MXene-based separators for redox-enhanced electric capacitors with a suppressed shuttle effect and self-discharge: the effect of MXene ageing
The application of MXenes in redox-enhanced electrochemical capacitors (Redox ECs) for suppressing self-discharge caused by the shuttling of redox species in the electrolyte has proved to be promising. However, the success of this strategy is highly dependent on the MXene layered structure that prov...
Saved in:
Published in | New journal of chemistry Vol. 47; no. 7; pp. 3516 - 3523 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
13.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1144-0546 1369-9261 |
DOI | 10.1039/d2nj05439f |
Cover
Abstract | The application of MXenes in redox-enhanced electrochemical capacitors (Redox ECs) for suppressing self-discharge caused by the shuttling of redox species in the electrolyte has proved to be promising. However, the success of this strategy is highly dependent on the MXene layered structure that provides tunable spacing for polyiodide confinement in iodide-based redox ECs. Therefore, the ageing of the MXene which leads to expanded interlayer spacings and thus reduced confinement of redox ions would inevitably affect the ability of the MXene to suppress the shuttle effect and self-discharge. In this study, Ti
3
C
2
T
x
MXenes with different ageing times are prepared and self-assembled onto commercial glass fiber membranes (GFMs) as separators for iodide-based redox ECs. Self-discharge tests reveal that while the pristine Ti
3
C
2
T
x
separator delivers a voltage retention of 59% in 24 h, the cell with Ti
3
C
2
T
x
aged for 12 h exhibited a much lower voltage retention of 15%, indicating much faster self-discharge. This work provides an insight into the effect of ageing on the application of MXenes for reducing the shuttle effect and mitigating self-discharge in redox ECs.
The shuttle effect of redox-enhanced electric capacitors cannot be suppressed when MXene-based separators are subject to ageing. |
---|---|
AbstractList | The application of MXenes in redox-enhanced electrochemical capacitors (Redox ECs) for suppressing self-discharge caused by the shuttling of redox species in the electrolyte has proved to be promising. However, the success of this strategy is highly dependent on the MXene layered structure that provides tunable spacing for polyiodide confinement in iodide-based redox ECs. Therefore, the ageing of the MXene which leads to expanded interlayer spacings and thus reduced confinement of redox ions would inevitably affect the ability of the MXene to suppress the shuttle effect and self-discharge. In this study, Ti
3
C
2
T
x
MXenes with different ageing times are prepared and self-assembled onto commercial glass fiber membranes (GFMs) as separators for iodide-based redox ECs. Self-discharge tests reveal that while the pristine Ti
3
C
2
T
x
separator delivers a voltage retention of 59% in 24 h, the cell with Ti
3
C
2
T
x
aged for 12 h exhibited a much lower voltage retention of 15%, indicating much faster self-discharge. This work provides an insight into the effect of ageing on the application of MXenes for reducing the shuttle effect and mitigating self-discharge in redox ECs.
The shuttle effect of redox-enhanced electric capacitors cannot be suppressed when MXene-based separators are subject to ageing. The application of MXenes in redox-enhanced electrochemical capacitors (Redox ECs) for suppressing self-discharge caused by the shuttling of redox species in the electrolyte has proved to be promising. However, the success of this strategy is highly dependent on the MXene layered structure that provides tunable spacing for polyiodide confinement in iodide-based redox ECs. Therefore, the ageing of the MXene which leads to expanded interlayer spacings and thus reduced confinement of redox ions would inevitably affect the ability of the MXene to suppress the shuttle effect and self-discharge. In this study, Ti3C2Tx MXenes with different ageing times are prepared and self-assembled onto commercial glass fiber membranes (GFMs) as separators for iodide-based redox ECs. Self-discharge tests reveal that while the pristine Ti3C2Tx separator delivers a voltage retention of 59% in 24 h, the cell with Ti3C2Tx aged for 12 h exhibited a much lower voltage retention of 15%, indicating much faster self-discharge. This work provides an insight into the effect of ageing on the application of MXenes for reducing the shuttle effect and mitigating self-discharge in redox ECs. The application of MXenes in redox-enhanced electrochemical capacitors (Redox ECs) for suppressing self-discharge caused by the shuttling of redox species in the electrolyte has proved to be promising. However, the success of this strategy is highly dependent on the MXene layered structure that provides tunable spacing for polyiodide confinement in iodide-based redox ECs. Therefore, the ageing of the MXene which leads to expanded interlayer spacings and thus reduced confinement of redox ions would inevitably affect the ability of the MXene to suppress the shuttle effect and self-discharge. In this study, Ti 3 C 2 T x MXenes with different ageing times are prepared and self-assembled onto commercial glass fiber membranes (GFMs) as separators for iodide-based redox ECs. Self-discharge tests reveal that while the pristine Ti 3 C 2 T x separator delivers a voltage retention of 59% in 24 h, the cell with Ti 3 C 2 T x aged for 12 h exhibited a much lower voltage retention of 15%, indicating much faster self-discharge. This work provides an insight into the effect of ageing on the application of MXenes for reducing the shuttle effect and mitigating self-discharge in redox ECs. |
Author | Zhao, Man Han, Qiankun Li, Wenshi Wu, Maosheng Yao, Jing Lu, Xianmao Yang, Wei |
AuthorAffiliation | Chinese Academy of Sciences Environment and Materials School of Nanoscience and Technology Beijing Institute of Nanoenergy and Nanosystems School of Physical Science and Technology School of Resources Center on Nanoenergy Research Guangxi University University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – sequence: 0 name: Environment and Materials – sequence: 0 name: Beijing Institute of Nanoenergy and Nanosystems – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: School of Physical Science and Technology – sequence: 0 name: Center on Nanoenergy Research – sequence: 0 name: Guangxi University – sequence: 0 name: School of Resources – sequence: 0 name: School of Nanoscience and Technology – sequence: 0 name: University of Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Qiankun surname: Han fullname: Han, Qiankun – sequence: 2 givenname: Wei surname: Yang fullname: Yang, Wei – sequence: 3 givenname: Wenshi surname: Li fullname: Li, Wenshi – sequence: 4 givenname: Maosheng surname: Wu fullname: Wu, Maosheng – sequence: 5 givenname: Jing surname: Yao fullname: Yao, Jing – sequence: 6 givenname: Man surname: Zhao fullname: Zhao, Man – sequence: 7 givenname: Xianmao surname: Lu fullname: Lu, Xianmao |
BookMark | eNptkU2LFDEQhoOs4O7qxbsQ8Cb0mko66Yk3WV1XWfWi4K2pTleme2iTNsmg_gj_s9kZWUE8VcH71FtfZ-wkxECMPQZxAULZ56MMO6FbZf09dgrK2MZKAyc1h7ZtqmIesLOcd0IAdAZO2a_3XyhQM2CmkWdaMWGJKXMfE080xh8NhQmDqyot5EqaHXe4opsP2Pe5TBx53q9ronzwmPalLMTJ-4pzDLe2i2_GObsJ05Ze8DLdydHzwwActzSH7UN23-OS6dGfeM4-X73-dHnd3Hx88_by5U3j5AZKo8VofOfbQQrwqFSHrgVnNugtdMMAunXWbkYzVMJ7qVryWoIFq8yozaDVOXt69F1T_LanXPpd3KdQW_ay67TWQrZQKXGkXIo5J_J93RrLHENJOC89iP726P0r-eHd4ehXteTZPyVrmr9i-vl_-MkRTtndcX8_qH4D_1iP3Q |
CitedBy_id | crossref_primary_10_1016_j_cartre_2025_100471 crossref_primary_10_1016_j_cej_2024_152910 crossref_primary_10_1016_j_ensm_2023_103037 crossref_primary_10_1016_j_est_2024_113109 |
Cites_doi | 10.1038/ncomms14083 10.1002/adma.202006897 10.1016/j.jcis.2018.03.046 10.1016/j.pmatsci.2020.100733 10.1002/advs.202200296 10.1039/C7SE00492C 10.1021/acsnano.5b03591 10.1002/adfm.202003998 10.1016/j.elecom.2016.02.019 10.1021/acsnano.9b06394 10.1002/adma.201304138 10.1016/j.coelec.2018.05.006 10.1016/j.nanoen.2020.105383 10.1039/c2cp42763j 10.1038/nmat1368 10.1016/j.jmst.2020.02.037 10.1039/C4FD00052H 10.1016/j.jpowsour.2016.04.021 10.1021/acsaem.0c01230 10.1016/j.electacta.2012.08.026 10.26599/NRE.2022.9120002 10.1016/j.ensm.2022.07.040 10.1021/acs.chemmater.7b00745 10.1016/j.mattod.2018.10.035 10.1002/eem2.12133 10.1021/acs.jpcc.7b08180 10.1016/S0378-7753(97)02468-3 10.1039/D1TC04406K 10.1021/acsnano.9b09541 10.1021/acsami.0c03181 10.1021/acsenergylett.0c02424 10.1039/C9NR00084D 10.1039/C7RA10772B 10.1038/nmat2297 10.1002/adfm.202204306 10.1016/j.jechem.2019.06.014 10.1038/nature13970 10.1016/j.ensm.2018.03.002 10.1039/C9TA07036B 10.1016/j.jpowsour.2016.03.094 10.1039/D0MA00938E 10.1021/cr0204101 10.1016/j.ensm.2018.01.003 10.1002/adma.202004240 10.1016/j.jpowsour.2013.10.040 10.1021/acsaem.1c03575 10.1016/j.jechem.2017.08.004 10.1016/j.ceramint.2017.02.039 10.1007/s11426-021-1177-1 10.1002/adma.201102306 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 8BQ 8FD H9R JG9 KA0 |
DOI | 10.1039/d2nj05439f |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Illustrata: Natural Sciences Materials Research Database ProQuest Illustrata: Technology Collection |
DatabaseTitle | CrossRef Materials Research Database ProQuest Illustrata: Natural Sciences Engineered Materials Abstracts ProQuest Illustrata: Technology Collection Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1369-9261 |
EndPage | 3523 |
ExternalDocumentID | 10_1039_D2NJ05439F d2nj05439f |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29N 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABCQX ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I L7B M4U N9A O9- OK1 P2P R7B R7C R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SKH SLH TN5 TWZ VH6 YNT YQT AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 8BQ 8FD H9R JG9 KA0 |
ID | FETCH-LOGICAL-c281t-50d6f7f4b201fa337ac41c68af917bb154c998d6b4b2ff234ef52191936d56b53 |
ISSN | 1144-0546 |
IngestDate | Mon Jun 30 09:39:00 EDT 2025 Tue Jul 01 02:51:27 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Tue Dec 17 20:58:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-50d6f7f4b201fa337ac41c68af917bb154c998d6b4b2ff234ef52191936d56b53 |
Notes | https://doi.org/10.1039/d2nj05439f Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7422-2867 |
PQID | 2775550241 |
PQPubID | 2048886 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_D2NJ05439F rsc_primary_d2nj05439f proquest_journals_2775550241 crossref_citationtrail_10_1039_D2NJ05439F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-13 |
PublicationDateYYYYMMDD | 2023-02-13 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | New journal of chemistry |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Frank (D2NJ05439F/cit45/1) 2012; 14 Roldán (D2NJ05439F/cit13/1) 2012; 83 Aricò (D2NJ05439F/cit1/1) 2005; 4 Simon (D2NJ05439F/cit2/1) 2008; 7 Choi (D2NJ05439F/cit42/1) 2020; 30 Dong (D2NJ05439F/cit3/1) 2018; 13 Xie (D2NJ05439F/cit16/1) 2016; 66 Naguib (D2NJ05439F/cit24/1) 2014; 26 Liang (D2NJ05439F/cit21/1) 2022; 10 Yazdanparast (D2NJ05439F/cit27/1) 2020; 12 Hao (D2NJ05439F/cit40/1) 2022; 5 Naguib (D2NJ05439F/cit23/1) 2011; 23 Deysher (D2NJ05439F/cit39/1) 2018; 21 Anasori (D2NJ05439F/cit28/1) 2015; 9 Svensson (D2NJ05439F/cit47/1) 2003; 103 Yamazaki (D2NJ05439F/cit10/1) 2016; 326 Lee (D2NJ05439F/cit51/1) 2020; 8 Su (D2NJ05439F/cit35/1) 2022; 32 Tian (D2NJ05439F/cit15/1) 2017; 8 You (D2NJ05439F/cit12/1) 2017; 7 Frackowiak (D2NJ05439F/cit6/1) 2014; 172 Gogotsi (D2NJ05439F/cit26/1) 2019; 13 Yang (D2NJ05439F/cit38/1) 2022; 52 Li (D2NJ05439F/cit34/1) 2020; 42 Ghidiu (D2NJ05439F/cit43/1) 2014; 516 Sarycheva (D2NJ05439F/cit44/1) 2017; 121 Guojin (D2NJ05439F/cit32/1) 2022; 1 Li (D2NJ05439F/cit37/1) 2021; 33 Chae (D2NJ05439F/cit49/1) 2019; 11 He (D2NJ05439F/cit33/1) 2020; 78 He (D2NJ05439F/cit22/1) 2022; 65 Gorska (D2NJ05439F/cit5/1) 2018; 9 Akinwolemiwa (D2NJ05439F/cit4/1) 2017; 19 Abbas (D2NJ05439F/cit14/1) 2016; 326 Feng (D2NJ05439F/cit50/1) 2017; 43 Yang (D2NJ05439F/cit17/1) 2020; 32 Kuang (D2NJ05439F/cit29/1) 2020; 56 Su (D2NJ05439F/cit18/1) 2018; 14 Conway (D2NJ05439F/cit46/1) 1997; 65 Kshetri (D2NJ05439F/cit31/1) 2021; 117 Sun (D2NJ05439F/cit36/1) 2020; 14 Zhang (D2NJ05439F/cit48/1) 2017; 29 Long (D2NJ05439F/cit25/1) 2022; 9 Shelke (D2NJ05439F/cit11/1) 2018; 522 Xu (D2NJ05439F/cit9/1) 2018; 2 Li (D2NJ05439F/cit41/1) 2021; 2 Jeon (D2NJ05439F/cit19/1) 2020; 3 Zhao (D2NJ05439F/cit20/1) 2021; 6 Zhang (D2NJ05439F/cit30/1) 2018; 27 Akinwolemiwa (D2NJ05439F/cit7/1) 2021; 4 Yu (D2NJ05439F/cit8/1) 2014; 248 |
References_xml | – volume: 8 start-page: 14083 year: 2017 ident: D2NJ05439F/cit15/1 publication-title: Nat. Commun. doi: 10.1038/ncomms14083 – volume: 33 start-page: 2006897 year: 2021 ident: D2NJ05439F/cit37/1 publication-title: Adv. Mater. doi: 10.1002/adma.202006897 – volume: 522 start-page: 111 year: 2018 ident: D2NJ05439F/cit11/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.03.046 – volume: 117 start-page: 100733 year: 2021 ident: D2NJ05439F/cit31/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100733 – volume: 9 start-page: 2200296 year: 2022 ident: D2NJ05439F/cit25/1 publication-title: Adv. Sci. doi: 10.1002/advs.202200296 – volume: 2 start-page: 357 year: 2018 ident: D2NJ05439F/cit9/1 publication-title: Sustainable Energy Fuels doi: 10.1039/C7SE00492C – volume: 9 start-page: 9507 year: 2015 ident: D2NJ05439F/cit28/1 publication-title: ACS Nano doi: 10.1021/acsnano.5b03591 – volume: 30 start-page: 2003998 year: 2020 ident: D2NJ05439F/cit42/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003998 – volume: 66 start-page: 42 year: 2016 ident: D2NJ05439F/cit16/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2016.02.019 – volume: 13 start-page: 8491 year: 2019 ident: D2NJ05439F/cit26/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b06394 – volume: 26 start-page: 992 year: 2014 ident: D2NJ05439F/cit24/1 publication-title: Adv. Mater. doi: 10.1002/adma.201304138 – volume: 9 start-page: 95 year: 2018 ident: D2NJ05439F/cit5/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.05.006 – volume: 78 start-page: 105383 year: 2020 ident: D2NJ05439F/cit33/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105383 – volume: 14 start-page: 14567 year: 2012 ident: D2NJ05439F/cit45/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp42763j – volume: 4 start-page: 366 year: 2005 ident: D2NJ05439F/cit1/1 publication-title: Nat. Mater. doi: 10.1038/nmat1368 – volume: 56 start-page: 18 year: 2020 ident: D2NJ05439F/cit29/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.02.037 – volume: 19 start-page: 47 year: 2017 ident: D2NJ05439F/cit4/1 publication-title: Curr. Top. Electrochem. – volume: 172 start-page: 179 year: 2014 ident: D2NJ05439F/cit6/1 publication-title: Faraday Discuss. doi: 10.1039/C4FD00052H – volume: 326 start-page: 580 year: 2016 ident: D2NJ05439F/cit10/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.04.021 – volume: 3 start-page: 7844 year: 2020 ident: D2NJ05439F/cit19/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01230 – volume: 83 start-page: 241 year: 2012 ident: D2NJ05439F/cit13/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.08.026 – volume: 1 start-page: e9120002 year: 2022 ident: D2NJ05439F/cit32/1 publication-title: Nano Res. Energy doi: 10.26599/NRE.2022.9120002 – volume: 52 start-page: 29 year: 2022 ident: D2NJ05439F/cit38/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.07.040 – volume: 29 start-page: 4848 year: 2017 ident: D2NJ05439F/cit48/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00745 – volume: 21 start-page: 1064 year: 2018 ident: D2NJ05439F/cit39/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.10.035 – volume: 4 start-page: 481 year: 2021 ident: D2NJ05439F/cit7/1 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12133 – volume: 121 start-page: 19983 year: 2017 ident: D2NJ05439F/cit44/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b08180 – volume: 65 start-page: 53 year: 1997 ident: D2NJ05439F/cit46/1 publication-title: J. Power Sources doi: 10.1016/S0378-7753(97)02468-3 – volume: 10 start-page: 2821 year: 2022 ident: D2NJ05439F/cit21/1 publication-title: J. Mater. Chem. C doi: 10.1039/D1TC04406K – volume: 14 start-page: 1176 year: 2020 ident: D2NJ05439F/cit36/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b09541 – volume: 12 start-page: 20129 year: 2020 ident: D2NJ05439F/cit27/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03181 – volume: 6 start-page: 854 year: 2021 ident: D2NJ05439F/cit20/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02424 – volume: 11 start-page: 8387 year: 2019 ident: D2NJ05439F/cit49/1 publication-title: Nanoscale doi: 10.1039/C9NR00084D – volume: 7 start-page: 55702 year: 2017 ident: D2NJ05439F/cit12/1 publication-title: RSC Adv. doi: 10.1039/C7RA10772B – volume: 7 start-page: 845 year: 2008 ident: D2NJ05439F/cit2/1 publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 32 start-page: 2204306 year: 2022 ident: D2NJ05439F/cit35/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204306 – volume: 42 start-page: 116 year: 2020 ident: D2NJ05439F/cit34/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.06.014 – volume: 516 start-page: 78 year: 2014 ident: D2NJ05439F/cit43/1 publication-title: Nature doi: 10.1038/nature13970 – volume: 14 start-page: 129 year: 2018 ident: D2NJ05439F/cit18/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.03.002 – volume: 8 start-page: 573 year: 2020 ident: D2NJ05439F/cit51/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07036B – volume: 326 start-page: 652 year: 2016 ident: D2NJ05439F/cit14/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.094 – volume: 2 start-page: 1570 year: 2021 ident: D2NJ05439F/cit41/1 publication-title: Mater. Adv. doi: 10.1039/D0MA00938E – volume: 103 start-page: 1649 year: 2003 ident: D2NJ05439F/cit47/1 publication-title: Chem. Rev. doi: 10.1021/cr0204101 – volume: 13 start-page: 96 year: 2018 ident: D2NJ05439F/cit3/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.01.003 – volume: 32 start-page: 2004240 year: 2020 ident: D2NJ05439F/cit17/1 publication-title: Adv. Mater. doi: 10.1002/adma.202004240 – volume: 248 start-page: 1123 year: 2014 ident: D2NJ05439F/cit8/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.10.040 – volume: 5 start-page: 2898 year: 2022 ident: D2NJ05439F/cit40/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c03575 – volume: 27 start-page: 73 year: 2018 ident: D2NJ05439F/cit30/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.08.004 – volume: 43 start-page: 6322 year: 2017 ident: D2NJ05439F/cit50/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.02.039 – volume: 65 start-page: 391 year: 2022 ident: D2NJ05439F/cit22/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-021-1177-1 – volume: 23 start-page: 4248 year: 2011 ident: D2NJ05439F/cit23/1 publication-title: Adv. Mater. doi: 10.1002/adma.201102306 |
SSID | ssj0011761 |
Score | 2.4116044 |
Snippet | The application of MXenes in redox-enhanced electrochemical capacitors (Redox ECs) for suppressing self-discharge caused by the shuttling of redox species in... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3516 |
SubjectTerms | Aging Capacitors Confinement Discharge Electric potential Glass fibers Interlayers MXenes Self-assembly Separators Voltage |
Title | MXene-based separators for redox-enhanced electric capacitors with a suppressed shuttle effect and self-discharge: the effect of MXene ageing |
URI | https://www.proquest.com/docview/2775550241 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 1369-9261 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011761 issn: 1144-0546 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gFeELeJwkCW4AVVhsVOnJq3aWwaE5uE1InyFCW-qN2mdFoaCe0_7IfwLzmO7SSFPgxeosqxkzTn87nE53xG6J3UiTQGJlIitSCxUhEpIiHIREidJnmaK2qrkU_P-PF5fDJLZoPBr17WUr0qPsjbjXUl_yNVaAO52irZf5Bse1FogN8gXziChOF4LxmfzkBTEWuI1LjSDYu33TvHZg5aHtCfRJdzt8LvdrtZyLEE4ygXTTdX1jau6usmGdZeY15bSmOf5NGsK1T6yhBbumsZlfR6FkiTPmMfYQxKKZjAi44OqsdKIcO-cp3Ga9TdN0DnZd0C9If_ev1dL9pMoYVrsGllrQWpXZnRspprf1v_4YLa5WLi6k69roVYjoDH6JmwXRvjggjq-NmDgnaUnB6IaU_bsiTiPcsNviTbaBX2mCVV_UzPTuB2TBx1ti-s9_9hEttExWaJnomsG7uFtmnKOR2i7f3D6Zev7ZJVlDpy3vCvAhcuEx-70eveTxfSbN2E_WYav2b6GD3yAQned-h6gga6fIoeHAR5PUN3PZThDmUYUIbXUYYDynCHMmxRhnPcoQx7lGEHIgwow-so-4QBY-H00uDmAbDD2HN0fnQ4PTgmfhMPIukkWpFkT3GTmrgAT9PkjKW5jCPJJ7kRUVoU4MFLiPgVL6CHMZTF2oBHKSCu4CrhRcJ20LBclvoFwipRKjeFkIqzmCs1yaHByFhJA-9WRyP0PrzcTHqGe7vRylX2txhH6G3b99rxumzstRtklPk5U2U0TROI68H1HaEdkFs7XtHyohlnXt7r6q_Qw25e7KLh6qbWr8HFXRVvPLh-A67Zq3Q |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MXene-based+separators+for+redox-enhanced+electric+capacitors+with+a+suppressed+shuttle+effect+and+self-discharge%3A+the+effect+of+MXene+ageing&rft.jtitle=New+journal+of+chemistry&rft.au=Han%2C+Qiankun&rft.au=Yang%2C+Wei&rft.au=Li%2C+Wenshi&rft.au=Wu%2C+Maosheng&rft.date=2023-02-13&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=47&rft.issue=7&rft.spage=3516&rft.epage=3523&rft_id=info:doi/10.1039%2FD2NJ05439F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2NJ05439F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon |