Make dark matter charged again
We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescal...
Saved in:
Published in | Journal of cosmology and astroparticle physics Vol. 2017; no. 5; p. 22 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
10.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1475-7516 1475-7516 |
DOI | 10.1088/1475-7516/2017/05/022 |
Cover
Abstract | We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model. |
---|---|
AbstractList | We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model. |
Author | Cyr-Racine, Francis-Yan Scholtz, Jakub Randall, Lisa Agrawal, Prateek |
Author_xml | – sequence: 1 givenname: Prateek surname: Agrawal fullname: Agrawal, Prateek – sequence: 2 givenname: Francis-Yan surname: Cyr-Racine fullname: Cyr-Racine, Francis-Yan – sequence: 3 givenname: Lisa surname: Randall fullname: Randall, Lisa – sequence: 4 givenname: Jakub surname: Scholtz fullname: Scholtz, Jakub |
BackLink | https://www.osti.gov/biblio/22676219$$D View this record in Osti.gov |
BookMark | eNqFUE1LAzEQDVLBtvoTlAXP62aym2SDJyl-QcWLnsOYpG1sm5UkF_-9WSoiXrzMDDPvveG9GZmEIThCzoFeAe37BjrJa8lBNIyCbChvKGNHZPqzn_yaT8gspXdKmWjbfkounnDrKotxW-0xZxcrs8G4drbCNfpwSo5XuEvu7LvPyevd7cvioV4-3z8ubpa1YT3k2gIidgCCW4qi5W_KKiUEl6YH6IUFg8xQ5RQtpWPSWN6VU2edkIJj287J5UF3SNnrZHx2ZmOGEJzJmrGCYqAKih9QJg4pRbfSH9HvMX5qoHqMQo829WhTj1FoynWJovCu__DKA8x-CDmi3_3D_gLKwmK5 |
CitedBy_id | crossref_primary_10_1103_PhysRevD_96_055027 crossref_primary_10_1088_1475_7516_2024_10_078 crossref_primary_10_1093_mnras_stad655 crossref_primary_10_1103_PhysRevD_111_L011103 crossref_primary_10_1103_PhysRevLett_121_121301 crossref_primary_10_1103_PhysRevLett_119_031801 crossref_primary_10_21468_SciPostPhys_15_4_177 crossref_primary_10_1016_j_jheap_2022_04_002 crossref_primary_10_1088_1475_7516_2018_08_045 crossref_primary_10_1088_1361_6382_ab4371 crossref_primary_10_1103_PhysRevD_110_043524 crossref_primary_10_1007_JHEP07_2021_045 crossref_primary_10_1088_1475_7516_2023_01_034 crossref_primary_10_1103_PhysRevLett_120_171803 crossref_primary_10_3847_1538_4357_ac75e4 crossref_primary_10_1093_mnras_sty054 crossref_primary_10_1103_PhysRevLett_128_201301 crossref_primary_10_1103_PhysRevD_102_115032 crossref_primary_10_1103_PhysRevLett_126_041103 crossref_primary_10_1088_1572_9494_ad4bba crossref_primary_10_1088_1475_7516_2024_02_032 crossref_primary_10_1103_PhysRevLett_123_121102 crossref_primary_10_1088_1475_7516_2020_11_034 crossref_primary_10_1007_JHEP03_2022_105 crossref_primary_10_1007_JHEP11_2023_211 crossref_primary_10_1007_JHEP09_2017_033 crossref_primary_10_1088_1475_7516_2018_11_050 crossref_primary_10_1007_JHEP07_2019_016 crossref_primary_10_1088_1475_7516_2017_12_019 crossref_primary_10_1103_PhysRevD_96_115021 crossref_primary_10_1103_PhysRevD_109_055045 crossref_primary_10_1007_JHEP02_2024_212 crossref_primary_10_1007_JHEP11_2022_121 crossref_primary_10_1140_epjs_s11734_024_01121_6 crossref_primary_10_1088_1475_7516_2017_07_021 crossref_primary_10_1007_JHEP01_2020_032 crossref_primary_10_1103_PhysRevD_103_103505 crossref_primary_10_1093_mnras_stz1815 crossref_primary_10_1088_1475_7516_2018_02_027 crossref_primary_10_1103_PhysRevD_99_015022 crossref_primary_10_1007_JHEP11_2017_094 crossref_primary_10_1007_JHEP05_2023_046 crossref_primary_10_1093_mnras_stac1094 crossref_primary_10_1140_epjc_s10052_024_12818_2 crossref_primary_10_21468_SciPostPhysLectNotes_52 crossref_primary_10_1007_JHEP01_2024_075 crossref_primary_10_1007_JHEP03_2020_041 crossref_primary_10_1103_PhysRevD_109_103516 crossref_primary_10_1088_1475_7516_2017_08_021 crossref_primary_10_1103_PhysRevD_102_023518 crossref_primary_10_1088_1475_7516_2019_12_003 crossref_primary_10_1007_JHEP07_2019_170 crossref_primary_10_1007_JHEP06_2021_052 crossref_primary_10_3847_1538_4357_ac75ef crossref_primary_10_1007_JHEP01_2020_185 crossref_primary_10_1140_epjc_s10052_020_8103_7 crossref_primary_10_1007_JHEP03_2023_184 crossref_primary_10_1088_1475_7516_2021_05_020 crossref_primary_10_1103_PhysRevD_102_015012 crossref_primary_10_1007_JHEP11_2021_106 crossref_primary_10_1016_j_cjph_2020_12_015 crossref_primary_10_3390_sym14081522 crossref_primary_10_1103_PhysRevD_110_095019 crossref_primary_10_4236_jmp_2020_116053 crossref_primary_10_1103_PhysRevD_96_055012 crossref_primary_10_1103_PhysRevD_96_095019 crossref_primary_10_1007_JHEP10_2020_145 crossref_primary_10_1007_JHEP11_2018_103 crossref_primary_10_1088_1475_7516_2023_10_065 crossref_primary_10_1007_JHEP10_2022_057 crossref_primary_10_1103_PhysRevD_95_115023 crossref_primary_10_1088_1475_7516_2019_01_021 crossref_primary_10_1088_1475_7516_2022_09_077 crossref_primary_10_1103_PhysRevD_104_044004 crossref_primary_10_1103_PhysRevD_102_083009 crossref_primary_10_1007_JHEP11_2024_011 crossref_primary_10_1088_1475_7516_2022_05_015 crossref_primary_10_1088_1475_7516_2024_05_131 crossref_primary_10_3390_sym15020386 crossref_primary_10_1103_PhysRevLett_120_241102 crossref_primary_10_1103_PhysRevLett_124_131801 crossref_primary_10_1007_JHEP01_2020_130 crossref_primary_10_1103_PhysRevD_100_123011 crossref_primary_10_1103_PhysRevLett_120_051102 crossref_primary_10_1007_JHEP07_2022_044 crossref_primary_10_1088_1475_7516_2020_06_007 crossref_primary_10_1103_PhysRevD_99_015040 crossref_primary_10_3847_1538_4357_acc73e crossref_primary_10_1007_JHEP01_2021_127 |
Cites_doi | 10.1103/PhysRevLett.116.041302 10.1086/587859 10.1103/PhysRevLett.110.111301 10.1103/PhysRevD.91.065021 10.1007/JHEP12(2016)108 10.1093/mnrasl/sls053 10.1111/j.1365-2966.2011.18684.x 10.1103/PhysRevD.89.115017 10.1016/0370-2693(86)90470-3 10.1088/1475-7516/2009/07/004 10.1086/312692 10.1086/171865 10.1093/mnras/stu1713 10.1086/323211 10.1016/j.dark.2013.07.001 10.1111/j.1365-2966.2004.07836.x 10.1093/mnrasl/slu115 10.1016/0370-2693(86)90731-8 10.1103/PhysRevD.89.063517 10.1086/342158 10.1103/PhysRevD.92.115011 10.1103/PhysRevD.90.043524 10.1093/mnras/sts535 10.1016/j.physletb.2017.02.033 10.1103/PhysRevD.81.083522 10.1103/PhysRevD.79.015014 10.1088/1475-7516/2010/05/021 10.1088/0004-637X/742/1/20 10.1103/PhysRevLett.113.161301 10.1103/PhysRevD.87.115007 10.1088/1475-7516/2011/10/011 10.1103/PhysRevD.94.103529 10.1016/0550-3213(91)90438-4 10.1088/1475-7516/2014/07/042 10.3847/0004-637X/823/2/94 10.1093/mnras/stu124 10.1086/339038 10.1155/2011/709492 10.1103/PhysRevLett.110.211302 10.1142/S0218271804006449 10.1103/PhysRevLett.113.021302 10.1103/PhysRevD.89.015008 10.1103/PhysRevD.92.023531 10.1103/PhysRevD.87.103515 10.1103/PhysRevLett.104.151301 10.1111/j.1365-2966.2012.21182.x 10.1103/PhysRevD.86.056009 10.1103/PhysRevD.85.101302 10.1086/174123 10.1088/0004-637X/805/2/143 10.5303/JKAS.2003.36.3.089 10.1111/j.1365-2966.2005.09492.x 10.1016/j.physletb.2015.08.012 10.1093/mnras/stw1309 10.1093/mnras/sts169 10.1051/0004-6361/201525830 10.1086/171833 10.1111/j.1745-3933.2011.01074.x 10.1093/mnras/stv431 10.1093/mnras/stw2670 10.1126/science.1261381 10.1093/mnras/stw1076 10.1103/PhysRevD.79.023519 10.1093/mnras/stt2097 10.1103/PhysRevD.74.083007 10.1093/mnras/sts712 10.1088/0004-637X/772/2/131 10.1103/PhysRevD.89.043514 10.1103/PhysRevD.90.015023 10.1093/mnrasl/slv088 10.1155/2010/789293 10.1088/0004-637X/729/1/53 10.1103/PhysRevD.85.063510 10.1088/1475-7516/2014/12/033 10.1093/mnras/stv467 10.1088/1475-7516/2008/10/043 10.1103/PhysRevLett.109.231301 10.1086/383178 10.1088/1475-7516/2016/04/059 10.1103/PhysRevLett.90.225002 |
ContentType | Journal Article |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1088/1475-7516/2017/05/022 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1475-7516 |
EndPage | 22 |
ExternalDocumentID | 22676219 10_1088_1475_7516_2017_05_022 |
GroupedDBID | 1JI 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI AAYXX ABCXL ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ADEQX ADWVK AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN ER. IHE IJHAN IOP IZVLO J9A KOT LAP M45 MV1 N5L N9A NT- NT. P2P PJBAE RIN RO9 ROL RPA SY9 VSI W28 XPP ZMT HAK KNG OTOTI RW3 UCJ |
ID | FETCH-LOGICAL-c281t-d1aaa41165d0a635b9d996657c81186d1ca2c09e9009e427cd54c814de6765a33 |
ISSN | 1475-7516 |
IngestDate | Thu May 18 22:29:50 EDT 2023 Wed Oct 01 04:29:24 EDT 2025 Thu Apr 24 23:12:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-d1aaa41165d0a635b9d996657c81186d1ca2c09e9009e427cd54c814de6765a33 |
PageCount | 1 |
ParticipantIDs | osti_scitechconnect_22676219 crossref_primary_10_1088_1475_7516_2017_05_022 crossref_citationtrail_10_1088_1475_7516_2017_05_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-10 |
PublicationDateYYYYMMDD | 2017-05-10 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of cosmology and astroparticle physics |
PublicationYear | 2017 |
References | 44 45 46 47 48 A. Schneider (39) 2016; 2016 P. Agrawal (61) T. Sepp . (79) D.E. Kaplan (11) 2010; 2010 M. Markevitch . (49) 2004; 606 52 10 54 55 12 56 57 14 15 59 16 17 18 19 W.A. Dawson (51) 2013; 772 S. Balberg (80) 2002; 568 1 2 3 4 S.W. Randall . (58) 2016; 823 5 7 9 D.A. Buote (73) 2002; 577 J.L. Feng (8) 2009; 2009 60 62 63 20 64 21 P.J. Humphrey (74) 2011; 729 22 23 J.L. Feng (6) 2008; 2008 24 68 25 69 27 28 29 D.E. Kaplan (13) 2011; 2011 W.A. Dawson . (53) 2015; 805 O.Y. Gnedin (66) 2001; 561 70 71 30 31 75 32 76 33 77 34 78 35 T. Bringmann (26) 2014; 2014 36 37 38 B. von Harling (72) 2014; 2014 S.W. Randall (50) 2008; 679 B. Moore (67) 2000; 535 M.G. Walker (65) 2011; 742 81 82 40 41 42 43 |
References_xml | – ident: 46 doi: 10.1103/PhysRevLett.116.041302 – volume: 679 start-page: 1173 issn: 0004-637X year: 2008 ident: 50 publication-title: Astrophys. J. doi: 10.1086/587859 – ident: 20 doi: 10.1103/PhysRevLett.110.111301 – ident: 29 doi: 10.1103/PhysRevD.91.065021 – ident: 61 – ident: 37 doi: 10.1007/JHEP12(2016)108 – ident: 41 doi: 10.1093/mnrasl/sls053 – ident: 81 doi: 10.1111/j.1365-2966.2011.18684.x – ident: 28 doi: 10.1103/PhysRevD.89.115017 – ident: 2 doi: 10.1016/0370-2693(86)90470-3 – volume: 2009 start-page: 004 issn: 1475-7516 year: 2009 ident: 8 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2009/07/004 – volume: 535 start-page: L21 issn: 1538-4357 year: 2000 ident: 67 publication-title: Astrophys. J. doi: 10.1086/312692 – ident: 3 doi: 10.1086/171865 – ident: 43 doi: 10.1093/mnras/stu1713 – volume: 561 start-page: 61 issn: 0004-637X year: 2001 ident: 66 publication-title: Astrophys. J. doi: 10.1086/323211 – ident: 35 doi: 10.1016/j.dark.2013.07.001 – ident: 63 doi: 10.1111/j.1365-2966.2004.07836.x – ident: 44 doi: 10.1093/mnrasl/slu115 – ident: 1 doi: 10.1016/0370-2693(86)90731-8 – ident: 36 doi: 10.1103/PhysRevD.89.063517 – volume: 577 start-page: 183 issn: 0004-637X year: 2002 ident: 73 publication-title: Astrophys. J. doi: 10.1086/342158 – ident: 30 doi: 10.1103/PhysRevD.92.115011 – ident: 45 doi: 10.1103/PhysRevD.90.043524 – ident: 75 doi: 10.1093/mnras/sts535 – ident: 32 doi: 10.1016/j.physletb.2017.02.033 – ident: 79 – ident: 12 doi: 10.1103/PhysRevD.81.083522 – ident: 10 doi: 10.1103/PhysRevD.79.015014 – volume: 2010 start-page: 021 issn: 1475-7516 year: 2010 ident: 11 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/05/021 – volume: 742 start-page: 20 issn: 0004-637X year: 2011 ident: 65 publication-title: Astrophys. J. doi: 10.1088/0004-637X/742/1/20 – ident: 24 doi: 10.1103/PhysRevLett.113.161301 – ident: 19 doi: 10.1103/PhysRevD.87.115007 – volume: 2011 start-page: 011 issn: 1475-7516 year: 2011 ident: 13 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2011/10/011 – ident: 33 doi: 10.1103/PhysRevD.94.103529 – ident: 71 doi: 10.1016/0550-3213(91)90438-4 – volume: 2014 start-page: 042 issn: 1475-7516 year: 2014 ident: 26 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/07/042 – volume: 823 start-page: 94 issn: 0004-637X year: 2016 ident: 58 publication-title: Astrophys. J. doi: 10.3847/0004-637X/823/2/94 – ident: 52 doi: 10.1093/mnras/stu124 – volume: 568 start-page: 475 issn: 0004-637X year: 2002 ident: 80 publication-title: Astrophys. J. doi: 10.1086/339038 – ident: 14 doi: 10.1155/2011/709492 – ident: 34 doi: 10.1103/PhysRevLett.110.211302 – ident: 5 doi: 10.1142/S0218271804006449 – ident: 76 doi: 10.1103/PhysRevLett.113.021302 – ident: 27 doi: 10.1103/PhysRevD.89.015008 – ident: 31 doi: 10.1103/PhysRevD.92.023531 – ident: 22 doi: 10.1103/PhysRevD.87.103515 – ident: 9 doi: 10.1103/PhysRevLett.104.151301 – ident: 40 doi: 10.1111/j.1365-2966.2012.21182.x – ident: 16 doi: 10.1103/PhysRevD.86.056009 – ident: 18 doi: 10.1103/PhysRevD.85.101302 – ident: 77 doi: 10.1086/174123 – volume: 805 start-page: 143 issn: 0004-637X year: 2015 ident: 53 publication-title: Astrophys. J. doi: 10.1088/0004-637X/805/2/143 – ident: 68 doi: 10.5303/JKAS.2003.36.3.089 – ident: 69 doi: 10.1111/j.1365-2966.2005.09492.x – ident: 78 doi: 10.1016/j.physletb.2015.08.012 – ident: 60 doi: 10.1093/mnras/stw1309 – ident: 21 doi: 10.1093/mnras/sts169 – ident: 70 doi: 10.1051/0004-6361/201525830 – ident: 4 doi: 10.1086/171833 – ident: 64 doi: 10.1111/j.1745-3933.2011.01074.x – ident: 47 doi: 10.1093/mnras/stv431 – ident: 59 doi: 10.1093/mnras/stw2670 – ident: 56 doi: 10.1126/science.1261381 – ident: 48 doi: 10.1093/mnras/stw1076 – ident: 7 doi: 10.1103/PhysRevD.79.023519 – ident: 54 doi: 10.1093/mnras/stt2097 – ident: 38 doi: 10.1103/PhysRevD.74.083007 – ident: 42 doi: 10.1093/mnras/sts712 – volume: 772 start-page: 131 issn: 0004-637X year: 2013 ident: 51 publication-title: Astrophys. J. doi: 10.1088/0004-637X/772/2/131 – ident: 25 doi: 10.1103/PhysRevD.89.043514 – ident: 23 doi: 10.1103/PhysRevD.90.015023 – ident: 55 doi: 10.1093/mnrasl/slv088 – ident: 62 doi: 10.1155/2010/789293 – volume: 729 start-page: 53 issn: 0004-637X year: 2011 ident: 74 publication-title: Astrophys. J. doi: 10.1088/0004-637X/729/1/53 – ident: 15 doi: 10.1103/PhysRevD.85.063510 – volume: 2014 start-page: 033 issn: 1475-7516 year: 2014 ident: 72 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/12/033 – ident: 57 doi: 10.1093/mnras/stv467 – volume: 2008 start-page: 043 issn: 1475-7516 year: 2008 ident: 6 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2008/10/043 – ident: 17 doi: 10.1103/PhysRevLett.109.231301 – volume: 606 start-page: 819 issn: 0004-637X year: 2004 ident: 49 publication-title: Astrophys. J. doi: 10.1086/383178 – volume: 2016 start-page: 059 issn: 1475-7516 year: 2016 ident: 39 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/04/059 – ident: 82 doi: 10.1103/PhysRevLett.90.225002 |
SSID | ssj0026338 |
Score | 2.551542 |
Snippet | We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the... |
SourceID | osti crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 22 |
SubjectTerms | GALAXIES GAUGE INVARIANCE HEAT TRANSFER MEAN FREE PATH NONLUMINOUS MATTER PHYSICS OF ELEMENTARY PARTICLES AND FIELDS SATURATION SIMULATION SPACE STANDARD MODEL STRONG INTERACTIONS THERMALIZATION U-1 GROUPS VIABILITY |
Title | Make dark matter charged again |
URI | https://www.osti.gov/biblio/22676219 |
Volume | 2017 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1475-7516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026338 issn: 1475-7516 databaseCode: IOP dateStart: 20030101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZle-ml9EnSpMGH0svirO21ZPu4hJY0NG0JCaQnMXo4hE12i9ehtL--M5JW3tKlr4sxEpLxfOPxjKT5hrFXmleqUQIwNqkxQGlFkaq61em0gdZAzlsQlO98-kEcX5Qnl_xyKHTpskt6dai_b80r-R9UsQ1xpSzZf0A2TooNeI_44hURxutfYXwKczs20M3Ht44mc-x4j9CFhCsIjNq_-p16ubodiJdg1XcYN_u5wzpHdLNnVx18BV_kmCglbEzrOfrWpWegr8PpYF-dI_08qNoZrVD4LY3316to-4n088aVkB2fwPxObS464I_M8ZVu2Mmy4mnF88BivaUtGFcavKFGfKvVRkvn8v7DeEpS8exPmSe-KIafVTxCiG4j2nEifL1fVEJQ8Yp3Hz_FWFtMXRHzOOc6eQvj_dg2oadMMj7JiuInt2S0RPO64WacP2IPA07JzAPymN2ziydsZ0YoUfZJ8jpx9wGop-yAdCAhHUi8DiRBBxKnA8_Yxds350fHaah5keqizvvU5ABQEieSyQCdQdUYikh5pWsMBYXJNRQ6a2yDvrEti0obXmJXaSyKg8N0-pyNFsuF3WEJbYnyVkFVG9r3t5DjBytUI3TLtRXZLivXryx1IISnuiQ30h1MqGtJkpIkKUmSkhmXKKlddhiHffGMKH8asE_ylOjSES-xpgNcupdrAF_8vnuPPRgUcJ-N-u7OvkQ_sFcHDvEfDyNVuQ |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Make+dark+matter+charged+again&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Agrawal%2C+Prateek&rft.au=Cyr-Racine%2C+Francis-Yan&rft.au=Randall%2C+Lisa&rft.au=Scholtz%2C+Jakub&rft.date=2017-05-10&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2017&rft.issue=5&rft_id=info:doi/10.1088%2F1475-7516%2F2017%2F05%2F022&rft.externalDocID=22676219 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon |