sequence: 10
  givenname: Fedelucio
  surname: Narducci
  fullname: Narducci, Fedelucio
  email: fedelucio.narducci@poliba.it
  organization: Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, BA, 70125, Italy
BookMark eNqNkdFq2zAUhs3oYF3XN9iFXsCZJMtyvItB6dYtkFAYG_ROHEvHyfEU2chOQ15jTzylLmVXY1cSv87_cfT_b7OL0AfMsveCLwQX-kO3sPuhOQwLyaVKEheVfpVdSq11XtecX_x1f5Ndj2PHOZelKCTXl9nvzf331cNHtgG7o4DMI8RAYZsDOXSsjbDHYx9_sbaP6XHagafpxBxOaCfqA4PgWGJMs06hxYjBIjvStGP4MHigAI1HBnGiliyBT1MTek_bp0EKbHNzt_7MxkPTJej4Lnvdgh_x-vm8yn7efflx-y1f339d3d6scyuXUucISw61qkRdFcIqZ9uiUaXWlVVK1FpLwAaXTlmsZSMqWbkGlOayLkpwLYfiKlvNXNdDZ4ZIe4gn0wOZJ6GPW3Pe2Xo0QiLwYqkrqWpV1BzQlULIUqJDyYVLrHJmHcIApyN4_wIU3Jx7Mp2ZezLnnszcU_Kp2WdjP44R2_-1fZptmPJ5JIxmtHRO01FMEaYP0L8BfwB5n7GW
Cites_doi 10.1080/01431160412331269698
10.1111/j.1365-2559.2011.04145.x
10.1002/jhbp.972
10.1111/liv.14548
10.1111/liv.13970
10.1016/j.jhep.2023.07.031
10.1016/j.cmpb.2018.12.032
10.1016/j.metabol.2020.154433
10.3390/jcm11154339
10.1016/j.imu.2022.100924
10.1210/clinem/dgab339
10.1111/apt.16760
10.1186/s12933-022-01672-9
10.1016/S0140-6736(95)91804-3
10.1053/j.gastro.2019.11.312
10.3390/jcm13041181
10.3390/electronics10030249
10.1186/s40708-022-00165-5
10.2333/bhmk.12.17_1
10.1109/SMC53654.2022.9945542
10.1016/j.jhep.2021.07.035
10.1038/s41598-021-99400-y
10.1038/nbt1206-1565
10.1038/s41584-021-00719-7
10.1002/hep.28431
10.1038/ajg.2009.428
10.1016/j.metabol.2016.01.012
10.1007/s12603-016-0809-8
10.1371/journal.pone.0240867
10.1016/j.cgh.2021.05.029
10.3317/jraas.2006.011
10.1145/2939672.2939778
10.1016/j.jhep.2020.03.039
10.3390/nu13114002
10.1109/ACCESS.2024.3395512
10.1016/j.ejrad.2021.109717
10.1016/j.agwat.2019.105758
10.55730/1300-0632.4013
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.cmpbup.2024.100176
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals - DOAJ (NTUSG)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2666-9900
ExternalDocumentID oai_doaj_org_article_12ea038672494390aed511252ede201d
10.1016/j.cmpbup.2024.100176
10_1016_j_cmpbup_2024_100176
S2666990024000430
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c2826-ea80a94719731c4dcf3b45667c4419662aebe8d4ce92b1727dba4602935adf0a3
IEDL.DBID UNPAY
ISSN 2666-9900
IngestDate Fri Oct 03 12:53:20 EDT 2025
Tue Aug 19 23:38:27 EDT 2025
Wed Oct 01 05:51:29 EDT 2025
Sat Jul 05 17:11:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MAFLD
Machine learning techniques
Interpretability
Epidemiology
Mortality
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2826-ea80a94719731c4dcf3b45667c4419662aebe8d4ce92b1727dba4602935adf0a3
ORCID 0000-0002-9081-2648
0000-0001-6413-9886
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.cmpbup.2024.100176
ParticipantIDs doaj_primary_oai_doaj_org_article_12ea038672494390aed511252ede201d
unpaywall_primary_10_1016_j_cmpbup_2024_100176
crossref_primary_10_1016_j_cmpbup_2024_100176
elsevier_sciencedirect_doi_10_1016_j_cmpbup_2024_100176
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025
2025-00-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Computer methods and programs in biomedicine update
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Sorino, Caruso, Misciagna, Bonfiglio, Campanella, Mirizzi, Franco, Bianco, Buongiorno, Liuzzi (b18) 2020; 15
Baxt (b38) 1995; 346
Bonfiglio, Campanella, Donghia, Bianco, Franco, Curci, Bagnato, Tatoli, Giannelli, Cuccaro (b34) 2024; 13
Jayatilake, Ganegoda (b44) 2021; 2021
Levene, Goldin (b2) 2012; 61
Fan, Ma, Wu, Zhang, Yu, Zeng (b42) 2019; 225
Kushwaha, Kumaresan (b47) 2021
Eslam, Newsome, Sarin, Anstee, Targher, Romero-Gomez, Zelber-Sagi, Wong, Dufour, Schattenberg (b9) 2020; 73
Sarwar, Kamal, Hamid, Shah (b45) 2018
Efron, Tibshirani (b53) 1985; 12
Saihood, Sonuç (b20) 2023; 31
Younossi, Koenig, Abdelatif, Fazel, Henry, Wymer (b3) 2016; 64
F. Castellana, S. Aresta, P. Sorino, I. Bortone, D. Lofù, F. Narducci, T. Di Noia, E. Di Sciascio, R. Sardone, An Artificial Neural Network Model to Assess Nutritional Factors Associated with Frailty in the Aging Population from Southern Italy, in: 2022 IEEE International Conference on Systems, Man, and Cybernetics, SMC, 2022, pp. 3228–3233.
Kim, Konyn, Sandhu, Dennis, Cheung, Ahmed (b28) 2021; 75
Calivà, Namiri, Dubreuil, Pedoia, Ozhinsky, Majumdar (b15) 2022; 18
De, Bhagat, Mehta, Taneja, Duseja (b23) 2024; 80
Semmler, Wernly, Bachmayer, Leitner, Wernly, Egger, Schwenoha, Datz, Balcar, Semmler (b10) 2021; 106
M.T. Ribeiro, S. Singh, C. Guestrin, ” Why should i trust you?” Explaining the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144.
Calders, Jaroszewicz (b52) 2007
Huang, Zou, Wen, Zhou, Ji (b30) 2021; 8
Ferdous, Debnath, Chakraborty (b46) 2020
Eslam, Sanyal, George, Sanyal, Neuschwander-Tetri, Tiribelli, Kleiner, Brunt, Bugianesi, Yki-Järvinen (b8) 2020; 158
Fazel, Koenig, Sayiner, Goodman, Younossi (b1) 2016; 65
Shen, Chen, Yue, Xu (b17) 2021; 139
Noble (b40) 2006; 24
Dey, Hossain, Rahman (b37) 2018
Osella, del Pilar Díaz, Cozzolongo, Bonfiglio, Franco, Abbrescia, Bianco, Buongiorno, Elba, Petruzzi (b5) 2014; 71
Curci, Bianco, Franco, Campanella, Mirizzi, Bonfiglio, Sorino, Fucilli, Di Giovanni, Giampaolo (b22) 2022; 11
Misciagna, Del Pilar Diaz, Caramia, Bonfiglio, Franco, Noviello, Chiloiro, Abbrescia, Mirizzi, Tanzi (b6) 2017; 21
Sever (b32) 2006; 7
Feng, Zheng, Li, Rios, Zhu, Pan, Li, Ma, Tang, Byrne (b36) 2021; 28
Drożdż, Nabrdalik, Kwiendacz, Hendel, Olejarz, Tomasik, Bartman, Nalepa, Gumprecht, Lip (b29) 2022; 21
Lundberg, Lee (b50) 2017; 30
Lella, Pazienza, Lofù, Anglani, Vitulano (b13) 2021; 10
Casalino, Castellano, Zaza (b14) 2022
Nguyen, Le, Cheung, Nguyen (b27) 2021; 19
Wu, Yeh, Hsu, Islam, Nguyen, Poly, Wang, Yang, Li (b35) 2019; 170
Duckett (b54) 2011
Al-Jamimi (b21) 2024
Cozzolongo, Osella, Elba, Petruzzi, Buongiorno, Giannuzzi, Leone, Bonfiglio, Lanzilotta, Manghisi (b4) 2009; 104
Sorino, Campanella, Bonfiglio, Mirizzi, Franco, Bianco, Caruso, Misciagna, Aballay, Buongiorno (b19) 2021; 11
Došilović, Brčić, Hlupić (b48) 2018
Alanazi (b43) 2022; 30
Lin, Huang, Wang, Kumar, Liu, Liu, Wu, Wang, Zhu (b25) 2020; 40
Lombardi, Diacono, Amoroso, Biecek, Monaco, Bellantuono, Pantaleo, Logroscino, De Blasi, Tangaro (b51) 2022; 9
World Health Organization (b33) 2010
Casalino, Castellano, Consiglio, Nuzziello, Vessio (b11) 2021
Mirizzi, Aballay, Misciagna, Caruso, Bonfiglio, Sorino, Bianco, Campanella, Franco, Curci (b31) 2021; 13
Sun, Jin, Wang, Zheng, Rios, Zhang, Targher, Byrne, Yuan, Zheng (b24) 2021; 115
Decraecker, Dutartre, Hiriart, Irles-Depé, Chermak, Foucher, de Lédinghen (b26) 2022; 55
Sorino, Paparella, Lofu, Colafiglio, Di Sciascio, Narducci, Sardone, Di Noia (b16) 2023
Pal (b39) 2005; 26
Procino, Misciagna, Veronese, Caruso, Chiloiro, Cisternino, Notarnicola, Bonfiglio, Bruno, Buongiorno (b7) 2019; 39
Chen, He, Benesty, Khotilovich, Tang, Cho, Chen (b41) 2015
Casalino (10.1016/j.cmpbup.2024.100176_b14) 2022
Sarwar (10.1016/j.cmpbup.2024.100176_b45) 2018
Osella (10.1016/j.cmpbup.2024.100176_b5) 2014; 71
Mirizzi (10.1016/j.cmpbup.2024.100176_b31) 2021; 13
Sever (10.1016/j.cmpbup.2024.100176_b32) 2006; 7
Shen (10.1016/j.cmpbup.2024.100176_b17) 2021; 139
Dey (10.1016/j.cmpbup.2024.100176_b37) 2018
Alanazi (10.1016/j.cmpbup.2024.100176_b43) 2022; 30
Sorino (10.1016/j.cmpbup.2024.100176_b16) 2023
Lombardi (10.1016/j.cmpbup.2024.100176_b51) 2022; 9
10.1016/j.cmpbup.2024.100176_b49
Lella (10.1016/j.cmpbup.2024.100176_b13) 2021; 10
Cozzolongo (10.1016/j.cmpbup.2024.100176_b4) 2009; 104
Kushwaha (10.1016/j.cmpbup.2024.100176_b47) 2021
Huang (10.1016/j.cmpbup.2024.100176_b30) 2021; 8
Calders (10.1016/j.cmpbup.2024.100176_b52) 2007
Duckett (10.1016/j.cmpbup.2024.100176_b54) 2011
Ferdous (10.1016/j.cmpbup.2024.100176_b46) 2020
Younossi (10.1016/j.cmpbup.2024.100176_b3) 2016; 64
Drożdż (10.1016/j.cmpbup.2024.100176_b29) 2022; 21
Kim (10.1016/j.cmpbup.2024.100176_b28) 2021; 75
Nguyen (10.1016/j.cmpbup.2024.100176_b27) 2021; 19
Sorino (10.1016/j.cmpbup.2024.100176_b18) 2020; 15
Lin (10.1016/j.cmpbup.2024.100176_b25) 2020; 40
Levene (10.1016/j.cmpbup.2024.100176_b2) 2012; 61
Semmler (10.1016/j.cmpbup.2024.100176_b10) 2021; 106
Saihood (10.1016/j.cmpbup.2024.100176_b20) 2023; 31
Decraecker (10.1016/j.cmpbup.2024.100176_b26) 2022; 55
Bonfiglio (10.1016/j.cmpbup.2024.100176_b34) 2024; 13
Wu (10.1016/j.cmpbup.2024.100176_b35) 2019; 170
Sun (10.1016/j.cmpbup.2024.100176_b24) 2021; 115
Misciagna (10.1016/j.cmpbup.2024.100176_b6) 2017; 21
De (10.1016/j.cmpbup.2024.100176_b23) 2024; 80
Pal (10.1016/j.cmpbup.2024.100176_b39) 2005; 26
Al-Jamimi (10.1016/j.cmpbup.2024.100176_b21) 2024
Eslam (10.1016/j.cmpbup.2024.100176_b9) 2020; 73
Lundberg (10.1016/j.cmpbup.2024.100176_b50) 2017; 30
Baxt (10.1016/j.cmpbup.2024.100176_b38) 1995; 346
Eslam (10.1016/j.cmpbup.2024.100176_b8) 2020; 158
Chen (10.1016/j.cmpbup.2024.100176_b41) 2015
World Health Organization (10.1016/j.cmpbup.2024.100176_b33) 2010
Fan (10.1016/j.cmpbup.2024.100176_b42) 2019; 225
Procino (10.1016/j.cmpbup.2024.100176_b7) 2019; 39
Noble (10.1016/j.cmpbup.2024.100176_b40) 2006; 24
Došilović (10.1016/j.cmpbup.2024.100176_b48) 2018
Calivà (10.1016/j.cmpbup.2024.100176_b15) 2022; 18
Casalino (10.1016/j.cmpbup.2024.100176_b11) 2021
Fazel (10.1016/j.cmpbup.2024.100176_b1) 2016; 65
Feng (10.1016/j.cmpbup.2024.100176_b36) 2021; 28
Sorino (10.1016/j.cmpbup.2024.100176_b19) 2021; 11
Jayatilake (10.1016/j.cmpbup.2024.100176_b44) 2021; 2021
Efron (10.1016/j.cmpbup.2024.100176_b53) 1985; 12
10.1016/j.cmpbup.2024.100176_b12
Curci (10.1016/j.cmpbup.2024.100176_b22) 2022; 11
References_xml – volume: 18
  start-page: 112
  year: 2022
  end-page: 121
  ident: b15
  article-title: Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging
  publication-title: Nat. Rev. Rheumatol.
– volume: 39
  start-page: 187
  year: 2019
  end-page: 196
  ident: b7
  article-title: Reducing NAFLD-screening time: A comparative study of eight diagnostic methods offering an alternative to ultrasound scans
  publication-title: Liver Int.
– volume: 30
  year: 2022
  ident: b43
  article-title: Using machine learning for healthcare challenges and opportunities
  publication-title: Inform. Med. Unlocked
– volume: 104
  start-page: 2740
  year: 2009
  end-page: 2746
  ident: b4
  article-title: Epidemiology of HCV infection in the general population: a survey in a southern Italian town
  publication-title: Off. J. Am. Coll. Gastroenterol. ACG
– year: 2010
  ident: b33
  article-title: WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy
– start-page: 1
  year: 2015
  end-page: 4
  ident: b41
  article-title: XGBoost: extreme gradient boosting
– volume: 64
  start-page: 73
  year: 2016
  end-page: 84
  ident: b3
  article-title: Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes
  publication-title: Hepatology
– volume: 9
  start-page: 1
  year: 2022
  end-page: 17
  ident: b51
  article-title: A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of mild cognitive impairment and Alzheimer’s disease
  publication-title: Brain Inform.
– volume: 71
  year: 2014
  ident: b5
  article-title: Overweight and obesity in southern Italy: their association with social and life-style characteristics and their effect on levels of biologic markers.
  publication-title: Rev. Fac. Cien. Méd. Córdoba
– volume: 19
  start-page: 2172
  year: 2021
  end-page: 2181
  ident: b27
  article-title: Differential clinical characteristics and mortality outcomes in persons with NAFLD and/or MAFLD
  publication-title: Clin. Gastroenterol. Hepatol.
– year: 2024
  ident: b21
  article-title: Synergistic feature engineering and ensemble learning for early chronic disease prediction
  publication-title: IEEE Access
– volume: 12
  start-page: 1
  year: 1985
  end-page: 35
  ident: b53
  article-title: The bootstrap method for assessing statistical accuracy
  publication-title: Behaviormetrika
– volume: 26
  start-page: 217
  year: 2005
  end-page: 222
  ident: b39
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
– volume: 7
  start-page: 61
  year: 2006
  end-page: 63
  ident: b32
  article-title: New hypertension guidelines from the national institute for health and clinical excellence and the british hypertension society
  publication-title: J. Renin-Angiotensin-Aldosterone Syst.
– volume: 139
  year: 2021
  ident: b17
  article-title: Artificial intelligence in ultrasound
  publication-title: Eur. J. Radiol.
– volume: 15
  year: 2020
  ident: b18
  article-title: Selecting the best machine learning algorithm to support the diagnosis of non-alcoholic fatty liver disease: A meta learner study
  publication-title: PLoS One
– volume: 75
  start-page: 1284
  year: 2021
  end-page: 1291
  ident: b28
  article-title: Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States
  publication-title: J. Hepatol.
– volume: 73
  start-page: 202
  year: 2020
  end-page: 209
  ident: b9
  article-title: A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement
  publication-title: J. Hepatol.
– volume: 31
  start-page: 722
  year: 2023
  end-page: 738
  ident: b20
  article-title: A practical framework for early detection of diabetes using ensemble machine learning models
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– year: 2011
  ident: b54
  publication-title: HTML & CSS: Design and Build Websites
– volume: 61
  start-page: 141
  year: 2012
  end-page: 152
  ident: b2
  article-title: The epidemiology, pathogenesis and histopathology of fatty liver disease
  publication-title: Histopathology
– volume: 65
  start-page: 1017
  year: 2016
  end-page: 1025
  ident: b1
  article-title: Epidemiology and natural history of non-alcoholic fatty liver disease
  publication-title: Metabolism
– reference: F. Castellana, S. Aresta, P. Sorino, I. Bortone, D. Lofù, F. Narducci, T. Di Noia, E. Di Sciascio, R. Sardone, An Artificial Neural Network Model to Assess Nutritional Factors Associated with Frailty in the Aging Population from Southern Italy, in: 2022 IEEE International Conference on Systems, Man, and Cybernetics, SMC, 2022, pp. 3228–3233.
– volume: 225
  year: 2019
  ident: b42
  article-title: Light gradient boosting machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data
  publication-title: Agricult. Water. Manag.
– start-page: 1
  year: 2021
  end-page: 10
  ident: b11
  article-title: Microrna expression classification for pediatric multiple sclerosis identification
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 24
  start-page: 1565
  year: 2006
  end-page: 1567
  ident: b40
  article-title: What is a support vector machine?
  publication-title: Nature Biotechnol.
– start-page: 1
  year: 2020
  end-page: 6
  ident: b46
  article-title: Machine learning algorithms in healthcare: A literature survey
  publication-title: 2020 11th International Conference on Computing, Communication and Networking Technologies
– volume: 158
  start-page: 1999
  year: 2020
  end-page: 2014
  ident: b8
  article-title: MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease
  publication-title: Gastroenterology
– volume: 346
  start-page: 1135
  year: 1995
  end-page: 1138
  ident: b38
  article-title: Application of artificial neural networks to clinical medicine
  publication-title: The Lancet
– volume: 10
  start-page: 249
  year: 2021
  ident: b13
  article-title: An ensemble learning approach based on diffusion tensor imaging measures for Alzheimer’s disease classification
  publication-title: Electronics
– volume: 2021
  year: 2021
  ident: b44
  article-title: Involvement of machine learning tools in healthcare decision making
  publication-title: J. Healthc. Eng.
– volume: 11
  start-page: 4339
  year: 2022
  ident: b22
  article-title: The effect of low glycemic index mediterranean diet and combined exercise program on metabolic-associated fatty liver disease: A joint modeling approach
  publication-title: J. Clin. Med.
– volume: 8
  year: 2021
  ident: b30
  article-title: NAFLD or MAFLD: which has closer association with all-cause and cause-specific mortality?—results from NHANES III
  publication-title: Front. Med.
– start-page: 1
  year: 2018
  end-page: 6
  ident: b45
  article-title: Prediction of diabetes using machine learning algorithms in healthcare
  publication-title: 2018 24th International Conference on Automation and Computing
– start-page: 3822
  year: 2023
  end-page: 3827
  ident: b16
  article-title: A Pareto-optimality-based approach for selecting the best machine learning models in mild cognitive impairment prediction
  publication-title: 2023 IEEE International Conference on Systems, Man, and Cybernetics
– start-page: 1
  year: 2018
  end-page: 5
  ident: b37
  article-title: Implementation of a web application to predict diabetes disease: an approach using machine learning algorithm
  publication-title: 2018 21st International Conference of Computer and Information Technology
– volume: 28
  start-page: 593
  year: 2021
  end-page: 603
  ident: b36
  article-title: Machine learning algorithm outperforms fibrosis markers in predicting significant fibrosis in biopsy-confirmed NAFLD
  publication-title: J. Hepato-Biliary-Pancreatic Sci.
– start-page: 478
  year: 2021
  end-page: 481
  ident: b47
  article-title: Machine learning algorithm in healthcare system: A review
  publication-title: 2021 International Conference on Technological Advancements and Innovations
– volume: 55
  start-page: 580
  year: 2022
  end-page: 592
  ident: b26
  article-title: Long-term prognosis of patients with metabolic (dysfunction)-associated fatty liver disease by non-invasive methods
  publication-title: Aliment. Pharmacol. Ther.
– volume: 80
  start-page: e61
  year: 2024
  end-page: e62
  ident: b23
  article-title: Metabolic dysfunction-associated steatotic liver disease (MASLD) definition is better than MAFLD criteria for lean patients with NAFLD
  publication-title: J. Hepatol.
– volume: 40
  start-page: 2082
  year: 2020
  end-page: 2089
  ident: b25
  article-title: Comparison of MAFLD and NAFLD diagnostic criteria in real world
  publication-title: Liver Int.
– volume: 30
  year: 2017
  ident: b50
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 115
  year: 2021
  ident: b24
  article-title: MAFLD and risk of CKD
  publication-title: Metabolism
– volume: 13
  start-page: 1181
  year: 2024
  ident: b34
  article-title: Development and internal validation of a model for predicting overall survival in subjects with MAFLD: A cohort study
  publication-title: J. Clin. Med.
– reference: M.T. Ribeiro, S. Singh, C. Guestrin, ” Why should i trust you?” Explaining the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144.
– start-page: 0210
  year: 2018
  end-page: 0215
  ident: b48
  article-title: Explainable artificial intelligence: A survey
  publication-title: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics
– volume: 170
  start-page: 23
  year: 2019
  end-page: 29
  ident: b35
  article-title: Prediction of fatty liver disease using machine learning algorithms
  publication-title: Comput. Methods Programs Biomed.
– start-page: 1
  year: 2022
  end-page: 10
  ident: b14
  article-title: Evaluating the robustness of a contact-less mhealth solution for personal and remote monitoring of blood oxygen saturation
  publication-title: J. Ambient Intell. Humaniz. Comput.
– start-page: 42
  year: 2007
  end-page: 53
  ident: b52
  article-title: Efficient AUC optimization for classification
  publication-title: European Conference on Principles of Data Mining and Knowledge Discovery
– volume: 11
  start-page: 1
  year: 2021
  end-page: 13
  ident: b19
  article-title: Development and validation of a neural network for NAFLD diagnosis
  publication-title: Sci. Rep.
– volume: 13
  start-page: 4002
  year: 2021
  ident: b31
  article-title: Modified WCRF/AICR score and all-cause, digestive system, cardiovascular, cancer and other-cause-related mortality: A competing risk analysis of two cohort studies conducted in southern Italy
  publication-title: Nutrients
– volume: 106
  start-page: 2670
  year: 2021
  end-page: 2677
  ident: b10
  article-title: Metabolic dysfunction-associated fatty liver disease (MAFLD)—rather a bystander than a driver of mortality
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 21
  start-page: 404
  year: 2017
  end-page: 412
  ident: b6
  article-title: Effect of a low glycemic index mediterranean diet on non-alcoholic fatty liver disease. a randomized controlled clinici trial
  publication-title: J. Nutr. Health Aging
– volume: 21
  start-page: 240
  year: 2022
  ident: b29
  article-title: Risk factors for cardiovascular disease in patients with metabolic-associated fatty liver disease: a machine learning approach
  publication-title: Cardiovasc. Diabetol.
– volume: 26
  start-page: 217
  issue: 1
  year: 2005
  ident: 10.1016/j.cmpbup.2024.100176_b39
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331269698
– volume: 61
  start-page: 141
  issue: 2
  year: 2012
  ident: 10.1016/j.cmpbup.2024.100176_b2
  article-title: The epidemiology, pathogenesis and histopathology of fatty liver disease
  publication-title: Histopathology
  doi: 10.1111/j.1365-2559.2011.04145.x
– start-page: 1
  year: 2018
  ident: 10.1016/j.cmpbup.2024.100176_b45
  article-title: Prediction of diabetes using machine learning algorithms in healthcare
– volume: 28
  start-page: 593
  issue: 7
  year: 2021
  ident: 10.1016/j.cmpbup.2024.100176_b36
  article-title: Machine learning algorithm outperforms fibrosis markers in predicting significant fibrosis in biopsy-confirmed NAFLD
  publication-title: J. Hepato-Biliary-Pancreatic Sci.
  doi: 10.1002/jhbp.972
– volume: 40
  start-page: 2082
  issue: 9
  year: 2020
  ident: 10.1016/j.cmpbup.2024.100176_b25
  article-title: Comparison of MAFLD and NAFLD diagnostic criteria in real world
  publication-title: Liver Int.
  doi: 10.1111/liv.14548
– volume: 39
  start-page: 187
  issue: 1
  year: 2019
  ident: 10.1016/j.cmpbup.2024.100176_b7
  article-title: Reducing NAFLD-screening time: A comparative study of eight diagnostic methods offering an alternative to ultrasound scans
  publication-title: Liver Int.
  doi: 10.1111/liv.13970
– volume: 80
  start-page: e61
  issue: 2
  year: 2024
  ident: 10.1016/j.cmpbup.2024.100176_b23
  article-title: Metabolic dysfunction-associated steatotic liver disease (MASLD) definition is better than MAFLD criteria for lean patients with NAFLD
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2023.07.031
– volume: 170
  start-page: 23
  year: 2019
  ident: 10.1016/j.cmpbup.2024.100176_b35
  article-title: Prediction of fatty liver disease using machine learning algorithms
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.12.032
– volume: 115
  year: 2021
  ident: 10.1016/j.cmpbup.2024.100176_b24
  article-title: MAFLD and risk of CKD
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2020.154433
– volume: 11
  start-page: 4339
  issue: 15
  year: 2022
  ident: 10.1016/j.cmpbup.2024.100176_b22
  article-title: The effect of low glycemic index mediterranean diet and combined exercise program on metabolic-associated fatty liver disease: A joint modeling approach
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm11154339
– start-page: 0210
  year: 2018
  ident: 10.1016/j.cmpbup.2024.100176_b48
  article-title: Explainable artificial intelligence: A survey
– volume: 30
  year: 2022
  ident: 10.1016/j.cmpbup.2024.100176_b43
  article-title: Using machine learning for healthcare challenges and opportunities
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2022.100924
– start-page: 1
  year: 2022
  ident: 10.1016/j.cmpbup.2024.100176_b14
  article-title: Evaluating the robustness of a contact-less mhealth solution for personal and remote monitoring of blood oxygen saturation
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 106
  start-page: 2670
  issue: 9
  year: 2021
  ident: 10.1016/j.cmpbup.2024.100176_b10
  article-title: Metabolic dysfunction-associated fatty liver disease (MAFLD)—rather a bystander than a driver of mortality
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/clinem/dgab339
– volume: 55
  start-page: 580
  issue: 5
  year: 2022
  ident: 10.1016/j.cmpbup.2024.100176_b26
  article-title: Long-term prognosis of patients with metabolic (dysfunction)-associated fatty liver disease by non-invasive methods
  publication-title: Aliment. Pharmacol. Ther.
  doi: 10.1111/apt.16760
– volume: 21
  start-page: 240
  issue: 1
  year: 2022
  ident: 10.1016/j.cmpbup.2024.100176_b29
  article-title: Risk factors for cardiovascular disease in patients with metabolic-associated fatty liver disease: a machine learning approach
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-022-01672-9
– start-page: 1
  year: 2021
  ident: 10.1016/j.cmpbup.2024.100176_b11
  article-title: Microrna expression classification for pediatric multiple sclerosis identification
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 346
  start-page: 1135
  issue: 8983
  year: 1995
  ident: 10.1016/j.cmpbup.2024.100176_b38
  article-title: Application of artificial neural networks to clinical medicine
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(95)91804-3
– volume: 158
  start-page: 1999
  issue: 7
  year: 2020
  ident: 10.1016/j.cmpbup.2024.100176_b8
  article-title: MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.11.312
– year: 2010
  ident: 10.1016/j.cmpbup.2024.100176_b33
– volume: 13
  start-page: 1181
  issue: 4
  year: 2024
  ident: 10.1016/j.cmpbup.2024.100176_b34
  article-title: Development and internal validation of a model for predicting overall survival in subjects with MAFLD: A cohort study
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm13041181
– volume: 10
  start-page: 249
  issue: 3
  year: 2021
  ident: 10.1016/j.cmpbup.2024.100176_b13
  article-title: An ensemble learning approach based on diffusion tensor imaging measures for Alzheimer’s disease classification
  publication-title: Electronics
  doi: 10.3390/electronics10030249
– start-page: 1
  year: 2015
  ident: 10.1016/j.cmpbup.2024.100176_b41
– volume: 9
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.cmpbup.2024.100176_b51
  article-title: A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of mild cognitive impairment and Alzheimer’s disease
  publication-title: Brain Inform.
  doi: 10.1186/s40708-022-00165-5
– start-page: 1
  year: 2018
  ident: 10.1016/j.cmpbup.2024.100176_b37
  article-title: Implementation of a web application to predict diabetes disease: an approach using machine learning algorithm
– volume: 12
  start-page: 1
  issue: 17
  year: 1985
  ident: 10.1016/j.cmpbup.2024.100176_b53
  article-title: The bootstrap method for assessing statistical accuracy
  publication-title: Behaviormetrika
  doi: 10.2333/bhmk.12.17_1
– ident: 10.1016/j.cmpbup.2024.100176_b12
  doi: 10.1109/SMC53654.2022.9945542
– volume: 75
  start-page: 1284
  issue: 6
  year: 2021
  ident: 10.1016/j.cmpbup.2024.100176_b28
  article-title: Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2021.07.035
– volume: 30
  year: 2017
  ident: 10.1016/j.cmpbup.2024.100176_b50
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.cmpbup.2024.100176_b19
  article-title: Development and validation of a neural network for NAFLD diagnosis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99400-y
– volume: 24
  start-page: 1565
  issue: 12
  year: 2006
  ident: 10.1016/j.cmpbup.2024.100176_b40
  article-title: What is a support vector machine?
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt1206-1565
– volume: 18
  start-page: 112
  issue: 2
  year: 2022
  ident: 10.1016/j.cmpbup.2024.100176_b15
  article-title: Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/s41584-021-00719-7
– start-page: 1
  year: 2020
  ident: 10.1016/j.cmpbup.2024.100176_b46
  article-title: Machine learning algorithms in healthcare: A literature survey
– volume: 64
  start-page: 73
  issue: 1
  year: 2016
  ident: 10.1016/j.cmpbup.2024.100176_b3
  article-title: Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes
  publication-title: Hepatology
  doi: 10.1002/hep.28431
– volume: 2021
  issue: 1
  year: 2021
  ident: 10.1016/j.cmpbup.2024.100176_b44
  article-title: Involvement of machine learning tools in healthcare decision making
  publication-title: J. Healthc. Eng.
– volume: 104
  start-page: 2740
  issue: 11
  year: 2009
  ident: 10.1016/j.cmpbup.2024.100176_b4
  article-title: Epidemiology of HCV infection in the general population: a survey in a southern Italian town
  publication-title: Off. J. Am. Coll. Gastroenterol. ACG
  doi: 10.1038/ajg.2009.428
– volume: 65
  start-page: 1017
  issue: 8
  year: 2016
  ident: 10.1016/j.cmpbup.2024.100176_b1
  article-title: Epidemiology and natural history of non-alcoholic fatty liver disease
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2016.01.012
– volume: 21
  start-page: 404
  issue: 4
  year: 2017
  ident: 10.1016/j.cmpbup.2024.100176_b6
  article-title: Effect of a low glycemic index mediterranean diet on non-alcoholic fatty liver disease. a randomized controlled clinici trial
  publication-title: J. Nutr. Health Aging
  doi: 10.1007/s12603-016-0809-8
– volume: 15
  issue: 10
  year: 2020
  ident: 10.1016/j.cmpbup.2024.100176_b18
  article-title: Selecting the best machine learning algorithm to support the diagnosis of non-alcoholic fatty liver disease: A meta learner study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0240867
– volume: 19
  start-page: 2172
  issue: 10
  year: 2021
  ident: 10.1016/j.cmpbup.2024.100176_b27
  article-title: Differential clinical characteristics and mortality outcomes in persons with NAFLD and/or MAFLD
  publication-title: Clin. Gastroenterol. Hepatol.
  doi: 10.1016/j.cgh.2021.05.029
– volume: 7
  start-page: 61
  issue: 2
  year: 2006
  ident: 10.1016/j.cmpbup.2024.100176_b32
  article-title: New hypertension guidelines from the national institute for health and clinical excellence and the british hypertension society
  publication-title: J. Renin-Angiotensin-Aldosterone Syst.
  doi: 10.3317/jraas.2006.011
– ident: 10.1016/j.cmpbup.2024.100176_b49
  doi: 10.1145/2939672.2939778
– start-page: 42
  year: 2007
  ident: 10.1016/j.cmpbup.2024.100176_b52
  article-title: Efficient AUC optimization for classification
– start-page: 3822
  year: 2023
  ident: 10.1016/j.cmpbup.2024.100176_b16
  article-title: A Pareto-optimality-based approach for selecting the best machine learning models in mild cognitive impairment prediction
– volume: 73
  start-page: 202
  issue: 1
  year: 2020
  ident: 10.1016/j.cmpbup.2024.100176_b9
  article-title: A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2020.03.039
– volume: 13
  start-page: 4002
  issue: 11
  year: 2021
  ident: 10.1016/j.cmpbup.2024.100176_b31
  article-title: Modified WCRF/AICR score and all-cause, digestive system, cardiovascular, cancer and other-cause-related mortality: A competing risk analysis of two cohort studies conducted in southern Italy
  publication-title: Nutrients
  doi: 10.3390/nu13114002
– year: 2024
  ident: 10.1016/j.cmpbup.2024.100176_b21
  article-title: Synergistic feature engineering and ensemble learning for early chronic disease prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3395512
– year: 2011
  ident: 10.1016/j.cmpbup.2024.100176_b54
– volume: 8
  year: 2021
  ident: 10.1016/j.cmpbup.2024.100176_b30
  article-title: NAFLD or MAFLD: which has closer association with all-cause and cause-specific mortality?—results from NHANES III
  publication-title: Front. Med.
– volume: 139
  year: 2021
  ident: 10.1016/j.cmpbup.2024.100176_b17
  article-title: Artificial intelligence in ultrasound
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2021.109717
– volume: 225
  year: 2019
  ident: 10.1016/j.cmpbup.2024.100176_b42
  article-title: Light gradient boosting machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data
  publication-title: Agricult. Water. Manag.
  doi: 10.1016/j.agwat.2019.105758
– volume: 71
  issue: 3
  year: 2014
  ident: 10.1016/j.cmpbup.2024.100176_b5
  article-title: Overweight and obesity in southern Italy: their association with social and life-style characteristics and their effect on levels of biologic markers.
  publication-title: Rev. Fac. Cien. Méd. Córdoba
– volume: 31
  start-page: 722
  issue: 4
  year: 2023
  ident: 10.1016/j.cmpbup.2024.100176_b20
  article-title: A practical framework for early detection of diabetes using ensemble machine learning models
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.55730/1300-0632.4013
– start-page: 478
  year: 2021
  ident: 10.1016/j.cmpbup.2024.100176_b47
  article-title: Machine learning algorithm in healthcare system: A review
SSID ssj0002513206
Score 2.281238
Snippet Metabolic dysfunction-associated fatty liver disease (MAFLD) introduces new diagnostic criteria for fatty liver disease that are independent of alcohol...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 100176
SubjectTerms Epidemiology
Interpretability
Machine learning techniques
MAFLD
Mortality
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - DOAJ (NTUSG)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA3iQt2ITxxfZOE2mkk7aetufAwqjoIozK4kTaojYy1OB_E3_GLvTVqpK124bFrakHvJOUlPziXkII5VZoKuZok0moVKW5bEPckAebuJzSwgtlNb3MiLh_Bq1Bu1Sn2hJszbA_uBO-oKq3gQywjWCQCeXFmDHKEnrLEAXgZnXx4nrcUUzsGA2oHgsjkr5wRd2UupZ2hRKULnPIQ2Iy0scpb9PyBpcVaU6uNdTSYtyBmskOWaK9K-7-MqmbPFGlkY1n_D18nn8PbucnRMh04QaWldAeKRoe2joXmju6JATOFm9eQ4NzW2cvqrgqrCUHhH5dvHzdk_ipuz1I7KSX20iuIweasJOm55eMIFHfYH12d0OtO4oTPdIA-D8_vTC1bXWGAZLLYksyrmKgGEwhJWWWiyPNDAqWSUQbRgKSQURDk2YWYToZHsGK1CyYEk9JTJuQo2yXzxWtgtQrs5sMuE5yJUMlRCowQw4DrSQaRlkssOYc1op6W30kgbjdlz6qOTYnRSH50OOcGQfD-LRtiuAdIjrdMj_S09OiRqAprWnMJzBXjV-JfPH37H_0_93f6P_u6QJYEVht0mzy6Zr95mdg9oT6X3XYZ_ATm__08
  priority: 102
  providerName: Directory of Open Access Journals
Title MORIX: Machine learning-aided framework for lethality detection and MORtality inference with eXplainable artificial intelligence in MAFLD subjects
URI https://dx.doi.org/10.1016/j.cmpbup.2024.100176
https://doi.org/10.1016/j.cmpbup.2024.100176
https://doaj.org/article/12ea038672494390aed511252ede201d
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-9900
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513206
  issn: 2666-9900
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-9900
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513206
  issn: 2666-9900
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2666-9900
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513206
  issn: 2666-9900
  databaseCode: AKRWK
  dateStart: 20210101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BkZYTz11RBMgHjrhK83CSvZVHBYgAQlTqniK_AmW7oVoSITjwI_jFjJ0EUSQEXCLFiR3LM858tme-AdiOIi6V1xU0ZkpQnwtN4yhgFC1vN9ZSo8W23han7HDgHw-D4QzsNLEwU-f31g9L_puI0jBLur4lDArZLMyxAJF3C-YGp-e9PyZ_HKJwij9Wp4mO-6DqlPWxJP1TRmi-zCf84Z6Px2-MTH8RkqZ7lW_J305ZiI58fMfc-NX-L8FCjTZJr1KPZZjR-Qr8SOrz9FV4Ts4ujoa_SWJdKjWpc0hcUUMcqUjWeG4RhLb4sLi2qJ0oXVgPrpzwXBFso6jKR030IDHbu0QPJ-M6OIsYDa3IKsjoDQso3pCk1z_ZJ3elMFtCdz9h0D-43DukdZYGKnG5xqjmkcNjtHEmCZb0lcw8gaiMhRLljYspl6OeRMqXOnaFgUtKcJ85CDMCrjKHe7-gld_meg1IN0N8GjuZ63Pmc1cYJ0LPEaHwQsHijLWBNtJLJxUZR9p4qd2k1UCnZqDTaqDbsGtE_PquodK2BSihtJ6ZadfV3PEiFuJCFNGZw7UyIDRwtdKIjlQbwkZB0hqVVGgDmxp98vnOqz59qb_r362wAa3if6k3ERcVYsvuJ-A1eTrYqqfGC8nZDcc
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkeDEjigC5ANHXKVZnIRbWSpABBCiUjlF3gKFEiqaCMFn8MWMsyCKhIBjnDixPOPMs_38BmAnCLhUTlvQkClBXS40DQOPUYy87VBLjRG7YFucs-Oee9r3-lOwW5-Fmdi_L3hY8nEkcqMsabuFYJDPpmGGeYi8GzDTO7_s3Jj8cYjCKf5Yrfp03A9VJ6JPIdI_EYTm8nTEX1_4cPglyHQXIKqbV3JLHlp5Jlry7Zty41_bvwjzFdokndI9lmBKp8swG1X76SvwHl1cnfT3SFRQKjWpckjcUiMcqUhSM7cIQlu8md0VqJ0onRUMrpTwVBF8R1aWD-rTg8Qs7xLdHw2rw1nEeGgpVkEGX1RA8YJEne7ZIRnnwiwJjVeh1z26PjimVZYGKnG6xqjmgcVDjHEmCZZ0lUwcgaiM-RLtjZMpm6OfBMqVOrSFgUtKcJdZCDM8rhKLO2vQSJ9SvQ6knSA-Da3EdjlzuS0MidCxhC8cX7AwYU2gtfXiUSnGEdcstfu47OjYdHRcdnQT9o2JP581UtpFAVoorkZm3LY1t5yA-TgRRXRmca0MCPVsrTSiI9UEv3aQuEIlJdrAVw1--Xzr05_-1N6N_1bYhEb2nOstxEWZ2K6Gwwc2TAuh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MORIX%3A+Machine+learning-aided+framework+for+lethality+detection+and+MORtality+inference+with+eXplainable+artificial+intelligence+in+MAFLD+subjects&rft.jtitle=Computer+methods+and+programs+in+biomedicine+update&rft.au=Lof%C3%B9%2C+Domenico&rft.au=Sorino%2C+Paolo&rft.au=Colafiglio%2C+Tommaso&rft.au=Bonfiglio%2C+Caterina&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=2666-9900&rft.eissn=2666-9900&rft.volume=7&rft_id=info:doi/10.1016%2Fj.cmpbup.2024.100176&rft.externalDocID=S2666990024000430
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-9900&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-9900&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-9900&client=summon