MXene-based separators for redox-enhanced electric capacitors with a suppressed shuttle effect and self-discharge: the effect of MXene ageing

The application of MXenes in redox-enhanced electrochemical capacitors (Redox ECs) for suppressing self-discharge caused by the shuttling of redox species in the electrolyte has proved to be promising. However, the success of this strategy is highly dependent on the MXene layered structure that prov...

Full description

Saved in:
Bibliographic Details
Published inNew journal of chemistry Vol. 47; no. 7; pp. 3516 - 3523
Main Authors Han, Qiankun, Yang, Wei, Li, Wenshi, Wu, Maosheng, Yao, Jing, Zhao, Man, Lu, Xianmao
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 13.02.2023
Subjects
Online AccessGet full text
ISSN1144-0546
1369-9261
DOI10.1039/d2nj05439f

Cover

Abstract The application of MXenes in redox-enhanced electrochemical capacitors (Redox ECs) for suppressing self-discharge caused by the shuttling of redox species in the electrolyte has proved to be promising. However, the success of this strategy is highly dependent on the MXene layered structure that provides tunable spacing for polyiodide confinement in iodide-based redox ECs. Therefore, the ageing of the MXene which leads to expanded interlayer spacings and thus reduced confinement of redox ions would inevitably affect the ability of the MXene to suppress the shuttle effect and self-discharge. In this study, Ti 3 C 2 T x MXenes with different ageing times are prepared and self-assembled onto commercial glass fiber membranes (GFMs) as separators for iodide-based redox ECs. Self-discharge tests reveal that while the pristine Ti 3 C 2 T x separator delivers a voltage retention of 59% in 24 h, the cell with Ti 3 C 2 T x aged for 12 h exhibited a much lower voltage retention of 15%, indicating much faster self-discharge. This work provides an insight into the effect of ageing on the application of MXenes for reducing the shuttle effect and mitigating self-discharge in redox ECs. The shuttle effect of redox-enhanced electric capacitors cannot be suppressed when MXene-based separators are subject to ageing.
AbstractList The application of MXenes in redox-enhanced electrochemical capacitors (Redox ECs) for suppressing self-discharge caused by the shuttling of redox species in the electrolyte has proved to be promising. However, the success of this strategy is highly dependent on the MXene layered structure that provides tunable spacing for polyiodide confinement in iodide-based redox ECs. Therefore, the ageing of the MXene which leads to expanded interlayer spacings and thus reduced confinement of redox ions would inevitably affect the ability of the MXene to suppress the shuttle effect and self-discharge. In this study, Ti 3 C 2 T x MXenes with different ageing times are prepared and self-assembled onto commercial glass fiber membranes (GFMs) as separators for iodide-based redox ECs. Self-discharge tests reveal that while the pristine Ti 3 C 2 T x separator delivers a voltage retention of 59% in 24 h, the cell with Ti 3 C 2 T x aged for 12 h exhibited a much lower voltage retention of 15%, indicating much faster self-discharge. This work provides an insight into the effect of ageing on the application of MXenes for reducing the shuttle effect and mitigating self-discharge in redox ECs. The shuttle effect of redox-enhanced electric capacitors cannot be suppressed when MXene-based separators are subject to ageing.
The application of MXenes in redox-enhanced electrochemical capacitors (Redox ECs) for suppressing self-discharge caused by the shuttling of redox species in the electrolyte has proved to be promising. However, the success of this strategy is highly dependent on the MXene layered structure that provides tunable spacing for polyiodide confinement in iodide-based redox ECs. Therefore, the ageing of the MXene which leads to expanded interlayer spacings and thus reduced confinement of redox ions would inevitably affect the ability of the MXene to suppress the shuttle effect and self-discharge. In this study, Ti3C2Tx MXenes with different ageing times are prepared and self-assembled onto commercial glass fiber membranes (GFMs) as separators for iodide-based redox ECs. Self-discharge tests reveal that while the pristine Ti3C2Tx separator delivers a voltage retention of 59% in 24 h, the cell with Ti3C2Tx aged for 12 h exhibited a much lower voltage retention of 15%, indicating much faster self-discharge. This work provides an insight into the effect of ageing on the application of MXenes for reducing the shuttle effect and mitigating self-discharge in redox ECs.
The application of MXenes in redox-enhanced electrochemical capacitors (Redox ECs) for suppressing self-discharge caused by the shuttling of redox species in the electrolyte has proved to be promising. However, the success of this strategy is highly dependent on the MXene layered structure that provides tunable spacing for polyiodide confinement in iodide-based redox ECs. Therefore, the ageing of the MXene which leads to expanded interlayer spacings and thus reduced confinement of redox ions would inevitably affect the ability of the MXene to suppress the shuttle effect and self-discharge. In this study, Ti 3 C 2 T x MXenes with different ageing times are prepared and self-assembled onto commercial glass fiber membranes (GFMs) as separators for iodide-based redox ECs. Self-discharge tests reveal that while the pristine Ti 3 C 2 T x separator delivers a voltage retention of 59% in 24 h, the cell with Ti 3 C 2 T x aged for 12 h exhibited a much lower voltage retention of 15%, indicating much faster self-discharge. This work provides an insight into the effect of ageing on the application of MXenes for reducing the shuttle effect and mitigating self-discharge in redox ECs.
Author Zhao, Man
Han, Qiankun
Li, Wenshi
Wu, Maosheng
Yao, Jing
Lu, Xianmao
Yang, Wei
AuthorAffiliation Chinese Academy of Sciences
Environment and Materials
School of Nanoscience and Technology
Beijing Institute of Nanoenergy and Nanosystems
School of Physical Science and Technology
School of Resources
Center on Nanoenergy Research
Guangxi University
University of Chinese Academy of Sciences
AuthorAffiliation_xml – sequence: 0
  name: Environment and Materials
– sequence: 0
  name: Beijing Institute of Nanoenergy and Nanosystems
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: School of Physical Science and Technology
– sequence: 0
  name: Center on Nanoenergy Research
– sequence: 0
  name: Guangxi University
– sequence: 0
  name: School of Resources
– sequence: 0
  name: School of Nanoscience and Technology
– sequence: 0
  name: University of Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Qiankun
  surname: Han
  fullname: Han, Qiankun
– sequence: 2
  givenname: Wei
  surname: Yang
  fullname: Yang, Wei
– sequence: 3
  givenname: Wenshi
  surname: Li
  fullname: Li, Wenshi
– sequence: 4
  givenname: Maosheng
  surname: Wu
  fullname: Wu, Maosheng
– sequence: 5
  givenname: Jing
  surname: Yao
  fullname: Yao, Jing
– sequence: 6
  givenname: Man
  surname: Zhao
  fullname: Zhao, Man
– sequence: 7
  givenname: Xianmao
  surname: Lu
  fullname: Lu, Xianmao
BookMark eNptkU2LFDEQhoOs4O7qxbsQ8Cb0mko66Yk3WV1XWfWi4K2pTleme2iTNsmg_gj_s9kZWUE8VcH71FtfZ-wkxECMPQZxAULZ56MMO6FbZf09dgrK2MZKAyc1h7ZtqmIesLOcd0IAdAZO2a_3XyhQM2CmkWdaMWGJKXMfE080xh8NhQmDqyot5EqaHXe4opsP2Pe5TBx53q9ronzwmPalLMTJ-4pzDLe2i2_GObsJ05Ze8DLdydHzwwActzSH7UN23-OS6dGfeM4-X73-dHnd3Hx88_by5U3j5AZKo8VofOfbQQrwqFSHrgVnNugtdMMAunXWbkYzVMJ7qVryWoIFq8yozaDVOXt69F1T_LanXPpd3KdQW_ay67TWQrZQKXGkXIo5J_J93RrLHENJOC89iP726P0r-eHd4ehXteTZPyVrmr9i-vl_-MkRTtndcX8_qH4D_1iP3Q
CitedBy_id crossref_primary_10_1016_j_cartre_2025_100471
crossref_primary_10_1016_j_cej_2024_152910
crossref_primary_10_1016_j_ensm_2023_103037
crossref_primary_10_1016_j_est_2024_113109
Cites_doi 10.1038/ncomms14083
10.1002/adma.202006897
10.1016/j.jcis.2018.03.046
10.1016/j.pmatsci.2020.100733
10.1002/advs.202200296
10.1039/C7SE00492C
10.1021/acsnano.5b03591
10.1002/adfm.202003998
10.1016/j.elecom.2016.02.019
10.1021/acsnano.9b06394
10.1002/adma.201304138
10.1016/j.coelec.2018.05.006
10.1016/j.nanoen.2020.105383
10.1039/c2cp42763j
10.1038/nmat1368
10.1016/j.jmst.2020.02.037
10.1039/C4FD00052H
10.1016/j.jpowsour.2016.04.021
10.1021/acsaem.0c01230
10.1016/j.electacta.2012.08.026
10.26599/NRE.2022.9120002
10.1016/j.ensm.2022.07.040
10.1021/acs.chemmater.7b00745
10.1016/j.mattod.2018.10.035
10.1002/eem2.12133
10.1021/acs.jpcc.7b08180
10.1016/S0378-7753(97)02468-3
10.1039/D1TC04406K
10.1021/acsnano.9b09541
10.1021/acsami.0c03181
10.1021/acsenergylett.0c02424
10.1039/C9NR00084D
10.1039/C7RA10772B
10.1038/nmat2297
10.1002/adfm.202204306
10.1016/j.jechem.2019.06.014
10.1038/nature13970
10.1016/j.ensm.2018.03.002
10.1039/C9TA07036B
10.1016/j.jpowsour.2016.03.094
10.1039/D0MA00938E
10.1021/cr0204101
10.1016/j.ensm.2018.01.003
10.1002/adma.202004240
10.1016/j.jpowsour.2013.10.040
10.1021/acsaem.1c03575
10.1016/j.jechem.2017.08.004
10.1016/j.ceramint.2017.02.039
10.1007/s11426-021-1177-1
10.1002/adma.201102306
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SR
8BQ
8FD
H9R
JG9
KA0
DOI 10.1039/d2nj05439f
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Illustrata: Natural Sciences
Materials Research Database
ProQuest Illustrata: Technology Collection
DatabaseTitle CrossRef
Materials Research Database
ProQuest Illustrata: Natural Sciences
Engineered Materials Abstracts
ProQuest Illustrata: Technology Collection
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1369-9261
EndPage 3523
ExternalDocumentID 10_1039_D2NJ05439F
d2nj05439f
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29N
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABCQX
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
L7B
M4U
N9A
O9-
OK1
P2P
R7B
R7C
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SKH
SLH
TN5
TWZ
VH6
YNT
YQT
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
7SR
8BQ
8FD
H9R
JG9
KA0
ID FETCH-LOGICAL-c281t-50d6f7f4b201fa337ac41c68af917bb154c998d6b4b2ff234ef52191936d56b53
ISSN 1144-0546
IngestDate Mon Jun 30 09:39:00 EDT 2025
Tue Jul 01 02:51:27 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Tue Dec 17 20:58:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-50d6f7f4b201fa337ac41c68af917bb154c998d6b4b2ff234ef52191936d56b53
Notes https://doi.org/10.1039/d2nj05439f
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7422-2867
PQID 2775550241
PQPubID 2048886
PageCount 8
ParticipantIDs crossref_primary_10_1039_D2NJ05439F
rsc_primary_d2nj05439f
proquest_journals_2775550241
crossref_citationtrail_10_1039_D2NJ05439F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-13
PublicationDateYYYYMMDD 2023-02-13
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-13
  day: 13
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle New journal of chemistry
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Frank (D2NJ05439F/cit45/1) 2012; 14
Roldán (D2NJ05439F/cit13/1) 2012; 83
Aricò (D2NJ05439F/cit1/1) 2005; 4
Simon (D2NJ05439F/cit2/1) 2008; 7
Choi (D2NJ05439F/cit42/1) 2020; 30
Dong (D2NJ05439F/cit3/1) 2018; 13
Xie (D2NJ05439F/cit16/1) 2016; 66
Naguib (D2NJ05439F/cit24/1) 2014; 26
Liang (D2NJ05439F/cit21/1) 2022; 10
Yazdanparast (D2NJ05439F/cit27/1) 2020; 12
Hao (D2NJ05439F/cit40/1) 2022; 5
Naguib (D2NJ05439F/cit23/1) 2011; 23
Deysher (D2NJ05439F/cit39/1) 2018; 21
Anasori (D2NJ05439F/cit28/1) 2015; 9
Svensson (D2NJ05439F/cit47/1) 2003; 103
Yamazaki (D2NJ05439F/cit10/1) 2016; 326
Lee (D2NJ05439F/cit51/1) 2020; 8
Su (D2NJ05439F/cit35/1) 2022; 32
Tian (D2NJ05439F/cit15/1) 2017; 8
You (D2NJ05439F/cit12/1) 2017; 7
Frackowiak (D2NJ05439F/cit6/1) 2014; 172
Gogotsi (D2NJ05439F/cit26/1) 2019; 13
Yang (D2NJ05439F/cit38/1) 2022; 52
Li (D2NJ05439F/cit34/1) 2020; 42
Ghidiu (D2NJ05439F/cit43/1) 2014; 516
Sarycheva (D2NJ05439F/cit44/1) 2017; 121
Guojin (D2NJ05439F/cit32/1) 2022; 1
Li (D2NJ05439F/cit37/1) 2021; 33
Chae (D2NJ05439F/cit49/1) 2019; 11
He (D2NJ05439F/cit33/1) 2020; 78
He (D2NJ05439F/cit22/1) 2022; 65
Gorska (D2NJ05439F/cit5/1) 2018; 9
Akinwolemiwa (D2NJ05439F/cit4/1) 2017; 19
Abbas (D2NJ05439F/cit14/1) 2016; 326
Feng (D2NJ05439F/cit50/1) 2017; 43
Yang (D2NJ05439F/cit17/1) 2020; 32
Kuang (D2NJ05439F/cit29/1) 2020; 56
Su (D2NJ05439F/cit18/1) 2018; 14
Conway (D2NJ05439F/cit46/1) 1997; 65
Kshetri (D2NJ05439F/cit31/1) 2021; 117
Sun (D2NJ05439F/cit36/1) 2020; 14
Zhang (D2NJ05439F/cit48/1) 2017; 29
Long (D2NJ05439F/cit25/1) 2022; 9
Shelke (D2NJ05439F/cit11/1) 2018; 522
Xu (D2NJ05439F/cit9/1) 2018; 2
Li (D2NJ05439F/cit41/1) 2021; 2
Jeon (D2NJ05439F/cit19/1) 2020; 3
Zhao (D2NJ05439F/cit20/1) 2021; 6
Zhang (D2NJ05439F/cit30/1) 2018; 27
Akinwolemiwa (D2NJ05439F/cit7/1) 2021; 4
Yu (D2NJ05439F/cit8/1) 2014; 248
References_xml – volume: 8
  start-page: 14083
  year: 2017
  ident: D2NJ05439F/cit15/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14083
– volume: 33
  start-page: 2006897
  year: 2021
  ident: D2NJ05439F/cit37/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006897
– volume: 522
  start-page: 111
  year: 2018
  ident: D2NJ05439F/cit11/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.03.046
– volume: 117
  start-page: 100733
  year: 2021
  ident: D2NJ05439F/cit31/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100733
– volume: 9
  start-page: 2200296
  year: 2022
  ident: D2NJ05439F/cit25/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202200296
– volume: 2
  start-page: 357
  year: 2018
  ident: D2NJ05439F/cit9/1
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C7SE00492C
– volume: 9
  start-page: 9507
  year: 2015
  ident: D2NJ05439F/cit28/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03591
– volume: 30
  start-page: 2003998
  year: 2020
  ident: D2NJ05439F/cit42/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003998
– volume: 66
  start-page: 42
  year: 2016
  ident: D2NJ05439F/cit16/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2016.02.019
– volume: 13
  start-page: 8491
  year: 2019
  ident: D2NJ05439F/cit26/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06394
– volume: 26
  start-page: 992
  year: 2014
  ident: D2NJ05439F/cit24/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304138
– volume: 9
  start-page: 95
  year: 2018
  ident: D2NJ05439F/cit5/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2018.05.006
– volume: 78
  start-page: 105383
  year: 2020
  ident: D2NJ05439F/cit33/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105383
– volume: 14
  start-page: 14567
  year: 2012
  ident: D2NJ05439F/cit45/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp42763j
– volume: 4
  start-page: 366
  year: 2005
  ident: D2NJ05439F/cit1/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1368
– volume: 56
  start-page: 18
  year: 2020
  ident: D2NJ05439F/cit29/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.02.037
– volume: 19
  start-page: 47
  year: 2017
  ident: D2NJ05439F/cit4/1
  publication-title: Curr. Top. Electrochem.
– volume: 172
  start-page: 179
  year: 2014
  ident: D2NJ05439F/cit6/1
  publication-title: Faraday Discuss.
  doi: 10.1039/C4FD00052H
– volume: 326
  start-page: 580
  year: 2016
  ident: D2NJ05439F/cit10/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.021
– volume: 3
  start-page: 7844
  year: 2020
  ident: D2NJ05439F/cit19/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01230
– volume: 83
  start-page: 241
  year: 2012
  ident: D2NJ05439F/cit13/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.08.026
– volume: 1
  start-page: e9120002
  year: 2022
  ident: D2NJ05439F/cit32/1
  publication-title: Nano Res. Energy
  doi: 10.26599/NRE.2022.9120002
– volume: 52
  start-page: 29
  year: 2022
  ident: D2NJ05439F/cit38/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.07.040
– volume: 29
  start-page: 4848
  year: 2017
  ident: D2NJ05439F/cit48/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00745
– volume: 21
  start-page: 1064
  year: 2018
  ident: D2NJ05439F/cit39/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.10.035
– volume: 4
  start-page: 481
  year: 2021
  ident: D2NJ05439F/cit7/1
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12133
– volume: 121
  start-page: 19983
  year: 2017
  ident: D2NJ05439F/cit44/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b08180
– volume: 65
  start-page: 53
  year: 1997
  ident: D2NJ05439F/cit46/1
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(97)02468-3
– volume: 10
  start-page: 2821
  year: 2022
  ident: D2NJ05439F/cit21/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC04406K
– volume: 14
  start-page: 1176
  year: 2020
  ident: D2NJ05439F/cit36/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09541
– volume: 12
  start-page: 20129
  year: 2020
  ident: D2NJ05439F/cit27/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03181
– volume: 6
  start-page: 854
  year: 2021
  ident: D2NJ05439F/cit20/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02424
– volume: 11
  start-page: 8387
  year: 2019
  ident: D2NJ05439F/cit49/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR00084D
– volume: 7
  start-page: 55702
  year: 2017
  ident: D2NJ05439F/cit12/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA10772B
– volume: 7
  start-page: 845
  year: 2008
  ident: D2NJ05439F/cit2/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 32
  start-page: 2204306
  year: 2022
  ident: D2NJ05439F/cit35/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204306
– volume: 42
  start-page: 116
  year: 2020
  ident: D2NJ05439F/cit34/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.06.014
– volume: 516
  start-page: 78
  year: 2014
  ident: D2NJ05439F/cit43/1
  publication-title: Nature
  doi: 10.1038/nature13970
– volume: 14
  start-page: 129
  year: 2018
  ident: D2NJ05439F/cit18/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.03.002
– volume: 8
  start-page: 573
  year: 2020
  ident: D2NJ05439F/cit51/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07036B
– volume: 326
  start-page: 652
  year: 2016
  ident: D2NJ05439F/cit14/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.094
– volume: 2
  start-page: 1570
  year: 2021
  ident: D2NJ05439F/cit41/1
  publication-title: Mater. Adv.
  doi: 10.1039/D0MA00938E
– volume: 103
  start-page: 1649
  year: 2003
  ident: D2NJ05439F/cit47/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr0204101
– volume: 13
  start-page: 96
  year: 2018
  ident: D2NJ05439F/cit3/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.01.003
– volume: 32
  start-page: 2004240
  year: 2020
  ident: D2NJ05439F/cit17/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004240
– volume: 248
  start-page: 1123
  year: 2014
  ident: D2NJ05439F/cit8/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.10.040
– volume: 5
  start-page: 2898
  year: 2022
  ident: D2NJ05439F/cit40/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c03575
– volume: 27
  start-page: 73
  year: 2018
  ident: D2NJ05439F/cit30/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.08.004
– volume: 43
  start-page: 6322
  year: 2017
  ident: D2NJ05439F/cit50/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.02.039
– volume: 65
  start-page: 391
  year: 2022
  ident: D2NJ05439F/cit22/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-021-1177-1
– volume: 23
  start-page: 4248
  year: 2011
  ident: D2NJ05439F/cit23/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
SSID ssj0011761
Score 2.4116044
Snippet The application of MXenes in redox-enhanced electrochemical capacitors (Redox ECs) for suppressing self-discharge caused by the shuttling of redox species in...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3516
SubjectTerms Aging
Capacitors
Confinement
Discharge
Electric potential
Glass fibers
Interlayers
MXenes
Self-assembly
Separators
Voltage
Title MXene-based separators for redox-enhanced electric capacitors with a suppressed shuttle effect and self-discharge: the effect of MXene ageing
URI https://www.proquest.com/docview/2775550241
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 1369-9261
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011761
  issn: 1144-0546
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gFeELeJwkCW4AVVhsVOnJq3aWwaE5uE1InyFCW-qN2mdFoaCe0_7IfwLzmO7SSFPgxeosqxkzTn87nE53xG6J3UiTQGJlIitSCxUhEpIiHIREidJnmaK2qrkU_P-PF5fDJLZoPBr17WUr0qPsjbjXUl_yNVaAO52irZf5Bse1FogN8gXziChOF4LxmfzkBTEWuI1LjSDYu33TvHZg5aHtCfRJdzt8LvdrtZyLEE4ygXTTdX1jau6usmGdZeY15bSmOf5NGsK1T6yhBbumsZlfR6FkiTPmMfYQxKKZjAi44OqsdKIcO-cp3Ga9TdN0DnZd0C9If_ev1dL9pMoYVrsGllrQWpXZnRspprf1v_4YLa5WLi6k69roVYjoDH6JmwXRvjggjq-NmDgnaUnB6IaU_bsiTiPcsNviTbaBX2mCVV_UzPTuB2TBx1ti-s9_9hEttExWaJnomsG7uFtmnKOR2i7f3D6Zev7ZJVlDpy3vCvAhcuEx-70eveTxfSbN2E_WYav2b6GD3yAQned-h6gga6fIoeHAR5PUN3PZThDmUYUIbXUYYDynCHMmxRhnPcoQx7lGEHIgwow-so-4QBY-H00uDmAbDD2HN0fnQ4PTgmfhMPIukkWpFkT3GTmrgAT9PkjKW5jCPJJ7kRUVoU4MFLiPgVL6CHMZTF2oBHKSCu4CrhRcJ20LBclvoFwipRKjeFkIqzmCs1yaHByFhJA-9WRyP0PrzcTHqGe7vRylX2txhH6G3b99rxumzstRtklPk5U2U0TROI68H1HaEdkFs7XtHyohlnXt7r6q_Qw25e7KLh6qbWr8HFXRVvPLh-A67Zq3Q
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MXene-based+separators+for+redox-enhanced+electric+capacitors+with+a+suppressed+shuttle+effect+and+self-discharge%3A+the+effect+of+MXene+ageing&rft.jtitle=New+journal+of+chemistry&rft.au=Han%2C+Qiankun&rft.au=Yang%2C+Wei&rft.au=Li%2C+Wenshi&rft.au=Wu%2C+Maosheng&rft.date=2023-02-13&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=47&rft.issue=7&rft.spage=3516&rft.epage=3523&rft_id=info:doi/10.1039%2FD2NJ05439F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2NJ05439F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon