Convolutional fuzzy modules stacked deep residual system with application to classification problems

Recent years have witnessed tremendous efforts devoted to investigating various data-driven methods, but how to build deep fuzzy models with good interpretability, high-precision, and well generalization ability remains a huge challenge, especially when facing complex, high-dimensional, and strong-n...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 288; p. 128282
Main Authors Liu, Yunxia, Lu, Xiao, Wang, Haixia, Yi, Jianqiang, Li, Chengdong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2025
Subjects
Online AccessGet full text
ISSN0957-4174
DOI10.1016/j.eswa.2025.128282

Cover

Abstract Recent years have witnessed tremendous efforts devoted to investigating various data-driven methods, but how to build deep fuzzy models with good interpretability, high-precision, and well generalization ability remains a huge challenge, especially when facing complex, high-dimensional, and strong-nonlinear characteristics in the classification problems. Integrating both the advantages of convolutional neural networks and fuzzy inference method, this paper proposes a deep residual system by stacking the convolutional fuzzy modules (CFM-DRS), which achieves excellent performance with four mechanisms. Firstly, this study designs a new convolutional fuzzy module (CFM), which can comprehensively extract features from datasets with the convolutional operations, and then classify them through the corresponding sub-fuzzy-inference-modules (s-FIM). It is also the foundation of the other three mechanisms. Furthermore, each s-FIM employs the fuzzy C-means algorithm to identify the distribution patterns of features. It not only establishes the inference relationship between the features and output values in an interpretable manner, but also alleviates the problem of rule explosion. In addition, to reduce the impact of outliers and redundancy information on the overall performance, this study adopts the regularization optimization strategy to punish the parameters and prunes the s-FIMs based on their significant contributions. Besides, the utilization of the residual approximation mechanism in the deep framework is beneficial for learning new features and further improving the model’s accuracy. The proposed CFM-DRS is applied to several classification problems. Extensive experiments on different benchmark and real-world datasets demonstrate that the proposed CFM-DRS has a better classification performance compared to several state-of-the-art methods.
AbstractList Recent years have witnessed tremendous efforts devoted to investigating various data-driven methods, but how to build deep fuzzy models with good interpretability, high-precision, and well generalization ability remains a huge challenge, especially when facing complex, high-dimensional, and strong-nonlinear characteristics in the classification problems. Integrating both the advantages of convolutional neural networks and fuzzy inference method, this paper proposes a deep residual system by stacking the convolutional fuzzy modules (CFM-DRS), which achieves excellent performance with four mechanisms. Firstly, this study designs a new convolutional fuzzy module (CFM), which can comprehensively extract features from datasets with the convolutional operations, and then classify them through the corresponding sub-fuzzy-inference-modules (s-FIM). It is also the foundation of the other three mechanisms. Furthermore, each s-FIM employs the fuzzy C-means algorithm to identify the distribution patterns of features. It not only establishes the inference relationship between the features and output values in an interpretable manner, but also alleviates the problem of rule explosion. In addition, to reduce the impact of outliers and redundancy information on the overall performance, this study adopts the regularization optimization strategy to punish the parameters and prunes the s-FIMs based on their significant contributions. Besides, the utilization of the residual approximation mechanism in the deep framework is beneficial for learning new features and further improving the model’s accuracy. The proposed CFM-DRS is applied to several classification problems. Extensive experiments on different benchmark and real-world datasets demonstrate that the proposed CFM-DRS has a better classification performance compared to several state-of-the-art methods.
ArticleNumber 128282
Author Liu, Yunxia
Lu, Xiao
Wang, Haixia
Li, Chengdong
Yi, Jianqiang
Author_xml – sequence: 1
  givenname: Yunxia
  orcidid: 0000-0002-0435-1794
  surname: Liu
  fullname: Liu, Yunxia
  organization: Shandong University of Science and Technology, Qingdao 266590, China
– sequence: 2
  givenname: Xiao
  surname: Lu
  fullname: Lu, Xiao
  organization: Shandong University of Science and Technology, Qingdao 266590, China
– sequence: 3
  givenname: Haixia
  orcidid: 0000-0002-6424-4843
  surname: Wang
  fullname: Wang, Haixia
  organization: Shandong University of Science and Technology, Qingdao 266590, China
– sequence: 4
  givenname: Jianqiang
  orcidid: 0000-0003-3268-9482
  surname: Yi
  fullname: Yi, Jianqiang
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 5
  givenname: Chengdong
  orcidid: 0000-0002-9680-3523
  surname: Li
  fullname: Li, Chengdong
  email: lichengdong@sdjzu.edu.cn
  organization: School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China
BookMark eNp9kE1LAzEQhnOoYFv9A57yB3adZL_BixS_QPCi5xCTCabubpbMbkv7691SvcocBl7eZxieFVv0oUfGbgSkAkR5u02R9jqVIItUyHqeBVtCU1RJLqr8kq2ItgCiAqiWzG5CvwvtNPrQ65a76Xg88C7YqUXiNGrzjZZbxIFHJG-nuUMHGrHjez9-cT0MrTf6RPMxcNNqIu_-kiGGzxY7umIXTreE1797zT4eH943z8nr29PL5v41MbIWY6JL3QBC6eqmLHVlixIAUGbSZk3mTFZK2YiqdjnkRYGZEbmQTri8KTIJc56tmTzfNTEQRXRqiL7T8aAEqJMbtVUnN-rkRp3dzNDdGcL5s53HqMh47A1aH9GMygb_H_4D25VyuA
Cites_doi 10.1007/s12539-023-00558-y
10.1177/0142331220979229
10.1109/TAC.2021.3137788
10.1016/j.compbiomed.2024.108311
10.1016/j.ins.2022.10.052
10.1016/j.energy.2020.118700
10.1016/j.neunet.2022.06.031
10.1109/TITS.2018.2846198
10.1016/j.ins.2023.03.123
10.1016/j.ins.2020.10.018
10.1016/j.ins.2022.06.088
10.1016/j.eswa.2023.119587
10.1016/j.eswa.2019.06.018
10.1109/3468.784177
10.1007/s00521-024-09663-5
10.1016/j.ijar.2022.07.009
10.1109/TFUZZ.2021.3115967
10.15388/21-INFOR444
10.1007/978-3-319-46493-0_38
10.1109/TFUZZ.2021.3098339
10.1109/MCI.2022.3223496
10.1109/TEVC.2019.2916183
10.1109/TPAMI.2022.3149445
10.1016/j.ins.2023.02.026
10.1109/ACCESS.2022.3142724
10.3168/jds.2022-22355
10.1109/JSTARS.2020.3006879
10.33205/cma.1467369
10.1109/TFUZZ.2016.2637369
10.1109/ACCESS.2021.3123090
10.1016/j.ensm.2023.02.035
10.1016/j.egyr.2022.02.298
10.1109/TFUZZ.2022.3165690
10.1016/j.neunet.2023.02.022
10.1016/j.egyr.2022.05.127
10.1007/s00500-023-07877-8
10.1016/j.ins.2020.03.084
10.1016/j.neucom.2022.10.047
10.1109/TFUZZ.2017.2767025
10.1007/s00500-021-06542-2
10.64700/mmm.42
10.1016/j.egyr.2021.12.082
10.1007/s40815-019-00783-y
10.1007/s40815-021-01087-w
10.1016/j.eswa.2023.123027
10.1016/j.jmsy.2022.04.004
10.1109/TFUZZ.2020.2988846
10.1109/TFUZZ.2020.3018379
10.1016/j.renene.2020.10.119
10.1016/j.neucom.2021.09.035
10.1016/j.ins.2023.03.022
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.128282
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_128282
S0957417425019013
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ABUFD
ACDAQ
ACGFS
ACHRH
ACLOT
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
AAAKG
AAQXK
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c281t-a6a90e06f8966a7d56000e232d393fc36229178f40455e3c1412f1f49532078f3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Oct 02 04:25:51 EDT 2025
Sat Oct 25 17:37:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy C-mean algorithm
Convolutional fuzzy module
Regularization optimization
Deep residual network
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c281t-a6a90e06f8966a7d56000e232d393fc36229178f40455e3c1412f1f49532078f3
ORCID 0000-0002-6424-4843
0000-0002-0435-1794
0000-0002-9680-3523
0000-0003-3268-9482
ParticipantIDs crossref_primary_10_1016_j_eswa_2025_128282
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_128282
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Peng, Zhou, Li (b0170) 2021; 23
Gu (b0065) 2023; 634
Zhai, Lv, Zhao (b0255) 2021; 551
630-645.
Devendiran, Turukmane (b0045) 2024; 245
Costarelli, Sambucini (b0030) 2024; 7
Sun, Xue, Zhang (b0195) 2020; 24
Wang, Liu, Jia (b0225) 2022; 30
Bani-Hani, Khasawneh (b0020) 2019; 135
Li, Zou, Kowah (b0120) 2023; 15
Kafrawy, Fathi, Qaraad (b0085) 2021; 9
Shao, Wang, Mumtaz (b0185) 2023; 27
Li, Gao, Yi (b0100) 2018; 26
Liu, Lu, Bei (b0135) 2021; 42
Yin, Lanelli, Smith (b0245) 2023; 68
Zhang, Chen, Che (b0275) 2023; 634
Aliasghary, Mohammadikia (b0005) 2022; 26
Li, Zhou, Peng (b0115) 2020; 212
Fan, Wang, Gemmeke (b0060) 2022; 467
Tian, Li, Liu (b0205) 2022; 8
Perfilieva (b0175) 2022; 149
Zhang, Shi, Zhang (b0260) 2022; 8
Kisvari, Lin, Liu (b0095) 2021; 163
Wang, Chen, Duan (b0210) 2023; 45
Wang (b0220) 2020; 28
Boccali, Costarelli, Vinti (b0025) 2024; 2
Thirumagal, Saruladha (b0200) 2023; 27
Lou, Deng, Xiao (b0155) 2022; 30
Wu, Peng, Mendel (b0235) 2023; 18
Gu (b0070) 2021; 29
Li, Tang, Zhang (b0105) 2020; 22
Sakkas, Abang (b0180) 2022; 8
Xu, Zhang (b0240) 2022; 153
Zhao, Cao, Dian (b0290) 2022; 30
He, Zhang, Ren (b0080) 2016
Zhang, Zhao (b0285) 2023; 57
Murdock, Cazenavette, Lucey (b0165) 2023; 45
Ma, Li, Malekian (b0160) 2019; 20
Zhang, Deng, Choi (b0265) 2018; 26
De Souza, De Macedo, Coelho (b0040) 2020; 107
Ying, Ding, Li (b0250) 1999; 29
Bai, Huang, Qin (b0010) 2023; 623
D’Alterio, Garibaldi, John (b0035) 2021; 29
Li, Yi (b0110) 2010; 6
Liu, Zhao, Xie (b0150) 2023; 630
Liu, Hu, Cai (b0130) 2020; 13
Wen, Xu, Li (b0230) 2023; 218
Li, Fang, Bai (b0125) 2020; 533
Su, Shi, Hu (b0190) 2022; 69
Liu, Lu, Peng (b0140) 2022; 608
He K.M., Zhang X.Y., Ren S.Q. et al. (2016a). Identity Mappings in Deep Residual Networks.
Kalibatiene, Miliauskaite (b0090) 2021; 32
Liu, Peng, Wang (b0145) 2024; 36
Fan, Hu, Yuan (b0050) 2023; 518
Bala, Hossain, Hossain (b0015) 2023; 161
Wang, Li, Gao (b0215) 2022; 63
Fan, Watters, Nydam (b0055) 2023; 106
Zhang, Shao, Zong (b0270) 2024; 173
Zhang, Qin (b0280) 2022; 10
Wang (10.1016/j.eswa.2025.128282_b0215) 2022; 63
De Souza (10.1016/j.eswa.2025.128282_b0040) 2020; 107
Devendiran (10.1016/j.eswa.2025.128282_b0045) 2024; 245
Li (10.1016/j.eswa.2025.128282_b0120) 2023; 15
Zhang (10.1016/j.eswa.2025.128282_b0270) 2024; 173
Zhang (10.1016/j.eswa.2025.128282_b0265) 2018; 26
Wang (10.1016/j.eswa.2025.128282_b0220) 2020; 28
Aliasghary (10.1016/j.eswa.2025.128282_b0005) 2022; 26
Li (10.1016/j.eswa.2025.128282_b0115) 2020; 212
Liu (10.1016/j.eswa.2025.128282_b0135) 2021; 42
Liu (10.1016/j.eswa.2025.128282_b0150) 2023; 630
Zhao (10.1016/j.eswa.2025.128282_b0290) 2022; 30
Bala (10.1016/j.eswa.2025.128282_b0015) 2023; 161
Li (10.1016/j.eswa.2025.128282_b0125) 2020; 533
Su (10.1016/j.eswa.2025.128282_b0190) 2022; 69
Li (10.1016/j.eswa.2025.128282_b0100) 2018; 26
Zhang (10.1016/j.eswa.2025.128282_b0260) 2022; 8
Thirumagal (10.1016/j.eswa.2025.128282_b0200) 2023; 27
Kisvari (10.1016/j.eswa.2025.128282_b0095) 2021; 163
Tian (10.1016/j.eswa.2025.128282_b0205) 2022; 8
Perfilieva (10.1016/j.eswa.2025.128282_b0175) 2022; 149
Ying (10.1016/j.eswa.2025.128282_b0250) 1999; 29
Liu (10.1016/j.eswa.2025.128282_b0130) 2020; 13
Li (10.1016/j.eswa.2025.128282_b0105) 2020; 22
Liu (10.1016/j.eswa.2025.128282_b0140) 2022; 608
Xu (10.1016/j.eswa.2025.128282_b0240) 2022; 153
Zhang (10.1016/j.eswa.2025.128282_b0280) 2022; 10
Wang (10.1016/j.eswa.2025.128282_b0210) 2023; 45
Kafrawy (10.1016/j.eswa.2025.128282_b0085) 2021; 9
Sun (10.1016/j.eswa.2025.128282_b0195) 2020; 24
He (10.1016/j.eswa.2025.128282_b0080) 2016
Zhang (10.1016/j.eswa.2025.128282_b0275) 2023; 634
Bai (10.1016/j.eswa.2025.128282_b0010) 2023; 623
Kalibatiene (10.1016/j.eswa.2025.128282_b0090) 2021; 32
Ma (10.1016/j.eswa.2025.128282_b0160) 2019; 20
Sakkas (10.1016/j.eswa.2025.128282_b0180) 2022; 8
Yin (10.1016/j.eswa.2025.128282_b0245) 2023; 68
Fan (10.1016/j.eswa.2025.128282_b0055) 2023; 106
Wen (10.1016/j.eswa.2025.128282_b0230) 2023; 218
Li (10.1016/j.eswa.2025.128282_b0110) 2010; 6
Boccali (10.1016/j.eswa.2025.128282_b0025) 2024; 2
Gu (10.1016/j.eswa.2025.128282_b0070) 2021; 29
Wang (10.1016/j.eswa.2025.128282_b0225) 2022; 30
Costarelli (10.1016/j.eswa.2025.128282_b0030) 2024; 7
Fan (10.1016/j.eswa.2025.128282_b0060) 2022; 467
10.1016/j.eswa.2025.128282_b0075
Shao (10.1016/j.eswa.2025.128282_b0185) 2023; 27
Liu (10.1016/j.eswa.2025.128282_b0145) 2024; 36
Murdock (10.1016/j.eswa.2025.128282_b0165) 2023; 45
Zhai (10.1016/j.eswa.2025.128282_b0255) 2021; 551
Zhang (10.1016/j.eswa.2025.128282_b0285) 2023; 57
Gu (10.1016/j.eswa.2025.128282_b0065) 2023; 634
Peng (10.1016/j.eswa.2025.128282_b0170) 2021; 23
D’Alterio (10.1016/j.eswa.2025.128282_b0035) 2021; 29
Wu (10.1016/j.eswa.2025.128282_b0235) 2023; 18
Fan (10.1016/j.eswa.2025.128282_b0050) 2023; 518
Lou (10.1016/j.eswa.2025.128282_b0155) 2022; 30
Bani-Hani (10.1016/j.eswa.2025.128282_b0020) 2019; 135
References_xml – volume: 551
  start-page: 113
  year: 2021
  end-page: 127
  ident: b0255
  article-title: Data-driven inference modeling based on an on-line Wang-Mendel fuzzy approach
– volume: 42
  start-page: 1394
  year: 2021
  end-page: 1403
  ident: b0135
  article-title: Improved wavelet packet denoising algorithm using fuzzy threshold and correlation analysis for chaotic signals
– start-page: 70
  year: 2016
  end-page: 778
  ident: b0080
  article-title: Deep residual learning for image recognition
– volume: 634
  start-page: 665
  year: 2023
  end-page: 676
  ident: b0275
  article-title: IEA-GNN: Anchor-aware graph neural network fused with information entropy for node classification and link prediction
– volume: 161
  start-page: 757
  year: 2023
  end-page: 775
  ident: b0015
  article-title: MonkeyNet: A robust deep convolutional neural network for monkeypox disease detection and classification
– volume: 533
  start-page: 24
  year: 2020
  end-page: 42
  ident: b0125
  article-title: Parallel design of sparse deep belief network with multi-objective optimization
– volume: 20
  start-page: 1329
  year: 2019
  end-page: 1340
  ident: b0160
  article-title: Hierarchical fuzzy logic-based variable structure control for vehicles platooning
– reference: , 630-645.
– volume: 212
  start-page: 1
  year: 2020
  end-page: 13
  ident: b0115
  article-title: Accurate prediction of short-term photovoltaic power generation via a novel double-Input-rule-models stacked deep fuzzy method
– volume: 6
  start-page: 4019
  year: 2010
  end-page: 4028
  ident: b0110
  article-title: SIRMS based interval type-2 fuzzy inference systems: Properties and application.
– volume: 36
  start-page: 9989
  year: 2024
  end-page: 10014
  ident: b0145
  article-title: Residual deep fuzzy system with randomized fuzzy modules for accurate time series forecasting
– volume: 106
  start-page: 3448
  year: 2023
  end-page: 3464
  ident: b0055
  article-title: Multivariable time series classification for clinical mastitis detection and prediction in automated milking systems
– volume: 29
  start-page: 3323
  year: 2021
  end-page: 3333
  ident: b0035
  article-title: A fast inference and type-reduction process for constrained interval Type-2 fuzzy system
– volume: 29
  start-page: 2425
  year: 2021
  end-page: 2431
  ident: b0070
  article-title: Multilayer ensemble evolving fuzzy inference system
– volume: 634
  start-page: 382
  year: 2023
  end-page: 399
  ident: b0065
  article-title: Self-adaptive fuzzy learning ensemble systems with dimensionality compression from data streams
– volume: 29
  start-page: 508
  year: 1999
  end-page: 514
  ident: b0250
  article-title: Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators
– volume: 22
  start-page: 156
  year: 2020
  end-page: 171
  ident: b0105
  article-title: A hybrid short-term building electrical load forecasting model combining the periodic pattern, fuzzy system and wavelet transform
– volume: 28
  start-page: 1301
  year: 2020
  end-page: 1314
  ident: b0220
  article-title: Fast training algorithms for deep convolutional fuzzy systems with application to stock index prediction
– volume: 149
  start-page: 178
  year: 2022
  end-page: 191
  ident: b0175
  article-title: Data-driven modeling with fuzzy sets and manifolds
– volume: 30
  start-page: 2957
  year: 2022
  end-page: 2970
  ident: b0225
  article-title: Deep fuzzy rule-based classification system with improved Wang-Mendel method
– volume: 26
  start-page: 4961
  year: 2022
  end-page: 4977
  ident: b0005
  article-title: A novel single-input interval type-2 fractional-order fuzzy controller for systems with parameter uncertainty
– volume: 45
  start-page: 964
  year: 2023
  end-page: 979
  ident: b0165
  article-title: Reframing neural networks: Deep structure in overcomplete representations
– volume: 8
  start-page: 81
  year: 2022
  end-page: 89
  ident: b0205
  article-title: Long-short term memory neural network based life prediction of lithium-ion battery considering internal parameters
– volume: 30
  start-page: 3410
  year: 2022
  end-page: 3425
  ident: b0155
  article-title: Multilabel Takagi-Sugeno-Kang fuzzy system
– volume: 45
  start-page: 4586
  year: 2023
  end-page: 4604
  ident: b0210
  article-title: Soft hierarchical document representation learning
– volume: 27
  start-page: 6223
  year: 2023
  end-page: 6239
  ident: b0200
  article-title: Lung cancer diagnosis using hessian adaptive learning optimization in generative adversarial networks
– volume: 163
  start-page: 1895
  year: 2021
  end-page: 1909
  ident: b0095
  article-title: Wind power forecasting-a data-driven method along with gated recurrent neural network
– volume: 245
  year: 2024
  ident: b0045
  article-title: Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy
– volume: 8
  start-page: 1610
  year: 2022
  end-page: 1621
  ident: b0260
  article-title: A hybrid ensemble double-input-fuzzy-modules based precise prediction of PV power generation
– volume: 26
  start-page: 2610
  year: 2018
  ident: b0265
  article-title: Data-driven elastic fuzzy logic system modelling: Constructing a concise system with human-like inference mechanism
– volume: 30
  start-page: 5104
  year: 2022
  end-page: 5115
  ident: b0290
  article-title: A self-organized method for a hierarchical fuzzy logic system based on a fuzzy autoencoder
– volume: 135
  start-page: 273
  year: 2019
  end-page: 286
  ident: b0020
  article-title: A recursive general regression neural network (R-GRNN) oracle for classification problems
– volume: 15
  start-page: 316
  year: 2023
  end-page: 330
  ident: b0120
  article-title: Predicting drug synergy and discovering new drug combinations based on graph autoencoder and convolutional neural network
– volume: 18
  start-page: 81
  year: 2023
  end-page: 83
  ident: b0235
  article-title: Type-1 and interval Type-2 fuzzy systems
– volume: 26
  start-page: 56
  year: 2018
  end-page: 71
  ident: b0100
  article-title: Analysis and design of functionally weighted single-input-rule-modules connected fuzzy inference systems
– volume: 173
  year: 2024
  ident: b0270
  article-title: CD-Net: Cascaded 3D dilated convolutional neural network for pneumonia lesion segmentation
– volume: 9
  start-page: 155353
  year: 2021
  end-page: 155369
  ident: b0085
  article-title: An efficient SVM-based feature selection model for cancer classification using high-dimensional microarray data
– volume: 32
  start-page: 85
  year: 2021
  end-page: 118
  ident: b0090
  article-title: A hybrid systematic review approach on complexity issues in data-driven fuzzy inference systems development
– volume: 7
  start-page: 45
  year: 2024
  end-page: 68
  ident: b0030
  article-title: A comparison among a fuzzy algorithm for image rescaling with other methods of digital image processing
– volume: 2
  start-page: 90
  year: 2024
  end-page: 102
  ident: b0025
  article-title: A Jackson type estimate in terms of the τ−modulus for neural network operators in
– volume: 69
  start-page: 4048
  year: 2022
  end-page: 4052
  ident: b0190
  article-title: Implementation of SVM-based low power EEG signal classification chip
– volume: 467
  start-page: 10
  year: 2022
  end-page: 21
  ident: b0060
  article-title: Model-data-driven image reconstruction with neural networks for ultrasound computed tomography breast imaging
– volume: 153
  start-page: 553
  year: 2022
  end-page: 563
  ident: b0240
  article-title: Convergence of deep convolutional neural networks
– volume: 10
  start-page: 8634
  year: 2022
  end-page: 8642
  ident: b0280
  article-title: An improved extreme learning machine for imbalanced data classification
– volume: 8
  start-page: 1883
  year: 2022
  end-page: 1895
  ident: b0180
  article-title: Thermal load prediction of communal district heating systems by applying data-driven machine learning methods
– reference: He K.M., Zhang X.Y., Ren S.Q. et al. (2016a). Identity Mappings in Deep Residual Networks.
– volume: 13
  start-page: 3892
  year: 2020
  end-page: 3902
  ident: b0130
  article-title: Extreme learning machine-based ensemble transfer learning for hyperspectral image classification
– volume: 27
  start-page: 1670
  year: 2023
  end-page: 1680
  ident: b0185
  article-title: Predicting cardiovascular and cerebrovascular events based on instantaneous high-order singular entropy and deep belief network
– volume: 630
  start-page: 23
  year: 2023
  end-page: 39
  ident: b0150
  article-title: Two-dimensional Gaussian hierarchical priority fuzzy modeling for interval-valued data
– volume: 608
  start-page: 551
  year: 2022
  end-page: 557
  ident: b0140
  article-title: Compression and regularized optimization of modules stacked residual deep fuzzy system with application to time series prediction
– volume: 68
  start-page: 317
  year: 2023
  end-page: 328
  ident: b0245
  article-title: Maximum likelihood estimation in data-driven modeling and control
– volume: 24
  start-page: 394
  year: 2020
  end-page: 407
  ident: b0195
  article-title: Evolving deep convolutional neural networks for image classification
– volume: 57
  start-page: 346
  year: 2023
  end-page: 359
  ident: b0285
  article-title: Cloud-based in-situ battery life prediction and classification using machine learning
– volume: 63
  start-page: 381
  year: 2022
  end-page: 391
  ident: b0215
  article-title: Hybrid physics-based and data-driven models for smart manufacturing: Modelling, simulation, and explainability
– volume: 23
  start-page: 1326
  year: 2021
  end-page: 1346
  ident: b0170
  article-title: Double-input-rule-modules stacked deep interval type-2 fuzzy model with application to time series forecasting
– volume: 623
  start-page: 40
  year: 2023
  end-page: 55
  ident: b0010
  article-title: HVAE: A deep generative model via hierarchical variational auto-encoder for multi-view document modeling
– volume: 518
  start-page: 308
  year: 2023
  end-page: 320
  ident: b0050
  article-title: A data-driven analysis of global research trends in medical image: A survey
– volume: 218
  year: 2023
  ident: b0230
  article-title: RPConvformer: A novel Transformer-based deep neural networks for traffic flow prediction
– volume: 107
  year: 2020
  ident: b0040
  article-title: Binary coyote optimization algorithm for feature selection
– volume: 15
  start-page: 316
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0120
  article-title: Predicting drug synergy and discovering new drug combinations based on graph autoencoder and convolutional neural network
  publication-title: Interdisciplinary Sciences-Computational Life Sciences
  doi: 10.1007/s12539-023-00558-y
– volume: 42
  start-page: 1394
  issue: 6
  year: 2021
  ident: 10.1016/j.eswa.2025.128282_b0135
  article-title: Improved wavelet packet denoising algorithm using fuzzy threshold and correlation analysis for chaotic signals
  publication-title: Transactions of the Institute of Measurement and Control
  doi: 10.1177/0142331220979229
– volume: 68
  start-page: 317
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0245
  article-title: Maximum likelihood estimation in data-driven modeling and control
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2021.3137788
– volume: 173
  year: 2024
  ident: 10.1016/j.eswa.2025.128282_b0270
  article-title: CD-Net: Cascaded 3D dilated convolutional neural network for pneumonia lesion segmentation
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2024.108311
– volume: 623
  start-page: 40
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0010
  article-title: HVAE: A deep generative model via hierarchical variational auto-encoder for multi-view document modeling
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.10.052
– volume: 212
  start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2025.128282_b0115
  article-title: Accurate prediction of short-term photovoltaic power generation via a novel double-Input-rule-models stacked deep fuzzy method
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118700
– volume: 153
  start-page: 553
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0240
  article-title: Convergence of deep convolutional neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2022.06.031
– volume: 20
  start-page: 1329
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2025.128282_b0160
  article-title: Hierarchical fuzzy logic-based variable structure control for vehicles platooning
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2018.2846198
– volume: 107
  year: 2020
  ident: 10.1016/j.eswa.2025.128282_b0040
  article-title: Binary coyote optimization algorithm for feature selection
  publication-title: Pattern Recognition
– volume: 634
  start-page: 382
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0065
  article-title: Self-adaptive fuzzy learning ensemble systems with dimensionality compression from data streams
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.03.123
– volume: 551
  start-page: 113
  year: 2021
  ident: 10.1016/j.eswa.2025.128282_b0255
  article-title: Data-driven inference modeling based on an on-line Wang-Mendel fuzzy approach
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.10.018
– volume: 608
  start-page: 551
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0140
  article-title: Compression and regularized optimization of modules stacked residual deep fuzzy system with application to time series prediction
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.06.088
– volume: 218
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0230
  article-title: RPConvformer: A novel Transformer-based deep neural networks for traffic flow prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.119587
– volume: 135
  start-page: 273
  year: 2019
  ident: 10.1016/j.eswa.2025.128282_b0020
  article-title: A recursive general regression neural network (R-GRNN) oracle for classification problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.06.018
– volume: 29
  start-page: 508
  issue: 5
  year: 1999
  ident: 10.1016/j.eswa.2025.128282_b0250
  article-title: Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
  doi: 10.1109/3468.784177
– volume: 36
  start-page: 9989
  year: 2024
  ident: 10.1016/j.eswa.2025.128282_b0145
  article-title: Residual deep fuzzy system with randomized fuzzy modules for accurate time series forecasting
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-024-09663-5
– volume: 45
  start-page: 4586
  issue: 4
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0210
  article-title: Soft hierarchical document representation learning
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 149
  start-page: 178
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0175
  article-title: Data-driven modeling with fuzzy sets and manifolds
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2022.07.009
– volume: 28
  start-page: 1301
  issue: 7
  year: 2020
  ident: 10.1016/j.eswa.2025.128282_b0220
  article-title: Fast training algorithms for deep convolutional fuzzy systems with application to stock index prediction
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 30
  start-page: 3410
  issue: 9
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0155
  article-title: Multilabel Takagi-Sugeno-Kang fuzzy system
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2021.3115967
– volume: 32
  start-page: 85
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2025.128282_b0090
  article-title: A hybrid systematic review approach on complexity issues in data-driven fuzzy inference systems development
  publication-title: Informatica
  doi: 10.15388/21-INFOR444
– ident: 10.1016/j.eswa.2025.128282_b0075
  doi: 10.1007/978-3-319-46493-0_38
– volume: 6
  start-page: 4019
  issue: 9
  year: 2010
  ident: 10.1016/j.eswa.2025.128282_b0110
  article-title: SIRMS based interval type-2 fuzzy inference systems: Properties and application. International Journal of Innovative Computing
  publication-title: Information and Control
– volume: 30
  start-page: 2957
  issue: 8
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0225
  article-title: Deep fuzzy rule-based classification system with improved Wang-Mendel method
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2021.3098339
– volume: 18
  start-page: 81
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0235
  article-title: Type-1 and interval Type-2 fuzzy systems
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2022.3223496
– volume: 24
  start-page: 394
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2025.128282_b0195
  article-title: Evolving deep convolutional neural networks for image classification
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2019.2916183
– volume: 45
  start-page: 964
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0165
  article-title: Reframing neural networks: Deep structure in overcomplete representations
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2022.3149445
– volume: 630
  start-page: 23
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0150
  article-title: Two-dimensional Gaussian hierarchical priority fuzzy modeling for interval-valued data
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.02.026
– volume: 10
  start-page: 8634
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0280
  article-title: An improved extreme learning machine for imbalanced data classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3142724
– volume: 106
  start-page: 3448
  issue: 5
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0055
  article-title: Multivariable time series classification for clinical mastitis detection and prediction in automated milking systems
  publication-title: Journal of Dairy Science
  doi: 10.3168/jds.2022-22355
– start-page: 70
  year: 2016
  ident: 10.1016/j.eswa.2025.128282_b0080
  article-title: Deep residual learning for image recognition
  publication-title: IEEE conference on computer vision and pattern recognition
– volume: 13
  start-page: 3892
  year: 2020
  ident: 10.1016/j.eswa.2025.128282_b0130
  article-title: Extreme learning machine-based ensemble transfer learning for hyperspectral image classification
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2020.3006879
– volume: 7
  start-page: 45
  issue: 2
  year: 2024
  ident: 10.1016/j.eswa.2025.128282_b0030
  article-title: A comparison among a fuzzy algorithm for image rescaling with other methods of digital image processing
  publication-title: Constructive Mathematical Analysis
  doi: 10.33205/cma.1467369
– volume: 26
  start-page: 56
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2025.128282_b0100
  article-title: Analysis and design of functionally weighted single-input-rule-modules connected fuzzy inference systems
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2016.2637369
– volume: 9
  start-page: 155353
  year: 2021
  ident: 10.1016/j.eswa.2025.128282_b0085
  article-title: An efficient SVM-based feature selection model for cancer classification using high-dimensional microarray data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3123090
– volume: 69
  start-page: 4048
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0190
  article-title: Implementation of SVM-based low power EEG signal classification chip
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 57
  start-page: 346
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0285
  article-title: Cloud-based in-situ battery life prediction and classification using machine learning
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2023.02.035
– volume: 27
  start-page: 1670
  issue: 4
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0185
  article-title: Predicting cardiovascular and cerebrovascular events based on instantaneous high-order singular entropy and deep belief network
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 8
  start-page: 1610
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0260
  article-title: A hybrid ensemble double-input-fuzzy-modules based precise prediction of PV power generation
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2022.02.298
– volume: 30
  start-page: 5104
  issue: 12
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0290
  article-title: A self-organized method for a hierarchical fuzzy logic system based on a fuzzy autoencoder
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2022.3165690
– volume: 161
  start-page: 757
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0015
  article-title: MonkeyNet: A robust deep convolutional neural network for monkeypox disease detection and classification
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.02.022
– volume: 8
  start-page: 81
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0205
  article-title: Long-short term memory neural network based life prediction of lithium-ion battery considering internal parameters
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2022.05.127
– volume: 27
  start-page: 6223
  issue: 10
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0200
  article-title: Lung cancer diagnosis using hessian adaptive learning optimization in generative adversarial networks
  publication-title: Soft Computing
  doi: 10.1007/s00500-023-07877-8
– volume: 533
  start-page: 24
  year: 2020
  ident: 10.1016/j.eswa.2025.128282_b0125
  article-title: Parallel design of sparse deep belief network with multi-objective optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.03.084
– volume: 518
  start-page: 308
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0050
  article-title: A data-driven analysis of global research trends in medical image: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.10.047
– volume: 26
  start-page: 2610
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2025.128282_b0265
  article-title: Data-driven elastic fuzzy logic system modelling: Constructing a concise system with human-like inference mechanism
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2017.2767025
– volume: 26
  start-page: 4961
  issue: 10
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0005
  article-title: A novel single-input interval type-2 fractional-order fuzzy controller for systems with parameter uncertainty
  publication-title: Soft Computing
  doi: 10.1007/s00500-021-06542-2
– volume: 2
  start-page: 90
  issue: 2
  year: 2024
  ident: 10.1016/j.eswa.2025.128282_b0025
  article-title: A Jackson type estimate in terms of the τ−modulus for neural network operators in Lp−spaces
  publication-title: Modern Mathematical Methods
  doi: 10.64700/mmm.42
– volume: 8
  start-page: 1883
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0180
  article-title: Thermal load prediction of communal district heating systems by applying data-driven machine learning methods
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2021.12.082
– volume: 22
  start-page: 156
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2025.128282_b0105
  article-title: A hybrid short-term building electrical load forecasting model combining the periodic pattern, fuzzy system and wavelet transform
  publication-title: International Journal of Fuzzy Systems
  doi: 10.1007/s40815-019-00783-y
– volume: 23
  start-page: 1326
  issue: 5
  year: 2021
  ident: 10.1016/j.eswa.2025.128282_b0170
  article-title: Double-input-rule-modules stacked deep interval type-2 fuzzy model with application to time series forecasting
  publication-title: International Journal of Fuzzy Systems
  doi: 10.1007/s40815-021-01087-w
– volume: 245
  year: 2024
  ident: 10.1016/j.eswa.2025.128282_b0045
  article-title: Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.123027
– volume: 63
  start-page: 381
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0215
  article-title: Hybrid physics-based and data-driven models for smart manufacturing: Modelling, simulation, and explainability
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2022.04.004
– volume: 29
  start-page: 2425
  issue: 8
  year: 2021
  ident: 10.1016/j.eswa.2025.128282_b0070
  article-title: Multilayer ensemble evolving fuzzy inference system
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.2988846
– volume: 29
  start-page: 3323
  issue: 11
  year: 2021
  ident: 10.1016/j.eswa.2025.128282_b0035
  article-title: A fast inference and type-reduction process for constrained interval Type-2 fuzzy system
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.3018379
– volume: 163
  start-page: 1895
  year: 2021
  ident: 10.1016/j.eswa.2025.128282_b0095
  article-title: Wind power forecasting-a data-driven method along with gated recurrent neural network
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2020.10.119
– volume: 467
  start-page: 10
  year: 2022
  ident: 10.1016/j.eswa.2025.128282_b0060
  article-title: Model-data-driven image reconstruction with neural networks for ultrasound computed tomography breast imaging
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.09.035
– volume: 634
  start-page: 665
  year: 2023
  ident: 10.1016/j.eswa.2025.128282_b0275
  article-title: IEA-GNN: Anchor-aware graph neural network fused with information entropy for node classification and link prediction
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.03.022
SSID ssj0017007
Score 2.4732406
Snippet Recent years have witnessed tremendous efforts devoted to investigating various data-driven methods, but how to build deep fuzzy models with good...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 128282
SubjectTerms Classification
Convolutional fuzzy module
Deep residual network
Fuzzy C-mean algorithm
Regularization optimization
Title Convolutional fuzzy modules stacked deep residual system with application to classification problems
URI https://dx.doi.org/10.1016/j.eswa.2025.128282
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM36damSdsdx3BMhV10sFtJmxeYaDtcp7iDf7svTSoK4sFLoCGB8pK893vJ771HyGUksyACLdDJ8cHjwLiXKWxytFUQMB1pVRNkp9Fkxm_nYt4ioyYWxtAqne63Or3W1q6n76TZXy4W_XsEB2gO0bUTJh66rlzLeWyqGPQ-vmgeJv1cbPPtxZ4Z7QJnLMcLVm8m9xATvcC4Hux34_TN4Iz3yI5DinRof2aftKA4ILtNFQbqDuUhUaOyeHUbCMfr9WbzTp9LtX6CFUXsh8dUUQWwpOhZ16FX1KZvpuYOln57waZVSXODpg19yPa4ejOrIzIbXz-MJp6rneDlLAkqT0Zy4IMf6QT9GRkrA2x8QPikwkGoczRbDB21RHOEdALCPOC4MIE2bFOGqEGHx6RdlAWcEIpWNAHzIBkngkuRDYQUIQcpw4BJ8MMOuWqEli5tioy04Y49pkbEqRFxakXcIaKRa_pjoVPU4X_MO_3nvDOybb4sLeyctKuXNVwgjqiybr1RumRreHM3mX4CqnHIVg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqGGDhG1E-PbChtIkTJ-mIKqoCpQut1C1yk7NUBGlFUxAd-O3cxQ4qEmJgyeDYUnS2796L350ZuwzV2AtBSyQ5LjgBiMAZZ_hIMVaBJ3Sos1Ig2w-7w-BuJEc11q5yYUhWaX2_8emlt7YtTWvN5mwyaT4iOMBwiNROUj403Vy7HkgREQNrfH7rPKj-XGQK7kUOdbeZM0bkBfN3Kj4kZMMj7iF-j04rEaezw7YsVOTX5mt2WQ3yPbZdXcPA7a7cZ1l7mr_ZFYT99WK5_OAv02zxDHOO4A_3acYzgBlHal3mXnFTv5nTT1i-coTNiylPCU6Tfsi02Atn5gds2LkZtLuOvTzBSUXsFY4KVcsFN9QxEhoVZYRsXED8lPktX6cYtwQytVgHiOkk-KkX4Mx4muSmAmGD9g_ZWj7N4YhxDKMx0IlkFMtAyXFLKukHoJTvCQWuX2dXldGSmamRkVTisaeETJyQiRNj4jqTlV2THzOdoBP_Y9zxP8ddsI3u4KGX9G779ydsk94YjdgpWyteF3CGoKIYn5eL5guEv8nr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+fuzzy+modules+stacked+deep+residual+system+with+application+to+classification+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Liu%2C+Yunxia&rft.au=Lu%2C+Xiao&rft.au=Wang%2C+Haixia&rft.au=Yi%2C+Jianqiang&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=288&rft_id=info:doi/10.1016%2Fj.eswa.2025.128282&rft.externalDocID=S0957417425019013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon