Convolutional fuzzy modules stacked deep residual system with application to classification problems
Recent years have witnessed tremendous efforts devoted to investigating various data-driven methods, but how to build deep fuzzy models with good interpretability, high-precision, and well generalization ability remains a huge challenge, especially when facing complex, high-dimensional, and strong-n...
Saved in:
| Published in | Expert systems with applications Vol. 288; p. 128282 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 |
| DOI | 10.1016/j.eswa.2025.128282 |
Cover
| Abstract | Recent years have witnessed tremendous efforts devoted to investigating various data-driven methods, but how to build deep fuzzy models with good interpretability, high-precision, and well generalization ability remains a huge challenge, especially when facing complex, high-dimensional, and strong-nonlinear characteristics in the classification problems. Integrating both the advantages of convolutional neural networks and fuzzy inference method, this paper proposes a deep residual system by stacking the convolutional fuzzy modules (CFM-DRS), which achieves excellent performance with four mechanisms. Firstly, this study designs a new convolutional fuzzy module (CFM), which can comprehensively extract features from datasets with the convolutional operations, and then classify them through the corresponding sub-fuzzy-inference-modules (s-FIM). It is also the foundation of the other three mechanisms. Furthermore, each s-FIM employs the fuzzy C-means algorithm to identify the distribution patterns of features. It not only establishes the inference relationship between the features and output values in an interpretable manner, but also alleviates the problem of rule explosion. In addition, to reduce the impact of outliers and redundancy information on the overall performance, this study adopts the regularization optimization strategy to punish the parameters and prunes the s-FIMs based on their significant contributions. Besides, the utilization of the residual approximation mechanism in the deep framework is beneficial for learning new features and further improving the model’s accuracy. The proposed CFM-DRS is applied to several classification problems. Extensive experiments on different benchmark and real-world datasets demonstrate that the proposed CFM-DRS has a better classification performance compared to several state-of-the-art methods. |
|---|---|
| AbstractList | Recent years have witnessed tremendous efforts devoted to investigating various data-driven methods, but how to build deep fuzzy models with good interpretability, high-precision, and well generalization ability remains a huge challenge, especially when facing complex, high-dimensional, and strong-nonlinear characteristics in the classification problems. Integrating both the advantages of convolutional neural networks and fuzzy inference method, this paper proposes a deep residual system by stacking the convolutional fuzzy modules (CFM-DRS), which achieves excellent performance with four mechanisms. Firstly, this study designs a new convolutional fuzzy module (CFM), which can comprehensively extract features from datasets with the convolutional operations, and then classify them through the corresponding sub-fuzzy-inference-modules (s-FIM). It is also the foundation of the other three mechanisms. Furthermore, each s-FIM employs the fuzzy C-means algorithm to identify the distribution patterns of features. It not only establishes the inference relationship between the features and output values in an interpretable manner, but also alleviates the problem of rule explosion. In addition, to reduce the impact of outliers and redundancy information on the overall performance, this study adopts the regularization optimization strategy to punish the parameters and prunes the s-FIMs based on their significant contributions. Besides, the utilization of the residual approximation mechanism in the deep framework is beneficial for learning new features and further improving the model’s accuracy. The proposed CFM-DRS is applied to several classification problems. Extensive experiments on different benchmark and real-world datasets demonstrate that the proposed CFM-DRS has a better classification performance compared to several state-of-the-art methods. |
| ArticleNumber | 128282 |
| Author | Liu, Yunxia Lu, Xiao Wang, Haixia Li, Chengdong Yi, Jianqiang |
| Author_xml | – sequence: 1 givenname: Yunxia orcidid: 0000-0002-0435-1794 surname: Liu fullname: Liu, Yunxia organization: Shandong University of Science and Technology, Qingdao 266590, China – sequence: 2 givenname: Xiao surname: Lu fullname: Lu, Xiao organization: Shandong University of Science and Technology, Qingdao 266590, China – sequence: 3 givenname: Haixia orcidid: 0000-0002-6424-4843 surname: Wang fullname: Wang, Haixia organization: Shandong University of Science and Technology, Qingdao 266590, China – sequence: 4 givenname: Jianqiang orcidid: 0000-0003-3268-9482 surname: Yi fullname: Yi, Jianqiang organization: Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China – sequence: 5 givenname: Chengdong orcidid: 0000-0002-9680-3523 surname: Li fullname: Li, Chengdong email: lichengdong@sdjzu.edu.cn organization: School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China |
| BookMark | eNp9kE1LAzEQhnOoYFv9A57yB3adZL_BixS_QPCi5xCTCabubpbMbkv7691SvcocBl7eZxieFVv0oUfGbgSkAkR5u02R9jqVIItUyHqeBVtCU1RJLqr8kq2ItgCiAqiWzG5CvwvtNPrQ65a76Xg88C7YqUXiNGrzjZZbxIFHJG-nuUMHGrHjez9-cT0MrTf6RPMxcNNqIu_-kiGGzxY7umIXTreE1797zT4eH943z8nr29PL5v41MbIWY6JL3QBC6eqmLHVlixIAUGbSZk3mTFZK2YiqdjnkRYGZEbmQTri8KTIJc56tmTzfNTEQRXRqiL7T8aAEqJMbtVUnN-rkRp3dzNDdGcL5s53HqMh47A1aH9GMygb_H_4D25VyuA |
| Cites_doi | 10.1007/s12539-023-00558-y 10.1177/0142331220979229 10.1109/TAC.2021.3137788 10.1016/j.compbiomed.2024.108311 10.1016/j.ins.2022.10.052 10.1016/j.energy.2020.118700 10.1016/j.neunet.2022.06.031 10.1109/TITS.2018.2846198 10.1016/j.ins.2023.03.123 10.1016/j.ins.2020.10.018 10.1016/j.ins.2022.06.088 10.1016/j.eswa.2023.119587 10.1016/j.eswa.2019.06.018 10.1109/3468.784177 10.1007/s00521-024-09663-5 10.1016/j.ijar.2022.07.009 10.1109/TFUZZ.2021.3115967 10.15388/21-INFOR444 10.1007/978-3-319-46493-0_38 10.1109/TFUZZ.2021.3098339 10.1109/MCI.2022.3223496 10.1109/TEVC.2019.2916183 10.1109/TPAMI.2022.3149445 10.1016/j.ins.2023.02.026 10.1109/ACCESS.2022.3142724 10.3168/jds.2022-22355 10.1109/JSTARS.2020.3006879 10.33205/cma.1467369 10.1109/TFUZZ.2016.2637369 10.1109/ACCESS.2021.3123090 10.1016/j.ensm.2023.02.035 10.1016/j.egyr.2022.02.298 10.1109/TFUZZ.2022.3165690 10.1016/j.neunet.2023.02.022 10.1016/j.egyr.2022.05.127 10.1007/s00500-023-07877-8 10.1016/j.ins.2020.03.084 10.1016/j.neucom.2022.10.047 10.1109/TFUZZ.2017.2767025 10.1007/s00500-021-06542-2 10.64700/mmm.42 10.1016/j.egyr.2021.12.082 10.1007/s40815-019-00783-y 10.1007/s40815-021-01087-w 10.1016/j.eswa.2023.123027 10.1016/j.jmsy.2022.04.004 10.1109/TFUZZ.2020.2988846 10.1109/TFUZZ.2020.3018379 10.1016/j.renene.2020.10.119 10.1016/j.neucom.2021.09.035 10.1016/j.ins.2023.03.022 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2025.128282 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2025_128282 S0957417425019013 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ABUFD ACDAQ ACGFS ACHRH ACLOT ACNTT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- ~HD 29G AAAKG AAQXK AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT |
| ID | FETCH-LOGICAL-c281t-a6a90e06f8966a7d56000e232d393fc36229178f40455e3c1412f1f49532078f3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Thu Oct 02 04:25:51 EDT 2025 Sat Oct 25 17:37:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fuzzy C-mean algorithm Convolutional fuzzy module Regularization optimization Deep residual network Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c281t-a6a90e06f8966a7d56000e232d393fc36229178f40455e3c1412f1f49532078f3 |
| ORCID | 0000-0002-6424-4843 0000-0002-0435-1794 0000-0002-9680-3523 0000-0003-3268-9482 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2025_128282 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_128282 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Peng, Zhou, Li (b0170) 2021; 23 Gu (b0065) 2023; 634 Zhai, Lv, Zhao (b0255) 2021; 551 630-645. Devendiran, Turukmane (b0045) 2024; 245 Costarelli, Sambucini (b0030) 2024; 7 Sun, Xue, Zhang (b0195) 2020; 24 Wang, Liu, Jia (b0225) 2022; 30 Bani-Hani, Khasawneh (b0020) 2019; 135 Li, Zou, Kowah (b0120) 2023; 15 Kafrawy, Fathi, Qaraad (b0085) 2021; 9 Shao, Wang, Mumtaz (b0185) 2023; 27 Li, Gao, Yi (b0100) 2018; 26 Liu, Lu, Bei (b0135) 2021; 42 Yin, Lanelli, Smith (b0245) 2023; 68 Zhang, Chen, Che (b0275) 2023; 634 Aliasghary, Mohammadikia (b0005) 2022; 26 Li, Zhou, Peng (b0115) 2020; 212 Fan, Wang, Gemmeke (b0060) 2022; 467 Tian, Li, Liu (b0205) 2022; 8 Perfilieva (b0175) 2022; 149 Zhang, Shi, Zhang (b0260) 2022; 8 Kisvari, Lin, Liu (b0095) 2021; 163 Wang, Chen, Duan (b0210) 2023; 45 Wang (b0220) 2020; 28 Boccali, Costarelli, Vinti (b0025) 2024; 2 Thirumagal, Saruladha (b0200) 2023; 27 Lou, Deng, Xiao (b0155) 2022; 30 Wu, Peng, Mendel (b0235) 2023; 18 Gu (b0070) 2021; 29 Li, Tang, Zhang (b0105) 2020; 22 Sakkas, Abang (b0180) 2022; 8 Xu, Zhang (b0240) 2022; 153 Zhao, Cao, Dian (b0290) 2022; 30 He, Zhang, Ren (b0080) 2016 Zhang, Zhao (b0285) 2023; 57 Murdock, Cazenavette, Lucey (b0165) 2023; 45 Ma, Li, Malekian (b0160) 2019; 20 Zhang, Deng, Choi (b0265) 2018; 26 De Souza, De Macedo, Coelho (b0040) 2020; 107 Ying, Ding, Li (b0250) 1999; 29 Bai, Huang, Qin (b0010) 2023; 623 D’Alterio, Garibaldi, John (b0035) 2021; 29 Li, Yi (b0110) 2010; 6 Liu, Zhao, Xie (b0150) 2023; 630 Liu, Hu, Cai (b0130) 2020; 13 Wen, Xu, Li (b0230) 2023; 218 Li, Fang, Bai (b0125) 2020; 533 Su, Shi, Hu (b0190) 2022; 69 Liu, Lu, Peng (b0140) 2022; 608 He K.M., Zhang X.Y., Ren S.Q. et al. (2016a). Identity Mappings in Deep Residual Networks. Kalibatiene, Miliauskaite (b0090) 2021; 32 Liu, Peng, Wang (b0145) 2024; 36 Fan, Hu, Yuan (b0050) 2023; 518 Bala, Hossain, Hossain (b0015) 2023; 161 Wang, Li, Gao (b0215) 2022; 63 Fan, Watters, Nydam (b0055) 2023; 106 Zhang, Shao, Zong (b0270) 2024; 173 Zhang, Qin (b0280) 2022; 10 Wang (10.1016/j.eswa.2025.128282_b0215) 2022; 63 De Souza (10.1016/j.eswa.2025.128282_b0040) 2020; 107 Devendiran (10.1016/j.eswa.2025.128282_b0045) 2024; 245 Li (10.1016/j.eswa.2025.128282_b0120) 2023; 15 Zhang (10.1016/j.eswa.2025.128282_b0270) 2024; 173 Zhang (10.1016/j.eswa.2025.128282_b0265) 2018; 26 Wang (10.1016/j.eswa.2025.128282_b0220) 2020; 28 Aliasghary (10.1016/j.eswa.2025.128282_b0005) 2022; 26 Li (10.1016/j.eswa.2025.128282_b0115) 2020; 212 Liu (10.1016/j.eswa.2025.128282_b0135) 2021; 42 Liu (10.1016/j.eswa.2025.128282_b0150) 2023; 630 Zhao (10.1016/j.eswa.2025.128282_b0290) 2022; 30 Bala (10.1016/j.eswa.2025.128282_b0015) 2023; 161 Li (10.1016/j.eswa.2025.128282_b0125) 2020; 533 Su (10.1016/j.eswa.2025.128282_b0190) 2022; 69 Li (10.1016/j.eswa.2025.128282_b0100) 2018; 26 Zhang (10.1016/j.eswa.2025.128282_b0260) 2022; 8 Thirumagal (10.1016/j.eswa.2025.128282_b0200) 2023; 27 Kisvari (10.1016/j.eswa.2025.128282_b0095) 2021; 163 Tian (10.1016/j.eswa.2025.128282_b0205) 2022; 8 Perfilieva (10.1016/j.eswa.2025.128282_b0175) 2022; 149 Ying (10.1016/j.eswa.2025.128282_b0250) 1999; 29 Liu (10.1016/j.eswa.2025.128282_b0130) 2020; 13 Li (10.1016/j.eswa.2025.128282_b0105) 2020; 22 Liu (10.1016/j.eswa.2025.128282_b0140) 2022; 608 Xu (10.1016/j.eswa.2025.128282_b0240) 2022; 153 Zhang (10.1016/j.eswa.2025.128282_b0280) 2022; 10 Wang (10.1016/j.eswa.2025.128282_b0210) 2023; 45 Kafrawy (10.1016/j.eswa.2025.128282_b0085) 2021; 9 Sun (10.1016/j.eswa.2025.128282_b0195) 2020; 24 He (10.1016/j.eswa.2025.128282_b0080) 2016 Zhang (10.1016/j.eswa.2025.128282_b0275) 2023; 634 Bai (10.1016/j.eswa.2025.128282_b0010) 2023; 623 Kalibatiene (10.1016/j.eswa.2025.128282_b0090) 2021; 32 Ma (10.1016/j.eswa.2025.128282_b0160) 2019; 20 Sakkas (10.1016/j.eswa.2025.128282_b0180) 2022; 8 Yin (10.1016/j.eswa.2025.128282_b0245) 2023; 68 Fan (10.1016/j.eswa.2025.128282_b0055) 2023; 106 Wen (10.1016/j.eswa.2025.128282_b0230) 2023; 218 Li (10.1016/j.eswa.2025.128282_b0110) 2010; 6 Boccali (10.1016/j.eswa.2025.128282_b0025) 2024; 2 Gu (10.1016/j.eswa.2025.128282_b0070) 2021; 29 Wang (10.1016/j.eswa.2025.128282_b0225) 2022; 30 Costarelli (10.1016/j.eswa.2025.128282_b0030) 2024; 7 Fan (10.1016/j.eswa.2025.128282_b0060) 2022; 467 10.1016/j.eswa.2025.128282_b0075 Shao (10.1016/j.eswa.2025.128282_b0185) 2023; 27 Liu (10.1016/j.eswa.2025.128282_b0145) 2024; 36 Murdock (10.1016/j.eswa.2025.128282_b0165) 2023; 45 Zhai (10.1016/j.eswa.2025.128282_b0255) 2021; 551 Zhang (10.1016/j.eswa.2025.128282_b0285) 2023; 57 Gu (10.1016/j.eswa.2025.128282_b0065) 2023; 634 Peng (10.1016/j.eswa.2025.128282_b0170) 2021; 23 D’Alterio (10.1016/j.eswa.2025.128282_b0035) 2021; 29 Wu (10.1016/j.eswa.2025.128282_b0235) 2023; 18 Fan (10.1016/j.eswa.2025.128282_b0050) 2023; 518 Lou (10.1016/j.eswa.2025.128282_b0155) 2022; 30 Bani-Hani (10.1016/j.eswa.2025.128282_b0020) 2019; 135 |
| References_xml | – volume: 551 start-page: 113 year: 2021 end-page: 127 ident: b0255 article-title: Data-driven inference modeling based on an on-line Wang-Mendel fuzzy approach – volume: 42 start-page: 1394 year: 2021 end-page: 1403 ident: b0135 article-title: Improved wavelet packet denoising algorithm using fuzzy threshold and correlation analysis for chaotic signals – start-page: 70 year: 2016 end-page: 778 ident: b0080 article-title: Deep residual learning for image recognition – volume: 634 start-page: 665 year: 2023 end-page: 676 ident: b0275 article-title: IEA-GNN: Anchor-aware graph neural network fused with information entropy for node classification and link prediction – volume: 161 start-page: 757 year: 2023 end-page: 775 ident: b0015 article-title: MonkeyNet: A robust deep convolutional neural network for monkeypox disease detection and classification – volume: 533 start-page: 24 year: 2020 end-page: 42 ident: b0125 article-title: Parallel design of sparse deep belief network with multi-objective optimization – volume: 20 start-page: 1329 year: 2019 end-page: 1340 ident: b0160 article-title: Hierarchical fuzzy logic-based variable structure control for vehicles platooning – reference: , 630-645. – volume: 212 start-page: 1 year: 2020 end-page: 13 ident: b0115 article-title: Accurate prediction of short-term photovoltaic power generation via a novel double-Input-rule-models stacked deep fuzzy method – volume: 6 start-page: 4019 year: 2010 end-page: 4028 ident: b0110 article-title: SIRMS based interval type-2 fuzzy inference systems: Properties and application. – volume: 36 start-page: 9989 year: 2024 end-page: 10014 ident: b0145 article-title: Residual deep fuzzy system with randomized fuzzy modules for accurate time series forecasting – volume: 106 start-page: 3448 year: 2023 end-page: 3464 ident: b0055 article-title: Multivariable time series classification for clinical mastitis detection and prediction in automated milking systems – volume: 29 start-page: 3323 year: 2021 end-page: 3333 ident: b0035 article-title: A fast inference and type-reduction process for constrained interval Type-2 fuzzy system – volume: 29 start-page: 2425 year: 2021 end-page: 2431 ident: b0070 article-title: Multilayer ensemble evolving fuzzy inference system – volume: 634 start-page: 382 year: 2023 end-page: 399 ident: b0065 article-title: Self-adaptive fuzzy learning ensemble systems with dimensionality compression from data streams – volume: 29 start-page: 508 year: 1999 end-page: 514 ident: b0250 article-title: Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators – volume: 22 start-page: 156 year: 2020 end-page: 171 ident: b0105 article-title: A hybrid short-term building electrical load forecasting model combining the periodic pattern, fuzzy system and wavelet transform – volume: 28 start-page: 1301 year: 2020 end-page: 1314 ident: b0220 article-title: Fast training algorithms for deep convolutional fuzzy systems with application to stock index prediction – volume: 149 start-page: 178 year: 2022 end-page: 191 ident: b0175 article-title: Data-driven modeling with fuzzy sets and manifolds – volume: 30 start-page: 2957 year: 2022 end-page: 2970 ident: b0225 article-title: Deep fuzzy rule-based classification system with improved Wang-Mendel method – volume: 26 start-page: 4961 year: 2022 end-page: 4977 ident: b0005 article-title: A novel single-input interval type-2 fractional-order fuzzy controller for systems with parameter uncertainty – volume: 45 start-page: 964 year: 2023 end-page: 979 ident: b0165 article-title: Reframing neural networks: Deep structure in overcomplete representations – volume: 8 start-page: 81 year: 2022 end-page: 89 ident: b0205 article-title: Long-short term memory neural network based life prediction of lithium-ion battery considering internal parameters – volume: 30 start-page: 3410 year: 2022 end-page: 3425 ident: b0155 article-title: Multilabel Takagi-Sugeno-Kang fuzzy system – volume: 45 start-page: 4586 year: 2023 end-page: 4604 ident: b0210 article-title: Soft hierarchical document representation learning – volume: 27 start-page: 6223 year: 2023 end-page: 6239 ident: b0200 article-title: Lung cancer diagnosis using hessian adaptive learning optimization in generative adversarial networks – volume: 163 start-page: 1895 year: 2021 end-page: 1909 ident: b0095 article-title: Wind power forecasting-a data-driven method along with gated recurrent neural network – volume: 245 year: 2024 ident: b0045 article-title: Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy – volume: 8 start-page: 1610 year: 2022 end-page: 1621 ident: b0260 article-title: A hybrid ensemble double-input-fuzzy-modules based precise prediction of PV power generation – volume: 26 start-page: 2610 year: 2018 ident: b0265 article-title: Data-driven elastic fuzzy logic system modelling: Constructing a concise system with human-like inference mechanism – volume: 30 start-page: 5104 year: 2022 end-page: 5115 ident: b0290 article-title: A self-organized method for a hierarchical fuzzy logic system based on a fuzzy autoencoder – volume: 135 start-page: 273 year: 2019 end-page: 286 ident: b0020 article-title: A recursive general regression neural network (R-GRNN) oracle for classification problems – volume: 15 start-page: 316 year: 2023 end-page: 330 ident: b0120 article-title: Predicting drug synergy and discovering new drug combinations based on graph autoencoder and convolutional neural network – volume: 18 start-page: 81 year: 2023 end-page: 83 ident: b0235 article-title: Type-1 and interval Type-2 fuzzy systems – volume: 26 start-page: 56 year: 2018 end-page: 71 ident: b0100 article-title: Analysis and design of functionally weighted single-input-rule-modules connected fuzzy inference systems – volume: 173 year: 2024 ident: b0270 article-title: CD-Net: Cascaded 3D dilated convolutional neural network for pneumonia lesion segmentation – volume: 9 start-page: 155353 year: 2021 end-page: 155369 ident: b0085 article-title: An efficient SVM-based feature selection model for cancer classification using high-dimensional microarray data – volume: 32 start-page: 85 year: 2021 end-page: 118 ident: b0090 article-title: A hybrid systematic review approach on complexity issues in data-driven fuzzy inference systems development – volume: 7 start-page: 45 year: 2024 end-page: 68 ident: b0030 article-title: A comparison among a fuzzy algorithm for image rescaling with other methods of digital image processing – volume: 2 start-page: 90 year: 2024 end-page: 102 ident: b0025 article-title: A Jackson type estimate in terms of the τ−modulus for neural network operators in – volume: 69 start-page: 4048 year: 2022 end-page: 4052 ident: b0190 article-title: Implementation of SVM-based low power EEG signal classification chip – volume: 467 start-page: 10 year: 2022 end-page: 21 ident: b0060 article-title: Model-data-driven image reconstruction with neural networks for ultrasound computed tomography breast imaging – volume: 153 start-page: 553 year: 2022 end-page: 563 ident: b0240 article-title: Convergence of deep convolutional neural networks – volume: 10 start-page: 8634 year: 2022 end-page: 8642 ident: b0280 article-title: An improved extreme learning machine for imbalanced data classification – volume: 8 start-page: 1883 year: 2022 end-page: 1895 ident: b0180 article-title: Thermal load prediction of communal district heating systems by applying data-driven machine learning methods – reference: He K.M., Zhang X.Y., Ren S.Q. et al. (2016a). Identity Mappings in Deep Residual Networks. – volume: 13 start-page: 3892 year: 2020 end-page: 3902 ident: b0130 article-title: Extreme learning machine-based ensemble transfer learning for hyperspectral image classification – volume: 27 start-page: 1670 year: 2023 end-page: 1680 ident: b0185 article-title: Predicting cardiovascular and cerebrovascular events based on instantaneous high-order singular entropy and deep belief network – volume: 630 start-page: 23 year: 2023 end-page: 39 ident: b0150 article-title: Two-dimensional Gaussian hierarchical priority fuzzy modeling for interval-valued data – volume: 608 start-page: 551 year: 2022 end-page: 557 ident: b0140 article-title: Compression and regularized optimization of modules stacked residual deep fuzzy system with application to time series prediction – volume: 68 start-page: 317 year: 2023 end-page: 328 ident: b0245 article-title: Maximum likelihood estimation in data-driven modeling and control – volume: 24 start-page: 394 year: 2020 end-page: 407 ident: b0195 article-title: Evolving deep convolutional neural networks for image classification – volume: 57 start-page: 346 year: 2023 end-page: 359 ident: b0285 article-title: Cloud-based in-situ battery life prediction and classification using machine learning – volume: 63 start-page: 381 year: 2022 end-page: 391 ident: b0215 article-title: Hybrid physics-based and data-driven models for smart manufacturing: Modelling, simulation, and explainability – volume: 23 start-page: 1326 year: 2021 end-page: 1346 ident: b0170 article-title: Double-input-rule-modules stacked deep interval type-2 fuzzy model with application to time series forecasting – volume: 623 start-page: 40 year: 2023 end-page: 55 ident: b0010 article-title: HVAE: A deep generative model via hierarchical variational auto-encoder for multi-view document modeling – volume: 518 start-page: 308 year: 2023 end-page: 320 ident: b0050 article-title: A data-driven analysis of global research trends in medical image: A survey – volume: 218 year: 2023 ident: b0230 article-title: RPConvformer: A novel Transformer-based deep neural networks for traffic flow prediction – volume: 107 year: 2020 ident: b0040 article-title: Binary coyote optimization algorithm for feature selection – volume: 15 start-page: 316 issue: 2 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0120 article-title: Predicting drug synergy and discovering new drug combinations based on graph autoencoder and convolutional neural network publication-title: Interdisciplinary Sciences-Computational Life Sciences doi: 10.1007/s12539-023-00558-y – volume: 42 start-page: 1394 issue: 6 year: 2021 ident: 10.1016/j.eswa.2025.128282_b0135 article-title: Improved wavelet packet denoising algorithm using fuzzy threshold and correlation analysis for chaotic signals publication-title: Transactions of the Institute of Measurement and Control doi: 10.1177/0142331220979229 – volume: 68 start-page: 317 issue: 1 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0245 article-title: Maximum likelihood estimation in data-driven modeling and control publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2021.3137788 – volume: 173 year: 2024 ident: 10.1016/j.eswa.2025.128282_b0270 article-title: CD-Net: Cascaded 3D dilated convolutional neural network for pneumonia lesion segmentation publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2024.108311 – volume: 623 start-page: 40 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0010 article-title: HVAE: A deep generative model via hierarchical variational auto-encoder for multi-view document modeling publication-title: Information Sciences doi: 10.1016/j.ins.2022.10.052 – volume: 212 start-page: 1 year: 2020 ident: 10.1016/j.eswa.2025.128282_b0115 article-title: Accurate prediction of short-term photovoltaic power generation via a novel double-Input-rule-models stacked deep fuzzy method publication-title: Energy doi: 10.1016/j.energy.2020.118700 – volume: 153 start-page: 553 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0240 article-title: Convergence of deep convolutional neural networks publication-title: Neural Networks doi: 10.1016/j.neunet.2022.06.031 – volume: 20 start-page: 1329 issue: 4 year: 2019 ident: 10.1016/j.eswa.2025.128282_b0160 article-title: Hierarchical fuzzy logic-based variable structure control for vehicles platooning publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2018.2846198 – volume: 107 year: 2020 ident: 10.1016/j.eswa.2025.128282_b0040 article-title: Binary coyote optimization algorithm for feature selection publication-title: Pattern Recognition – volume: 634 start-page: 382 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0065 article-title: Self-adaptive fuzzy learning ensemble systems with dimensionality compression from data streams publication-title: Information Sciences doi: 10.1016/j.ins.2023.03.123 – volume: 551 start-page: 113 year: 2021 ident: 10.1016/j.eswa.2025.128282_b0255 article-title: Data-driven inference modeling based on an on-line Wang-Mendel fuzzy approach publication-title: Information Sciences doi: 10.1016/j.ins.2020.10.018 – volume: 608 start-page: 551 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0140 article-title: Compression and regularized optimization of modules stacked residual deep fuzzy system with application to time series prediction publication-title: Information Sciences doi: 10.1016/j.ins.2022.06.088 – volume: 218 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0230 article-title: RPConvformer: A novel Transformer-based deep neural networks for traffic flow prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.119587 – volume: 135 start-page: 273 year: 2019 ident: 10.1016/j.eswa.2025.128282_b0020 article-title: A recursive general regression neural network (R-GRNN) oracle for classification problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.06.018 – volume: 29 start-page: 508 issue: 5 year: 1999 ident: 10.1016/j.eswa.2025.128282_b0250 article-title: Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans doi: 10.1109/3468.784177 – volume: 36 start-page: 9989 year: 2024 ident: 10.1016/j.eswa.2025.128282_b0145 article-title: Residual deep fuzzy system with randomized fuzzy modules for accurate time series forecasting publication-title: Neural Computing and Applications doi: 10.1007/s00521-024-09663-5 – volume: 45 start-page: 4586 issue: 4 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0210 article-title: Soft hierarchical document representation learning publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 149 start-page: 178 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0175 article-title: Data-driven modeling with fuzzy sets and manifolds publication-title: International Journal of Approximate Reasoning doi: 10.1016/j.ijar.2022.07.009 – volume: 28 start-page: 1301 issue: 7 year: 2020 ident: 10.1016/j.eswa.2025.128282_b0220 article-title: Fast training algorithms for deep convolutional fuzzy systems with application to stock index prediction publication-title: IEEE Transactions on Fuzzy Systems – volume: 30 start-page: 3410 issue: 9 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0155 article-title: Multilabel Takagi-Sugeno-Kang fuzzy system publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2021.3115967 – volume: 32 start-page: 85 issue: 1 year: 2021 ident: 10.1016/j.eswa.2025.128282_b0090 article-title: A hybrid systematic review approach on complexity issues in data-driven fuzzy inference systems development publication-title: Informatica doi: 10.15388/21-INFOR444 – ident: 10.1016/j.eswa.2025.128282_b0075 doi: 10.1007/978-3-319-46493-0_38 – volume: 6 start-page: 4019 issue: 9 year: 2010 ident: 10.1016/j.eswa.2025.128282_b0110 article-title: SIRMS based interval type-2 fuzzy inference systems: Properties and application. International Journal of Innovative Computing publication-title: Information and Control – volume: 30 start-page: 2957 issue: 8 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0225 article-title: Deep fuzzy rule-based classification system with improved Wang-Mendel method publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2021.3098339 – volume: 18 start-page: 81 issue: 1 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0235 article-title: Type-1 and interval Type-2 fuzzy systems publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2022.3223496 – volume: 24 start-page: 394 issue: 2 year: 2020 ident: 10.1016/j.eswa.2025.128282_b0195 article-title: Evolving deep convolutional neural networks for image classification publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2019.2916183 – volume: 45 start-page: 964 issue: 1 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0165 article-title: Reframing neural networks: Deep structure in overcomplete representations publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2022.3149445 – volume: 630 start-page: 23 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0150 article-title: Two-dimensional Gaussian hierarchical priority fuzzy modeling for interval-valued data publication-title: Information Sciences doi: 10.1016/j.ins.2023.02.026 – volume: 10 start-page: 8634 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0280 article-title: An improved extreme learning machine for imbalanced data classification publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3142724 – volume: 106 start-page: 3448 issue: 5 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0055 article-title: Multivariable time series classification for clinical mastitis detection and prediction in automated milking systems publication-title: Journal of Dairy Science doi: 10.3168/jds.2022-22355 – start-page: 70 year: 2016 ident: 10.1016/j.eswa.2025.128282_b0080 article-title: Deep residual learning for image recognition publication-title: IEEE conference on computer vision and pattern recognition – volume: 13 start-page: 3892 year: 2020 ident: 10.1016/j.eswa.2025.128282_b0130 article-title: Extreme learning machine-based ensemble transfer learning for hyperspectral image classification publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2020.3006879 – volume: 7 start-page: 45 issue: 2 year: 2024 ident: 10.1016/j.eswa.2025.128282_b0030 article-title: A comparison among a fuzzy algorithm for image rescaling with other methods of digital image processing publication-title: Constructive Mathematical Analysis doi: 10.33205/cma.1467369 – volume: 26 start-page: 56 issue: 1 year: 2018 ident: 10.1016/j.eswa.2025.128282_b0100 article-title: Analysis and design of functionally weighted single-input-rule-modules connected fuzzy inference systems publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2016.2637369 – volume: 9 start-page: 155353 year: 2021 ident: 10.1016/j.eswa.2025.128282_b0085 article-title: An efficient SVM-based feature selection model for cancer classification using high-dimensional microarray data publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3123090 – volume: 69 start-page: 4048 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0190 article-title: Implementation of SVM-based low power EEG signal classification chip publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 57 start-page: 346 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0285 article-title: Cloud-based in-situ battery life prediction and classification using machine learning publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2023.02.035 – volume: 27 start-page: 1670 issue: 4 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0185 article-title: Predicting cardiovascular and cerebrovascular events based on instantaneous high-order singular entropy and deep belief network publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 8 start-page: 1610 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0260 article-title: A hybrid ensemble double-input-fuzzy-modules based precise prediction of PV power generation publication-title: Energy Reports doi: 10.1016/j.egyr.2022.02.298 – volume: 30 start-page: 5104 issue: 12 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0290 article-title: A self-organized method for a hierarchical fuzzy logic system based on a fuzzy autoencoder publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2022.3165690 – volume: 161 start-page: 757 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0015 article-title: MonkeyNet: A robust deep convolutional neural network for monkeypox disease detection and classification publication-title: Neural Networks doi: 10.1016/j.neunet.2023.02.022 – volume: 8 start-page: 81 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0205 article-title: Long-short term memory neural network based life prediction of lithium-ion battery considering internal parameters publication-title: Energy Reports doi: 10.1016/j.egyr.2022.05.127 – volume: 27 start-page: 6223 issue: 10 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0200 article-title: Lung cancer diagnosis using hessian adaptive learning optimization in generative adversarial networks publication-title: Soft Computing doi: 10.1007/s00500-023-07877-8 – volume: 533 start-page: 24 year: 2020 ident: 10.1016/j.eswa.2025.128282_b0125 article-title: Parallel design of sparse deep belief network with multi-objective optimization publication-title: Information Sciences doi: 10.1016/j.ins.2020.03.084 – volume: 518 start-page: 308 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0050 article-title: A data-driven analysis of global research trends in medical image: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.10.047 – volume: 26 start-page: 2610 issue: 4 year: 2018 ident: 10.1016/j.eswa.2025.128282_b0265 article-title: Data-driven elastic fuzzy logic system modelling: Constructing a concise system with human-like inference mechanism publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2017.2767025 – volume: 26 start-page: 4961 issue: 10 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0005 article-title: A novel single-input interval type-2 fractional-order fuzzy controller for systems with parameter uncertainty publication-title: Soft Computing doi: 10.1007/s00500-021-06542-2 – volume: 2 start-page: 90 issue: 2 year: 2024 ident: 10.1016/j.eswa.2025.128282_b0025 article-title: A Jackson type estimate in terms of the τ−modulus for neural network operators in Lp−spaces publication-title: Modern Mathematical Methods doi: 10.64700/mmm.42 – volume: 8 start-page: 1883 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0180 article-title: Thermal load prediction of communal district heating systems by applying data-driven machine learning methods publication-title: Energy Reports doi: 10.1016/j.egyr.2021.12.082 – volume: 22 start-page: 156 issue: 1 year: 2020 ident: 10.1016/j.eswa.2025.128282_b0105 article-title: A hybrid short-term building electrical load forecasting model combining the periodic pattern, fuzzy system and wavelet transform publication-title: International Journal of Fuzzy Systems doi: 10.1007/s40815-019-00783-y – volume: 23 start-page: 1326 issue: 5 year: 2021 ident: 10.1016/j.eswa.2025.128282_b0170 article-title: Double-input-rule-modules stacked deep interval type-2 fuzzy model with application to time series forecasting publication-title: International Journal of Fuzzy Systems doi: 10.1007/s40815-021-01087-w – volume: 245 year: 2024 ident: 10.1016/j.eswa.2025.128282_b0045 article-title: Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.123027 – volume: 63 start-page: 381 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0215 article-title: Hybrid physics-based and data-driven models for smart manufacturing: Modelling, simulation, and explainability publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2022.04.004 – volume: 29 start-page: 2425 issue: 8 year: 2021 ident: 10.1016/j.eswa.2025.128282_b0070 article-title: Multilayer ensemble evolving fuzzy inference system publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2020.2988846 – volume: 29 start-page: 3323 issue: 11 year: 2021 ident: 10.1016/j.eswa.2025.128282_b0035 article-title: A fast inference and type-reduction process for constrained interval Type-2 fuzzy system publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2020.3018379 – volume: 163 start-page: 1895 year: 2021 ident: 10.1016/j.eswa.2025.128282_b0095 article-title: Wind power forecasting-a data-driven method along with gated recurrent neural network publication-title: Renewable Energy doi: 10.1016/j.renene.2020.10.119 – volume: 467 start-page: 10 year: 2022 ident: 10.1016/j.eswa.2025.128282_b0060 article-title: Model-data-driven image reconstruction with neural networks for ultrasound computed tomography breast imaging publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.09.035 – volume: 634 start-page: 665 year: 2023 ident: 10.1016/j.eswa.2025.128282_b0275 article-title: IEA-GNN: Anchor-aware graph neural network fused with information entropy for node classification and link prediction publication-title: Information Sciences doi: 10.1016/j.ins.2023.03.022 |
| SSID | ssj0017007 |
| Score | 2.4732406 |
| Snippet | Recent years have witnessed tremendous efforts devoted to investigating various data-driven methods, but how to build deep fuzzy models with good... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 128282 |
| SubjectTerms | Classification Convolutional fuzzy module Deep residual network Fuzzy C-mean algorithm Regularization optimization |
| Title | Convolutional fuzzy modules stacked deep residual system with application to classification problems |
| URI | https://dx.doi.org/10.1016/j.eswa.2025.128282 |
| Volume | 288 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM36damSdsdx3BMhV10sFtJmxeYaDtcp7iDf7svTSoK4sFLoCGB8pK893vJ771HyGUksyACLdDJ8cHjwLiXKWxytFUQMB1pVRNkp9Fkxm_nYt4ioyYWxtAqne63Or3W1q6n76TZXy4W_XsEB2gO0bUTJh66rlzLeWyqGPQ-vmgeJv1cbPPtxZ4Z7QJnLMcLVm8m9xATvcC4Hux34_TN4Iz3yI5DinRof2aftKA4ILtNFQbqDuUhUaOyeHUbCMfr9WbzTp9LtX6CFUXsh8dUUQWwpOhZ16FX1KZvpuYOln57waZVSXODpg19yPa4ejOrIzIbXz-MJp6rneDlLAkqT0Zy4IMf6QT9GRkrA2x8QPikwkGoczRbDB21RHOEdALCPOC4MIE2bFOGqEGHx6RdlAWcEIpWNAHzIBkngkuRDYQUIQcpw4BJ8MMOuWqEli5tioy04Y49pkbEqRFxakXcIaKRa_pjoVPU4X_MO_3nvDOybb4sLeyctKuXNVwgjqiybr1RumRreHM3mX4CqnHIVg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqGGDhG1E-PbChtIkTJ-mIKqoCpQut1C1yk7NUBGlFUxAd-O3cxQ4qEmJgyeDYUnS2796L350ZuwzV2AtBSyQ5LjgBiMAZZ_hIMVaBJ3Sos1Ig2w-7w-BuJEc11q5yYUhWaX2_8emlt7YtTWvN5mwyaT4iOMBwiNROUj403Vy7HkgREQNrfH7rPKj-XGQK7kUOdbeZM0bkBfN3Kj4kZMMj7iF-j04rEaezw7YsVOTX5mt2WQ3yPbZdXcPA7a7cZ1l7mr_ZFYT99WK5_OAv02zxDHOO4A_3acYzgBlHal3mXnFTv5nTT1i-coTNiylPCU6Tfsi02Atn5gds2LkZtLuOvTzBSUXsFY4KVcsFN9QxEhoVZYRsXED8lPktX6cYtwQytVgHiOkk-KkX4Mx4muSmAmGD9g_ZWj7N4YhxDKMx0IlkFMtAyXFLKukHoJTvCQWuX2dXldGSmamRkVTisaeETJyQiRNj4jqTlV2THzOdoBP_Y9zxP8ddsI3u4KGX9G779ydsk94YjdgpWyteF3CGoKIYn5eL5guEv8nr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+fuzzy+modules+stacked+deep+residual+system+with+application+to+classification+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Liu%2C+Yunxia&rft.au=Lu%2C+Xiao&rft.au=Wang%2C+Haixia&rft.au=Yi%2C+Jianqiang&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=288&rft_id=info:doi/10.1016%2Fj.eswa.2025.128282&rft.externalDocID=S0957417425019013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |