Precise polyethylene derivatives bearing mesogenic side-chains: delicate self-assembly depending on graft density
To achieve desirable properties of side-chain polymers, elaborately manipulating the interplay between the polymer backbone and side-chains is vital, which can be done by adjusting the graft density of side-chains. Here, we report a series of polyethylene derivatives with the aromatic biphenyl side-...
Saved in:
Published in | Polymer chemistry Vol. 11; no. 8; pp. 1454 - 1461 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1759-9954 1759-9962 |
DOI | 10.1039/c9py01856e |
Cover
Abstract | To achieve desirable properties of side-chain polymers, elaborately manipulating the interplay between the polymer backbone and side-chains is vital, which can be done by adjusting the graft density of side-chains. Here, we report a series of polyethylene derivatives with the aromatic biphenyl side-chains precisely grafted on every 2
nd
, 7
th
and 15
th
carbon (
P
n
s,
n
= 2, 7, and 15) along the aliphatic backbone, the graft densities of which are nearly 4, 1, and 0.5 side-chains per nanometer, respectively. The self-assembly structures and phase transitions of
P
n
s were investigated using various techniques. We demonstrate that precisely adjusting the distance between two adjacent side-chains,
i.e.
, the side-chain spacing, can drastically alter the local coupling of the backbone and rod-like mesogenic side-chains, leading to different backbone conformations and anisotropic interactions. Compared to
P2
that is an ordinary side-chain liquid crystalline polymer (SCLCP) forming a crystal E phase,
P7
and
P15
exhibit a three-dimensionally (3D) ordered structure K
X
and a two-dimensional (2D) rectangular columnar phase Col
R
, respectively, which are unprecedented in SCLCPs. Moreover, the phase transition pathway can also be modified remarkably when the graft density is varied.
Precise polyethylene derivatives bearing mesogenic side-chains demonstrate a sophisticated side-chain spacing effect on the local coupling and spatial arrangement of the backbone and side-chains. |
---|---|
AbstractList | To achieve desirable properties of side-chain polymers, elaborately manipulating the interplay between the polymer backbone and side-chains is vital, which can be done by adjusting the graft density of side-chains. Here, we report a series of polyethylene derivatives with the aromatic biphenyl side-chains precisely grafted on every 2
nd
, 7
th
and 15
th
carbon (
Pn
s,
n
= 2, 7, and 15) along the aliphatic backbone, the graft densities of which are nearly 4, 1, and 0.5 side-chains per nanometer, respectively. The self-assembly structures and phase transitions of
Pn
s were investigated using various techniques. We demonstrate that precisely adjusting the distance between two adjacent side-chains,
i.e.
, the side-chain spacing, can drastically alter the local coupling of the backbone and rod-like mesogenic side-chains, leading to different backbone conformations and anisotropic interactions. Compared to
P2
that is an ordinary side-chain liquid crystalline polymer (SCLCP) forming a crystal E phase,
P7
and
P15
exhibit a three-dimensionally (3D) ordered structure K
X
and a two-dimensional (2D) rectangular columnar phase Col
R
, respectively, which are unprecedented in SCLCPs. Moreover, the phase transition pathway can also be modified remarkably when the graft density is varied. To achieve desirable properties of side-chain polymers, elaborately manipulating the interplay between the polymer backbone and side-chains is vital, which can be done by adjusting the graft density of side-chains. Here, we report a series of polyethylene derivatives with the aromatic biphenyl side-chains precisely grafted on every 2 nd , 7 th and 15 th carbon ( P n s, n = 2, 7, and 15) along the aliphatic backbone, the graft densities of which are nearly 4, 1, and 0.5 side-chains per nanometer, respectively. The self-assembly structures and phase transitions of P n s were investigated using various techniques. We demonstrate that precisely adjusting the distance between two adjacent side-chains, i.e. , the side-chain spacing, can drastically alter the local coupling of the backbone and rod-like mesogenic side-chains, leading to different backbone conformations and anisotropic interactions. Compared to P2 that is an ordinary side-chain liquid crystalline polymer (SCLCP) forming a crystal E phase, P7 and P15 exhibit a three-dimensionally (3D) ordered structure K X and a two-dimensional (2D) rectangular columnar phase Col R , respectively, which are unprecedented in SCLCPs. Moreover, the phase transition pathway can also be modified remarkably when the graft density is varied. Precise polyethylene derivatives bearing mesogenic side-chains demonstrate a sophisticated side-chain spacing effect on the local coupling and spatial arrangement of the backbone and side-chains. To achieve desirable properties of side-chain polymers, elaborately manipulating the interplay between the polymer backbone and side-chains is vital, which can be done by adjusting the graft density of side-chains. Here, we report a series of polyethylene derivatives with the aromatic biphenyl side-chains precisely grafted on every 2nd, 7th and 15th carbon (Pns, n = 2, 7, and 15) along the aliphatic backbone, the graft densities of which are nearly 4, 1, and 0.5 side-chains per nanometer, respectively. The self-assembly structures and phase transitions of Pns were investigated using various techniques. We demonstrate that precisely adjusting the distance between two adjacent side-chains, i.e., the side-chain spacing, can drastically alter the local coupling of the backbone and rod-like mesogenic side-chains, leading to different backbone conformations and anisotropic interactions. Compared to P2 that is an ordinary side-chain liquid crystalline polymer (SCLCP) forming a crystal E phase, P7 and P15 exhibit a three-dimensionally (3D) ordered structure KX and a two-dimensional (2D) rectangular columnar phase ColR, respectively, which are unprecedented in SCLCPs. Moreover, the phase transition pathway can also be modified remarkably when the graft density is varied. |
Author | Jiang, Xu-Qiang Yang, Shuang Chen, Er-Qiang Zhao, Yang Chang, Wen-Ying Shi, Dong Jiang, Jia-Di Ren, Xiang-Kui |
AuthorAffiliation | Center for Soft Matter Science and Engineering Tianjin University College of Chemistry Peking University Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education School of Chemical Engineering and Technology |
AuthorAffiliation_xml | – sequence: 0 name: Center for Soft Matter Science and Engineering – sequence: 0 name: School of Chemical Engineering and Technology – sequence: 0 name: Peking University – sequence: 0 name: College of Chemistry – sequence: 0 name: Key Laboratory of Polymer Chemistry and Physics of Ministry of Education – sequence: 0 name: Beijing National Laboratory for Molecular Sciences – sequence: 0 name: Tianjin University |
Author_xml | – sequence: 1 givenname: Wen-Ying surname: Chang fullname: Chang, Wen-Ying – sequence: 2 givenname: Dong surname: Shi fullname: Shi, Dong – sequence: 3 givenname: Xu-Qiang surname: Jiang fullname: Jiang, Xu-Qiang – sequence: 4 givenname: Jia-Di surname: Jiang fullname: Jiang, Jia-Di – sequence: 5 givenname: Yang surname: Zhao fullname: Zhao, Yang – sequence: 6 givenname: Xiang-Kui surname: Ren fullname: Ren, Xiang-Kui – sequence: 7 givenname: Shuang surname: Yang fullname: Yang, Shuang – sequence: 8 givenname: Er-Qiang surname: Chen fullname: Chen, Er-Qiang |
BookMark | eNptkU1LxDAQhoMoqOtevAsFb0I1adK08SbL-gGCe9CDp5JNJruRblKTKPTfG11REOcyw8vzzjAzh2jXeQcIHRN8TjAVF0oMIyZtzWEHHZCmFqUQvNr9qWu2j6YxvuAclLCK8gP0ugigbIRi8P0IaT324KDQEOy7TPYdYrEEGaxbFRuIfgXOqiJaDaVaS-viZUZ7q2SCIkJvShkjbJb9mOUBnP70eVesgjQpSy7aNB6hPSP7CNPvPEFP1_PH2W15_3BzN7u6L1XVklQapTgTmmmumKQaltA2lDWsbjitjDSaMYONqnGFteCqaY2kXEnghDRE14ZO0Om27xD86xvE1L34t-DyyC5vXrVcNIxnCm8pFXyMAUynbMqbe5eCtH1HcPd5224mFs9ft51ny9kfyxDsRobxf_hkC4eofrjfR9EPyDyIdA |
CitedBy_id | crossref_primary_10_1007_s10118_023_3038_8 crossref_primary_10_1039_D1TC00822F crossref_primary_10_1002_macp_202400204 crossref_primary_10_1080_02678292_2022_2046882 crossref_primary_10_1021_acs_nanolett_0c01730 crossref_primary_10_1039_D1ME00182E crossref_primary_10_1039_D3MA01185B crossref_primary_10_1039_D4TC04076G crossref_primary_10_1016_j_giant_2021_100088 crossref_primary_10_1016_j_molliq_2022_119916 crossref_primary_10_1002_marc_202200266 crossref_primary_10_1021_acs_macromol_0c01888 crossref_primary_10_1016_j_polymer_2020_122749 |
Cites_doi | 10.1021/acs.macromol.8b00302 10.1016/j.progpolymsci.2016.12.001 10.1126/sciadv.1601478 10.1002/anie.200460762 10.1002/marc.1987.030080403 10.1021/acs.macromol.5b00797 10.1021/ma101805d 10.1002/pola.29051 10.1016/S0032-3861(98)00159-1 10.1021/ja907521p 10.1002/macp.1978.021790129 10.1021/acsmacrolett.7b00776 10.1021/ja2040046 10.1038/nature19344 10.1021/jacs.7b10525 10.1021/acsmacrolett.5b00641 10.1007/3-540-12994-4_4 10.1002/anie.200801951 10.1021/cr900157q 10.1002/macp.201400268 10.1038/s41563-018-0097-2 10.1002/macp.1978.021791018 10.1021/jp058081e 10.1002/(SICI)1099-0518(19981115)36:15<2669::AID-POLA1>3.0.CO;2-4 10.1201/9781420018271 10.1021/acsnano.7b06664 10.1021/ma00199a060 10.1016/S0079-6700(96)00012-3 10.1002/anie.200900377 10.1002/macp.1987.021880821 10.1021/acs.macromol.6b00162 10.1002/anie.201005164 10.1021/acs.macromol.7b00465 10.1021/acs.macromol.5b01010 10.1021/ma00010a001 10.1021/ja044744e 10.1021/ma00095a001 10.1021/ja411583f 10.1039/jm9940401705 10.1017/CBO9780511616044 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1039/c9py01856e |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1759-9962 |
EndPage | 1461 |
ExternalDocumentID | 10_1039_C9PY01856E c9py01856e |
GroupedDBID | -JG 0-7 0R~ 29O 4.4 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADNWM ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- GGIMP H13 HZ~ H~N J3I O-G O9- P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SKF SKH SKJ SKM SKR SKZ SLC SLF AAYXX AFRZK AKMSF CITATION 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c281t-fcc649d4d6c4a3debe87347457632fafd44f0fc5020d96c78fa36cae61171d5f3 |
ISSN | 1759-9954 |
IngestDate | Mon Jun 30 07:01:13 EDT 2025 Tue Jul 01 02:28:18 EDT 2025 Thu Apr 24 22:58:04 EDT 2025 Tue Dec 17 20:58:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-fcc649d4d6c4a3debe87347457632fafd44f0fc5020d96c78fa36cae61171d5f3 |
Notes | 1 H and 13 10.1039/c9py01856e Electronic supplementary information (ESI) available: Experimental details, molecular characterization C NMR spectra of intermediates, monomers and polymers, X-ray data, molecular simulation results, reconstructed electron density map. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7894-9361 0000-0002-0408-5326 0000-0002-5573-5632 |
PQID | 2362869746 |
PQPubID | 2047483 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1039_C9PY01856E crossref_primary_10_1039_C9PY01856E rsc_primary_c9py01856e proquest_journals_2362869746 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-28 |
PublicationDateYYYYMMDD | 2020-02-28 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Polymer chemistry |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Koltzenburg (C9PY01856E-(cit35)/*[position()=1]) 1998; 36 Davidson (C9PY01856E-(cit38)/*[position()=1]) 1996; 21 Schulz (C9PY01856E-(cit20)/*[position()=1]) 2014; 215 Helms (C9PY01856E-(cit14)/*[position()=1]) 2004; 126 Chanda (C9PY01856E-(cit27)/*[position()=1]) 2016; 49 Paturej (C9PY01856E-(cit7)/*[position()=1]) 2016; 2 Rosen (C9PY01856E-(cit5)/*[position()=1]) 2009; 109 da Silva (C9PY01856E-(cit21)/*[position()=1]) 2017; 69 Diele (C9PY01856E-(cit31)/*[position()=1]) 1987; 188 Chen (C9PY01856E-(cit39)/*[position()=1]) 2004; 43 Chovinoa (C9PY01856E-(cit32)/*[position()=1]) 1998; 39 Morozova (C9PY01856E-(cit11)/*[position()=1]) 2017; 6 Li (C9PY01856E-(cit19)/*[position()=1]) 2018; 56 Chang (C9PY01856E-(cit12)/*[position()=1]) 2017; 139 Duran (C9PY01856E-(cit34)/*[position()=1]) 1987; 8 Kato (C9PY01856E-(cit15)/*[position()=1]) 1989; 22 Kikuchi (C9PY01856E-(cit9)/*[position()=1]) 2015; 48 Trigg (C9PY01856E-(cit24)/*[position()=1]) 2018; 17 Shibaev (C9PY01856E-(cit37)/*[position()=1]) 1984; 60/61 Das (C9PY01856E-(cit8)/*[position()=1]) 2005; 109 Lin (C9PY01856E-(cit10)/*[position()=1]) 2017; 11 Zhang (C9PY01856E-(cit6)/*[position()=1]) 2011; 50 Finkelmann (C9PY01856E-(cit29)/*[position()=1]) 1978; 179 Fetters (C9PY01856E-(cit4)/*[position()=1]) 1994; 27 Wagener (C9PY01856E-(cit16)/*[position()=1]) 1991; 24 Mandal (C9PY01856E-(cit26)/*[position()=1]) 2014; 136 Li (C9PY01856E-(cit25)/*[position()=1]) 2015; 4 Gauthier (C9PY01856E-(cit3)/*[position()=1]) 2009; 48 Wang (C9PY01856E-(cit40)/*[position()=1]) 2010; 43 Zheng (C9PY01856E-(cit13)/*[position()=1]) 2018; 51 Middleton (C9PY01856E-(cit18)/*[position()=1]) 2015; 48 Inci (C9PY01856E-(cit22)/*[position()=1]) 2011; 133 Blasco (C9PY01856E-(cit2)/*[position()=1]) 2017; 50 Rojas (C9PY01856E-(cit23)/*[position()=1]) 2009; 131 Finkelmann (C9PY01856E-(cit28)/*[position()=1]) 1978; 179 Donald (C9PY01856E-(cit30)/*[position()=1]) 2006 Wei (C9PY01856E-(cit17)/*[position()=1]) 2009; 48 Craig (C9PY01856E-(cit36)/*[position()=1]) 1994; 4 Hiemenz (C9PY01856E-(cit1)/*[position()=1]) 2007 Lv (C9PY01856E-(cit33)/*[position()=1]) 2016; 537 |
References_xml | – issn: 2007 publication-title: Polymer Chemistry: Second Edition doi: Hiemenz Lodge – issn: 2006 publication-title: Liquid Crystalline Polymers doi: Donald Windle Hanna – volume: 51 start-page: 4484 year: 2018 ident: C9PY01856E-(cit13)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.8b00302 – volume: 69 start-page: 79 year: 2017 ident: C9PY01856E-(cit21)/*[position()=1] publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2016.12.001 – volume: 2 start-page: e1601478 year: 2016 ident: C9PY01856E-(cit7)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1601478 – volume: 43 start-page: 4621 year: 2004 ident: C9PY01856E-(cit39)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200460762 – volume: 8 start-page: 181 year: 1987 ident: C9PY01856E-(cit34)/*[position()=1] publication-title: Makromol. Chem., Rapid Commun. doi: 10.1002/marc.1987.030080403 – volume: 48 start-page: 3713 year: 2015 ident: C9PY01856E-(cit18)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.5b00797 – volume: 43 start-page: 10096 year: 2010 ident: C9PY01856E-(cit40)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma101805d – volume: 56 start-page: 1705 year: 2018 ident: C9PY01856E-(cit19)/*[position()=1] publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.29051 – volume: 39 start-page: 6385 year: 1998 ident: C9PY01856E-(cit32)/*[position()=1] publication-title: Polymer doi: 10.1016/S0032-3861(98)00159-1 – volume: 131 start-page: 17376 year: 2009 ident: C9PY01856E-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907521p – volume: 179 start-page: 273 year: 1978 ident: C9PY01856E-(cit28)/*[position()=1] publication-title: Makromol. Chem. doi: 10.1002/macp.1978.021790129 – volume: 6 start-page: 1274 year: 2017 ident: C9PY01856E-(cit11)/*[position()=1] publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.7b00776 – volume: 133 start-page: 11872 year: 2011 ident: C9PY01856E-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2040046 – volume: 537 start-page: 179 year: 2016 ident: C9PY01856E-(cit33)/*[position()=1] publication-title: Nature doi: 10.1038/nature19344 – volume: 139 start-page: 17683 year: 2017 ident: C9PY01856E-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10525 – volume: 4 start-page: 1225 year: 2015 ident: C9PY01856E-(cit25)/*[position()=1] publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.5b00641 – volume: 60/61 start-page: 173 year: 1984 ident: C9PY01856E-(cit37)/*[position()=1] publication-title: Adv. Polym. Sci. doi: 10.1007/3-540-12994-4_4 – volume: 48 start-page: 48 year: 2009 ident: C9PY01856E-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200801951 – volume: 109 start-page: 6275 year: 2009 ident: C9PY01856E-(cit5)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900157q – volume: 215 start-page: 1936 year: 2014 ident: C9PY01856E-(cit20)/*[position()=1] publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201400268 – volume: 17 start-page: 725 year: 2018 ident: C9PY01856E-(cit24)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-018-0097-2 – volume: 179 start-page: 2541 year: 1978 ident: C9PY01856E-(cit29)/*[position()=1] publication-title: Makromol. Chem. doi: 10.1002/macp.1978.021791018 – volume: 109 start-page: 6535 year: 2005 ident: C9PY01856E-(cit8)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp058081e – volume: 36 start-page: 2669 year: 1998 ident: C9PY01856E-(cit35)/*[position()=1] publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/(SICI)1099-0518(19981115)36:15<2669::AID-POLA1>3.0.CO;2-4 – volume-title: Polymer Chemistry: Second Edition year: 2007 ident: C9PY01856E-(cit1)/*[position()=1] doi: 10.1201/9781420018271 – volume: 11 start-page: 11632 year: 2017 ident: C9PY01856E-(cit10)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b06664 – volume: 22 start-page: 3818 year: 1989 ident: C9PY01856E-(cit15)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma00199a060 – volume: 21 start-page: 893 year: 1996 ident: C9PY01856E-(cit38)/*[position()=1] publication-title: Prog. Polym. Sci. doi: 10.1016/S0079-6700(96)00012-3 – volume: 48 start-page: 4617 year: 2009 ident: C9PY01856E-(cit17)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200900377 – volume: 188 start-page: 1993 year: 1987 ident: C9PY01856E-(cit31)/*[position()=1] publication-title: Makromol. Chem. doi: 10.1002/macp.1987.021880821 – volume: 49 start-page: 3254 year: 2016 ident: C9PY01856E-(cit27)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.6b00162 – volume: 50 start-page: 737 year: 2011 ident: C9PY01856E-(cit6)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201005164 – volume: 50 start-page: 5215 year: 2017 ident: C9PY01856E-(cit2)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.7b00465 – volume: 48 start-page: 5878 year: 2015 ident: C9PY01856E-(cit9)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.5b01010 – volume: 24 start-page: 2649 year: 1991 ident: C9PY01856E-(cit16)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma00010a001 – volume: 126 start-page: 15020 year: 2004 ident: C9PY01856E-(cit14)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044744e – volume: 27 start-page: 4639 year: 1994 ident: C9PY01856E-(cit4)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma00095a001 – volume: 136 start-page: 2538 year: 2014 ident: C9PY01856E-(cit26)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411583f – volume: 4 start-page: 1705 year: 1994 ident: C9PY01856E-(cit36)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/jm9940401705 – volume-title: Liquid Crystalline Polymers year: 2006 ident: C9PY01856E-(cit30)/*[position()=1] doi: 10.1017/CBO9780511616044 |
SSID | ssj0000314236 |
Score | 2.3423958 |
Snippet | To achieve desirable properties of side-chain polymers, elaborately manipulating the interplay between the polymer backbone and side-chains is vital, which can... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1454 |
SubjectTerms | Aliphatic compounds Backbone Chains (polymeric) Columnar structure Coupling (molecular) Crystal structure Derivatives Electron density Grafting Liquid crystal polymers Liquid crystals Molecular conformation NMR Nuclear magnetic resonance Phase transitions Polyethylene Polyethylenes Polymer chemistry Self-assembly |
Title | Precise polyethylene derivatives bearing mesogenic side-chains: delicate self-assembly depending on graft density |
URI | https://www.proquest.com/docview/2362869746 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 1759-9962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000314236 issn: 1759-9954 databaseCode: AETIL dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gFe0LhMjA1kCV5QZUhsx455q0rRmAAVqRPdU-U49qjUpqWXh_LrOc59bEjAS-QcO07k74t9bJ0LQq8CEbMgFQFxqZOEqyQkSRpSQlVgDZeGmtyI5vMXcX7JLybRpNNZtayWdtvkjfl5p1_J_6AKMsDVe8n-A7J1pyCAMuALV0AYrn-F8ciHpthYn2lhb2HEYQXxblDrPGOZDyebAI_9WcDCbpbQy8z0fHZOYr5rf8zM-tC4cILrbezcEVCk7SKZ73tFatzcIDrrXa-124Io8-YbbWV2BK9d2HXPVEnjWrYCxRTyzWbkqloc80CQhV_7shFdzMq2kx356su3KqBA3s_axxOwF23cvYsZVUaK-KBzxYLTlv02DYctusWtOTXk1cPlbRG9_dbcHzAfOtWo1T4AJUTYZoWr7Q6bygN0SKUQtIsO-8Pxx0_1uZwP50_zzJL1l1dRbZl623RwU49pNicH6ypzTK6hjI_Qg3JrgfsFTx6ijs0eoXuDCpzH6EfJF9zmC27xBZd8wTVfcIsv73DFFnyDLbhmC15mOGcLLtnyBF1-GI4H56RMuUEMjcMtccYIrlKeCsM1S-EPjyXjksOulFGnXcq5C5yJAOhUCSNjp5kw2oowlGEaOXaMutkys08RpixyiQ5SqSPKEx0pExqlpZagUwuRiBP0uhrAqSnj0fu0KPNpbhfB1HSgRlf5YA9P0Mu67aqIwnJnq7MKh2n5l26mgCWNBeya4YXHgE39fAPlsz9VnKL7DaXPUHe73tnnoINukxclbX4BuyGMfw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precise+polyethylene+derivatives+bearing+mesogenic+side-chains%3A+delicate+self-assembly+depending+on+graft+density&rft.jtitle=Polymer+chemistry&rft.au=Chang%2C+Wen-Ying&rft.au=Shi%2C+Dong&rft.au=Jiang%2C+Xu-Qiang&rft.au=Jiang%2C+Jia-Di&rft.date=2020-02-28&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=11&rft.issue=8&rft.spage=1454&rft.epage=1461&rft_id=info:doi/10.1039%2Fc9py01856e&rft.externalDocID=c9py01856e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon |