Precise polyethylene derivatives bearing mesogenic side-chains: delicate self-assembly depending on graft density

To achieve desirable properties of side-chain polymers, elaborately manipulating the interplay between the polymer backbone and side-chains is vital, which can be done by adjusting the graft density of side-chains. Here, we report a series of polyethylene derivatives with the aromatic biphenyl side-...

Full description

Saved in:
Bibliographic Details
Published inPolymer chemistry Vol. 11; no. 8; pp. 1454 - 1461
Main Authors Chang, Wen-Ying, Shi, Dong, Jiang, Xu-Qiang, Jiang, Jia-Di, Zhao, Yang, Ren, Xiang-Kui, Yang, Shuang, Chen, Er-Qiang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 28.02.2020
Subjects
Online AccessGet full text
ISSN1759-9954
1759-9962
DOI10.1039/c9py01856e

Cover

Abstract To achieve desirable properties of side-chain polymers, elaborately manipulating the interplay between the polymer backbone and side-chains is vital, which can be done by adjusting the graft density of side-chains. Here, we report a series of polyethylene derivatives with the aromatic biphenyl side-chains precisely grafted on every 2 nd , 7 th and 15 th carbon ( P n s, n = 2, 7, and 15) along the aliphatic backbone, the graft densities of which are nearly 4, 1, and 0.5 side-chains per nanometer, respectively. The self-assembly structures and phase transitions of P n s were investigated using various techniques. We demonstrate that precisely adjusting the distance between two adjacent side-chains, i.e. , the side-chain spacing, can drastically alter the local coupling of the backbone and rod-like mesogenic side-chains, leading to different backbone conformations and anisotropic interactions. Compared to P2 that is an ordinary side-chain liquid crystalline polymer (SCLCP) forming a crystal E phase, P7 and P15 exhibit a three-dimensionally (3D) ordered structure K X and a two-dimensional (2D) rectangular columnar phase Col R , respectively, which are unprecedented in SCLCPs. Moreover, the phase transition pathway can also be modified remarkably when the graft density is varied. Precise polyethylene derivatives bearing mesogenic side-chains demonstrate a sophisticated side-chain spacing effect on the local coupling and spatial arrangement of the backbone and side-chains.
AbstractList To achieve desirable properties of side-chain polymers, elaborately manipulating the interplay between the polymer backbone and side-chains is vital, which can be done by adjusting the graft density of side-chains. Here, we report a series of polyethylene derivatives with the aromatic biphenyl side-chains precisely grafted on every 2 nd , 7 th and 15 th carbon ( Pn s, n = 2, 7, and 15) along the aliphatic backbone, the graft densities of which are nearly 4, 1, and 0.5 side-chains per nanometer, respectively. The self-assembly structures and phase transitions of Pn s were investigated using various techniques. We demonstrate that precisely adjusting the distance between two adjacent side-chains, i.e. , the side-chain spacing, can drastically alter the local coupling of the backbone and rod-like mesogenic side-chains, leading to different backbone conformations and anisotropic interactions. Compared to P2 that is an ordinary side-chain liquid crystalline polymer (SCLCP) forming a crystal E phase, P7 and P15 exhibit a three-dimensionally (3D) ordered structure K X and a two-dimensional (2D) rectangular columnar phase Col R , respectively, which are unprecedented in SCLCPs. Moreover, the phase transition pathway can also be modified remarkably when the graft density is varied.
To achieve desirable properties of side-chain polymers, elaborately manipulating the interplay between the polymer backbone and side-chains is vital, which can be done by adjusting the graft density of side-chains. Here, we report a series of polyethylene derivatives with the aromatic biphenyl side-chains precisely grafted on every 2 nd , 7 th and 15 th carbon ( P n s, n = 2, 7, and 15) along the aliphatic backbone, the graft densities of which are nearly 4, 1, and 0.5 side-chains per nanometer, respectively. The self-assembly structures and phase transitions of P n s were investigated using various techniques. We demonstrate that precisely adjusting the distance between two adjacent side-chains, i.e. , the side-chain spacing, can drastically alter the local coupling of the backbone and rod-like mesogenic side-chains, leading to different backbone conformations and anisotropic interactions. Compared to P2 that is an ordinary side-chain liquid crystalline polymer (SCLCP) forming a crystal E phase, P7 and P15 exhibit a three-dimensionally (3D) ordered structure K X and a two-dimensional (2D) rectangular columnar phase Col R , respectively, which are unprecedented in SCLCPs. Moreover, the phase transition pathway can also be modified remarkably when the graft density is varied. Precise polyethylene derivatives bearing mesogenic side-chains demonstrate a sophisticated side-chain spacing effect on the local coupling and spatial arrangement of the backbone and side-chains.
To achieve desirable properties of side-chain polymers, elaborately manipulating the interplay between the polymer backbone and side-chains is vital, which can be done by adjusting the graft density of side-chains. Here, we report a series of polyethylene derivatives with the aromatic biphenyl side-chains precisely grafted on every 2nd, 7th and 15th carbon (Pns, n = 2, 7, and 15) along the aliphatic backbone, the graft densities of which are nearly 4, 1, and 0.5 side-chains per nanometer, respectively. The self-assembly structures and phase transitions of Pns were investigated using various techniques. We demonstrate that precisely adjusting the distance between two adjacent side-chains, i.e., the side-chain spacing, can drastically alter the local coupling of the backbone and rod-like mesogenic side-chains, leading to different backbone conformations and anisotropic interactions. Compared to P2 that is an ordinary side-chain liquid crystalline polymer (SCLCP) forming a crystal E phase, P7 and P15 exhibit a three-dimensionally (3D) ordered structure KX and a two-dimensional (2D) rectangular columnar phase ColR, respectively, which are unprecedented in SCLCPs. Moreover, the phase transition pathway can also be modified remarkably when the graft density is varied.
Author Jiang, Xu-Qiang
Yang, Shuang
Chen, Er-Qiang
Zhao, Yang
Chang, Wen-Ying
Shi, Dong
Jiang, Jia-Di
Ren, Xiang-Kui
AuthorAffiliation Center for Soft Matter Science and Engineering
Tianjin University
College of Chemistry
Peking University
Beijing National Laboratory for Molecular Sciences
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
School of Chemical Engineering and Technology
AuthorAffiliation_xml – sequence: 0
  name: Center for Soft Matter Science and Engineering
– sequence: 0
  name: School of Chemical Engineering and Technology
– sequence: 0
  name: Peking University
– sequence: 0
  name: College of Chemistry
– sequence: 0
  name: Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
– sequence: 0
  name: Beijing National Laboratory for Molecular Sciences
– sequence: 0
  name: Tianjin University
Author_xml – sequence: 1
  givenname: Wen-Ying
  surname: Chang
  fullname: Chang, Wen-Ying
– sequence: 2
  givenname: Dong
  surname: Shi
  fullname: Shi, Dong
– sequence: 3
  givenname: Xu-Qiang
  surname: Jiang
  fullname: Jiang, Xu-Qiang
– sequence: 4
  givenname: Jia-Di
  surname: Jiang
  fullname: Jiang, Jia-Di
– sequence: 5
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
– sequence: 6
  givenname: Xiang-Kui
  surname: Ren
  fullname: Ren, Xiang-Kui
– sequence: 7
  givenname: Shuang
  surname: Yang
  fullname: Yang, Shuang
– sequence: 8
  givenname: Er-Qiang
  surname: Chen
  fullname: Chen, Er-Qiang
BookMark eNptkU1LxDAQhoMoqOtevAsFb0I1adK08SbL-gGCe9CDp5JNJruRblKTKPTfG11REOcyw8vzzjAzh2jXeQcIHRN8TjAVF0oMIyZtzWEHHZCmFqUQvNr9qWu2j6YxvuAclLCK8gP0ugigbIRi8P0IaT324KDQEOy7TPYdYrEEGaxbFRuIfgXOqiJaDaVaS-viZUZ7q2SCIkJvShkjbJb9mOUBnP70eVesgjQpSy7aNB6hPSP7CNPvPEFP1_PH2W15_3BzN7u6L1XVklQapTgTmmmumKQaltA2lDWsbjitjDSaMYONqnGFteCqaY2kXEnghDRE14ZO0Om27xD86xvE1L34t-DyyC5vXrVcNIxnCm8pFXyMAUynbMqbe5eCtH1HcPd5224mFs9ft51ny9kfyxDsRobxf_hkC4eofrjfR9EPyDyIdA
CitedBy_id crossref_primary_10_1007_s10118_023_3038_8
crossref_primary_10_1039_D1TC00822F
crossref_primary_10_1002_macp_202400204
crossref_primary_10_1080_02678292_2022_2046882
crossref_primary_10_1021_acs_nanolett_0c01730
crossref_primary_10_1039_D1ME00182E
crossref_primary_10_1039_D3MA01185B
crossref_primary_10_1039_D4TC04076G
crossref_primary_10_1016_j_giant_2021_100088
crossref_primary_10_1016_j_molliq_2022_119916
crossref_primary_10_1002_marc_202200266
crossref_primary_10_1021_acs_macromol_0c01888
crossref_primary_10_1016_j_polymer_2020_122749
Cites_doi 10.1021/acs.macromol.8b00302
10.1016/j.progpolymsci.2016.12.001
10.1126/sciadv.1601478
10.1002/anie.200460762
10.1002/marc.1987.030080403
10.1021/acs.macromol.5b00797
10.1021/ma101805d
10.1002/pola.29051
10.1016/S0032-3861(98)00159-1
10.1021/ja907521p
10.1002/macp.1978.021790129
10.1021/acsmacrolett.7b00776
10.1021/ja2040046
10.1038/nature19344
10.1021/jacs.7b10525
10.1021/acsmacrolett.5b00641
10.1007/3-540-12994-4_4
10.1002/anie.200801951
10.1021/cr900157q
10.1002/macp.201400268
10.1038/s41563-018-0097-2
10.1002/macp.1978.021791018
10.1021/jp058081e
10.1002/(SICI)1099-0518(19981115)36:15<2669::AID-POLA1>3.0.CO;2-4
10.1201/9781420018271
10.1021/acsnano.7b06664
10.1021/ma00199a060
10.1016/S0079-6700(96)00012-3
10.1002/anie.200900377
10.1002/macp.1987.021880821
10.1021/acs.macromol.6b00162
10.1002/anie.201005164
10.1021/acs.macromol.7b00465
10.1021/acs.macromol.5b01010
10.1021/ma00010a001
10.1021/ja044744e
10.1021/ma00095a001
10.1021/ja411583f
10.1039/jm9940401705
10.1017/CBO9780511616044
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1039/c9py01856e
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-9962
EndPage 1461
ExternalDocumentID 10_1039_C9PY01856E
c9py01856e
GroupedDBID -JG
0-7
0R~
29O
4.4
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADNWM
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
AAYXX
AFRZK
AKMSF
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c281t-fcc649d4d6c4a3debe87347457632fafd44f0fc5020d96c78fa36cae61171d5f3
ISSN 1759-9954
IngestDate Mon Jun 30 07:01:13 EDT 2025
Tue Jul 01 02:28:18 EDT 2025
Thu Apr 24 22:58:04 EDT 2025
Tue Dec 17 20:58:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-fcc649d4d6c4a3debe87347457632fafd44f0fc5020d96c78fa36cae61171d5f3
Notes 1
H and
13
10.1039/c9py01856e
Electronic supplementary information (ESI) available: Experimental details, molecular characterization
C NMR spectra of intermediates, monomers and polymers, X-ray data, molecular simulation results, reconstructed electron density map. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7894-9361
0000-0002-0408-5326
0000-0002-5573-5632
PQID 2362869746
PQPubID 2047483
PageCount 8
ParticipantIDs crossref_citationtrail_10_1039_C9PY01856E
crossref_primary_10_1039_C9PY01856E
rsc_primary_c9py01856e
proquest_journals_2362869746
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-28
PublicationDateYYYYMMDD 2020-02-28
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-28
  day: 28
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Polymer chemistry
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Koltzenburg (C9PY01856E-(cit35)/*[position()=1]) 1998; 36
Davidson (C9PY01856E-(cit38)/*[position()=1]) 1996; 21
Schulz (C9PY01856E-(cit20)/*[position()=1]) 2014; 215
Helms (C9PY01856E-(cit14)/*[position()=1]) 2004; 126
Chanda (C9PY01856E-(cit27)/*[position()=1]) 2016; 49
Paturej (C9PY01856E-(cit7)/*[position()=1]) 2016; 2
Rosen (C9PY01856E-(cit5)/*[position()=1]) 2009; 109
da Silva (C9PY01856E-(cit21)/*[position()=1]) 2017; 69
Diele (C9PY01856E-(cit31)/*[position()=1]) 1987; 188
Chen (C9PY01856E-(cit39)/*[position()=1]) 2004; 43
Chovinoa (C9PY01856E-(cit32)/*[position()=1]) 1998; 39
Morozova (C9PY01856E-(cit11)/*[position()=1]) 2017; 6
Li (C9PY01856E-(cit19)/*[position()=1]) 2018; 56
Chang (C9PY01856E-(cit12)/*[position()=1]) 2017; 139
Duran (C9PY01856E-(cit34)/*[position()=1]) 1987; 8
Kato (C9PY01856E-(cit15)/*[position()=1]) 1989; 22
Kikuchi (C9PY01856E-(cit9)/*[position()=1]) 2015; 48
Trigg (C9PY01856E-(cit24)/*[position()=1]) 2018; 17
Shibaev (C9PY01856E-(cit37)/*[position()=1]) 1984; 60/61
Das (C9PY01856E-(cit8)/*[position()=1]) 2005; 109
Lin (C9PY01856E-(cit10)/*[position()=1]) 2017; 11
Zhang (C9PY01856E-(cit6)/*[position()=1]) 2011; 50
Finkelmann (C9PY01856E-(cit29)/*[position()=1]) 1978; 179
Fetters (C9PY01856E-(cit4)/*[position()=1]) 1994; 27
Wagener (C9PY01856E-(cit16)/*[position()=1]) 1991; 24
Mandal (C9PY01856E-(cit26)/*[position()=1]) 2014; 136
Li (C9PY01856E-(cit25)/*[position()=1]) 2015; 4
Gauthier (C9PY01856E-(cit3)/*[position()=1]) 2009; 48
Wang (C9PY01856E-(cit40)/*[position()=1]) 2010; 43
Zheng (C9PY01856E-(cit13)/*[position()=1]) 2018; 51
Middleton (C9PY01856E-(cit18)/*[position()=1]) 2015; 48
Inci (C9PY01856E-(cit22)/*[position()=1]) 2011; 133
Blasco (C9PY01856E-(cit2)/*[position()=1]) 2017; 50
Rojas (C9PY01856E-(cit23)/*[position()=1]) 2009; 131
Finkelmann (C9PY01856E-(cit28)/*[position()=1]) 1978; 179
Donald (C9PY01856E-(cit30)/*[position()=1]) 2006
Wei (C9PY01856E-(cit17)/*[position()=1]) 2009; 48
Craig (C9PY01856E-(cit36)/*[position()=1]) 1994; 4
Hiemenz (C9PY01856E-(cit1)/*[position()=1]) 2007
Lv (C9PY01856E-(cit33)/*[position()=1]) 2016; 537
References_xml – issn: 2007
  publication-title: Polymer Chemistry: Second Edition
  doi: Hiemenz Lodge
– issn: 2006
  publication-title: Liquid Crystalline Polymers
  doi: Donald Windle Hanna
– volume: 51
  start-page: 4484
  year: 2018
  ident: C9PY01856E-(cit13)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b00302
– volume: 69
  start-page: 79
  year: 2017
  ident: C9PY01856E-(cit21)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2016.12.001
– volume: 2
  start-page: e1601478
  year: 2016
  ident: C9PY01856E-(cit7)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601478
– volume: 43
  start-page: 4621
  year: 2004
  ident: C9PY01856E-(cit39)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200460762
– volume: 8
  start-page: 181
  year: 1987
  ident: C9PY01856E-(cit34)/*[position()=1]
  publication-title: Makromol. Chem., Rapid Commun.
  doi: 10.1002/marc.1987.030080403
– volume: 48
  start-page: 3713
  year: 2015
  ident: C9PY01856E-(cit18)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b00797
– volume: 43
  start-page: 10096
  year: 2010
  ident: C9PY01856E-(cit40)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma101805d
– volume: 56
  start-page: 1705
  year: 2018
  ident: C9PY01856E-(cit19)/*[position()=1]
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.29051
– volume: 39
  start-page: 6385
  year: 1998
  ident: C9PY01856E-(cit32)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/S0032-3861(98)00159-1
– volume: 131
  start-page: 17376
  year: 2009
  ident: C9PY01856E-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907521p
– volume: 179
  start-page: 273
  year: 1978
  ident: C9PY01856E-(cit28)/*[position()=1]
  publication-title: Makromol. Chem.
  doi: 10.1002/macp.1978.021790129
– volume: 6
  start-page: 1274
  year: 2017
  ident: C9PY01856E-(cit11)/*[position()=1]
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.7b00776
– volume: 133
  start-page: 11872
  year: 2011
  ident: C9PY01856E-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2040046
– volume: 537
  start-page: 179
  year: 2016
  ident: C9PY01856E-(cit33)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature19344
– volume: 139
  start-page: 17683
  year: 2017
  ident: C9PY01856E-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10525
– volume: 4
  start-page: 1225
  year: 2015
  ident: C9PY01856E-(cit25)/*[position()=1]
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.5b00641
– volume: 60/61
  start-page: 173
  year: 1984
  ident: C9PY01856E-(cit37)/*[position()=1]
  publication-title: Adv. Polym. Sci.
  doi: 10.1007/3-540-12994-4_4
– volume: 48
  start-page: 48
  year: 2009
  ident: C9PY01856E-(cit3)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200801951
– volume: 109
  start-page: 6275
  year: 2009
  ident: C9PY01856E-(cit5)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr900157q
– volume: 215
  start-page: 1936
  year: 2014
  ident: C9PY01856E-(cit20)/*[position()=1]
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201400268
– volume: 17
  start-page: 725
  year: 2018
  ident: C9PY01856E-(cit24)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0097-2
– volume: 179
  start-page: 2541
  year: 1978
  ident: C9PY01856E-(cit29)/*[position()=1]
  publication-title: Makromol. Chem.
  doi: 10.1002/macp.1978.021791018
– volume: 109
  start-page: 6535
  year: 2005
  ident: C9PY01856E-(cit8)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp058081e
– volume: 36
  start-page: 2669
  year: 1998
  ident: C9PY01856E-(cit35)/*[position()=1]
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/(SICI)1099-0518(19981115)36:15<2669::AID-POLA1>3.0.CO;2-4
– volume-title: Polymer Chemistry: Second Edition
  year: 2007
  ident: C9PY01856E-(cit1)/*[position()=1]
  doi: 10.1201/9781420018271
– volume: 11
  start-page: 11632
  year: 2017
  ident: C9PY01856E-(cit10)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06664
– volume: 22
  start-page: 3818
  year: 1989
  ident: C9PY01856E-(cit15)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma00199a060
– volume: 21
  start-page: 893
  year: 1996
  ident: C9PY01856E-(cit38)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/S0079-6700(96)00012-3
– volume: 48
  start-page: 4617
  year: 2009
  ident: C9PY01856E-(cit17)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200900377
– volume: 188
  start-page: 1993
  year: 1987
  ident: C9PY01856E-(cit31)/*[position()=1]
  publication-title: Makromol. Chem.
  doi: 10.1002/macp.1987.021880821
– volume: 49
  start-page: 3254
  year: 2016
  ident: C9PY01856E-(cit27)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b00162
– volume: 50
  start-page: 737
  year: 2011
  ident: C9PY01856E-(cit6)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201005164
– volume: 50
  start-page: 5215
  year: 2017
  ident: C9PY01856E-(cit2)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b00465
– volume: 48
  start-page: 5878
  year: 2015
  ident: C9PY01856E-(cit9)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b01010
– volume: 24
  start-page: 2649
  year: 1991
  ident: C9PY01856E-(cit16)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma00010a001
– volume: 126
  start-page: 15020
  year: 2004
  ident: C9PY01856E-(cit14)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044744e
– volume: 27
  start-page: 4639
  year: 1994
  ident: C9PY01856E-(cit4)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma00095a001
– volume: 136
  start-page: 2538
  year: 2014
  ident: C9PY01856E-(cit26)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411583f
– volume: 4
  start-page: 1705
  year: 1994
  ident: C9PY01856E-(cit36)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/jm9940401705
– volume-title: Liquid Crystalline Polymers
  year: 2006
  ident: C9PY01856E-(cit30)/*[position()=1]
  doi: 10.1017/CBO9780511616044
SSID ssj0000314236
Score 2.3423958
Snippet To achieve desirable properties of side-chain polymers, elaborately manipulating the interplay between the polymer backbone and side-chains is vital, which can...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1454
SubjectTerms Aliphatic compounds
Backbone
Chains (polymeric)
Columnar structure
Coupling (molecular)
Crystal structure
Derivatives
Electron density
Grafting
Liquid crystal polymers
Liquid crystals
Molecular conformation
NMR
Nuclear magnetic resonance
Phase transitions
Polyethylene
Polyethylenes
Polymer chemistry
Self-assembly
Title Precise polyethylene derivatives bearing mesogenic side-chains: delicate self-assembly depending on graft density
URI https://www.proquest.com/docview/2362869746
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 1759-9962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314236
  issn: 1759-9954
  databaseCode: AETIL
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gFe0LhMjA1kCV5QZUhsx455q0rRmAAVqRPdU-U49qjUpqWXh_LrOc59bEjAS-QcO07k74t9bJ0LQq8CEbMgFQFxqZOEqyQkSRpSQlVgDZeGmtyI5vMXcX7JLybRpNNZtayWdtvkjfl5p1_J_6AKMsDVe8n-A7J1pyCAMuALV0AYrn-F8ciHpthYn2lhb2HEYQXxblDrPGOZDyebAI_9WcDCbpbQy8z0fHZOYr5rf8zM-tC4cILrbezcEVCk7SKZ73tFatzcIDrrXa-124Io8-YbbWV2BK9d2HXPVEnjWrYCxRTyzWbkqloc80CQhV_7shFdzMq2kx356su3KqBA3s_axxOwF23cvYsZVUaK-KBzxYLTlv02DYctusWtOTXk1cPlbRG9_dbcHzAfOtWo1T4AJUTYZoWr7Q6bygN0SKUQtIsO-8Pxx0_1uZwP50_zzJL1l1dRbZl623RwU49pNicH6ypzTK6hjI_Qg3JrgfsFTx6ijs0eoXuDCpzH6EfJF9zmC27xBZd8wTVfcIsv73DFFnyDLbhmC15mOGcLLtnyBF1-GI4H56RMuUEMjcMtccYIrlKeCsM1S-EPjyXjksOulFGnXcq5C5yJAOhUCSNjp5kw2oowlGEaOXaMutkys08RpixyiQ5SqSPKEx0pExqlpZagUwuRiBP0uhrAqSnj0fu0KPNpbhfB1HSgRlf5YA9P0Mu67aqIwnJnq7MKh2n5l26mgCWNBeya4YXHgE39fAPlsz9VnKL7DaXPUHe73tnnoINukxclbX4BuyGMfw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precise+polyethylene+derivatives+bearing+mesogenic+side-chains%3A+delicate+self-assembly+depending+on+graft+density&rft.jtitle=Polymer+chemistry&rft.au=Chang%2C+Wen-Ying&rft.au=Shi%2C+Dong&rft.au=Jiang%2C+Xu-Qiang&rft.au=Jiang%2C+Jia-Di&rft.date=2020-02-28&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=11&rft.issue=8&rft.spage=1454&rft.epage=1461&rft_id=info:doi/10.1039%2Fc9py01856e&rft.externalDocID=c9py01856e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon