Conjugated microporous polytriphenylamine as a high-performance anion-capture electrode for hybrid capacitive deionization with ultrahigh areal adsorption capacity
Conducting polymers with good electron conductivity and rich redox functional groups have attracted considerable attention as anode materials for capacitive deionization (CDI) towards overcoming global freshwater scarcity. However, because of their intrinsically poor porosity and severe particle agg...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 12; no. 32; pp. 21124 - 21133 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
13.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 |
DOI | 10.1039/d4ta04010d |
Cover
Abstract | Conducting polymers with good electron conductivity and rich redox functional groups have attracted considerable attention as anode materials for capacitive deionization (CDI) towards overcoming global freshwater scarcity. However, because of their intrinsically poor porosity and severe particle aggregation nature, conducting polymers used for CDI desalination suffer the disadvantage of low specific surface areas (<50 m
2
g
−1
), sluggish ion diffusion kinetics, limited desalination capacities, and low mass loadings (∼1 mg cm
−2
) on electrodes. Herein, we synthesized amino group-rich conjugated microporous polytriphenylamine (m-PTPA) and for the first time demonstrated its great potential as a high-performance anion-capture electrode material in CDI applications. m-PTPA possesses reversible redox properties, predominant microporous characteristics (<2 nm diameter), and ultrahigh specific surface area (506 m
2
g
−1
), which ensured fast ion transport within the interconnected porous network and maximized the exposure of electrochemical active sites to saline solutions. Owing to these novel features, an m-PTPA-based CDI device, with m-PTPA as the anode at a high mass loading of 8.7 mg cm
−2
and activated carbon as the cathode, exhibited high gravimetric/areal/volumetric-normalized salt adsorption capacities (47.21 mg g
−1
, 0.41 mg cm
−2
, and 10.92 mg cm
−3
, respectively), fast adsorption rate (2.83 mg g
−1
min
−1
), low energy consumption, and excellent cycling stability. Besides, we evaluated the competitive adsorption of some common anions existing in water and probed the mechanism for Cl
−
adsorption on m-PTPA. We believe that this work paves a new way for the use of conjugated microporous polymers as a new type of CDI electrode material.
We report conjugated microporous polytriphenylamine as a high-performance anion-capture electrode for capacitive deionization (CDI), thus opening a new pathway for the rational design of advanced polymer-based anodes in CDI and beyond. |
---|---|
AbstractList | Conducting polymers with good electron conductivity and rich redox functional groups have attracted considerable attention as anode materials for capacitive deionization (CDI) towards overcoming global freshwater scarcity. However, because of their intrinsically poor porosity and severe particle aggregation nature, conducting polymers used for CDI desalination suffer the disadvantage of low specific surface areas (<50 m
2
g
−1
), sluggish ion diffusion kinetics, limited desalination capacities, and low mass loadings (∼1 mg cm
−2
) on electrodes. Herein, we synthesized amino group-rich conjugated microporous polytriphenylamine (m-PTPA) and for the first time demonstrated its great potential as a high-performance anion-capture electrode material in CDI applications. m-PTPA possesses reversible redox properties, predominant microporous characteristics (<2 nm diameter), and ultrahigh specific surface area (506 m
2
g
−1
), which ensured fast ion transport within the interconnected porous network and maximized the exposure of electrochemical active sites to saline solutions. Owing to these novel features, an m-PTPA-based CDI device, with m-PTPA as the anode at a high mass loading of 8.7 mg cm
−2
and activated carbon as the cathode, exhibited high gravimetric/areal/volumetric-normalized salt adsorption capacities (47.21 mg g
−1
, 0.41 mg cm
−2
, and 10.92 mg cm
−3
, respectively), fast adsorption rate (2.83 mg g
−1
min
−1
), low energy consumption, and excellent cycling stability. Besides, we evaluated the competitive adsorption of some common anions existing in water and probed the mechanism for Cl
−
adsorption on m-PTPA. We believe that this work paves a new way for the use of conjugated microporous polymers as a new type of CDI electrode material. Conducting polymers with good electron conductivity and rich redox functional groups have attracted considerable attention as anode materials for capacitive deionization (CDI) towards overcoming global freshwater scarcity. However, because of their intrinsically poor porosity and severe particle aggregation nature, conducting polymers used for CDI desalination suffer the disadvantage of low specific surface areas (<50 m 2 g −1 ), sluggish ion diffusion kinetics, limited desalination capacities, and low mass loadings (∼1 mg cm −2 ) on electrodes. Herein, we synthesized amino group-rich conjugated microporous polytriphenylamine (m-PTPA) and for the first time demonstrated its great potential as a high-performance anion-capture electrode material in CDI applications. m-PTPA possesses reversible redox properties, predominant microporous characteristics (<2 nm diameter), and ultrahigh specific surface area (506 m 2 g −1 ), which ensured fast ion transport within the interconnected porous network and maximized the exposure of electrochemical active sites to saline solutions. Owing to these novel features, an m-PTPA-based CDI device, with m-PTPA as the anode at a high mass loading of 8.7 mg cm −2 and activated carbon as the cathode, exhibited high gravimetric/areal/volumetric-normalized salt adsorption capacities (47.21 mg g −1 , 0.41 mg cm −2 , and 10.92 mg cm −3 , respectively), fast adsorption rate (2.83 mg g −1 min −1 ), low energy consumption, and excellent cycling stability. Besides, we evaluated the competitive adsorption of some common anions existing in water and probed the mechanism for Cl − adsorption on m-PTPA. We believe that this work paves a new way for the use of conjugated microporous polymers as a new type of CDI electrode material. We report conjugated microporous polytriphenylamine as a high-performance anion-capture electrode for capacitive deionization (CDI), thus opening a new pathway for the rational design of advanced polymer-based anodes in CDI and beyond. Conducting polymers with good electron conductivity and rich redox functional groups have attracted considerable attention as anode materials for capacitive deionization (CDI) towards overcoming global freshwater scarcity. However, because of their intrinsically poor porosity and severe particle aggregation nature, conducting polymers used for CDI desalination suffer the disadvantage of low specific surface areas (<50 m2 g−1), sluggish ion diffusion kinetics, limited desalination capacities, and low mass loadings (∼1 mg cm−2) on electrodes. Herein, we synthesized amino group-rich conjugated microporous polytriphenylamine (m-PTPA) and for the first time demonstrated its great potential as a high-performance anion-capture electrode material in CDI applications. m-PTPA possesses reversible redox properties, predominant microporous characteristics (<2 nm diameter), and ultrahigh specific surface area (506 m2 g−1), which ensured fast ion transport within the interconnected porous network and maximized the exposure of electrochemical active sites to saline solutions. Owing to these novel features, an m-PTPA-based CDI device, with m-PTPA as the anode at a high mass loading of 8.7 mg cm−2 and activated carbon as the cathode, exhibited high gravimetric/areal/volumetric-normalized salt adsorption capacities (47.21 mg g−1, 0.41 mg cm−2, and 10.92 mg cm−3, respectively), fast adsorption rate (2.83 mg g−1 min−1), low energy consumption, and excellent cycling stability. Besides, we evaluated the competitive adsorption of some common anions existing in water and probed the mechanism for Cl− adsorption on m-PTPA. We believe that this work paves a new way for the use of conjugated microporous polymers as a new type of CDI electrode material. |
Author | Jin, Xiaoyu Ge, Xu Lu, Xiaoyuan Feng, Yuanyuan Zhang, Qingao Zhang, Meng Kong, Weiqing |
AuthorAffiliation | Qufu Normal University Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province College of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – sequence: 0 name: Qufu Normal University – sequence: 0 name: Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province – sequence: 0 name: College of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Weiqing surname: Kong fullname: Kong, Weiqing – sequence: 2 givenname: Xiaoyuan surname: Lu fullname: Lu, Xiaoyuan – sequence: 3 givenname: Xu surname: Ge fullname: Ge, Xu – sequence: 4 givenname: Qingao surname: Zhang fullname: Zhang, Qingao – sequence: 5 givenname: Xiaoyu surname: Jin fullname: Jin, Xiaoyu – sequence: 6 givenname: Meng surname: Zhang fullname: Zhang, Meng – sequence: 7 givenname: Yuanyuan surname: Feng fullname: Feng, Yuanyuan |
BookMark | eNptkUFr3DAQhUXZQNMkl9wLgt4KbiXL9lrHZbdJCgu5JGczluRYi1dyR3KL83f6R6PdDSmU6DJC880bnt4nsnDeGUKuOfvGmZDfdRGBFYwz_YGc56xk2bKQ1eLtXtcfyVUIO5ZOzVgl5Tn5u_ZuNz1BNJrurUI_evRToKMf5oh27I2bB9hbZygECrS3T302Guw87sGp9Oqsd5mCMU5oqBmMiui1oQmg_dyi1TQ1QdlofxuqTaLtM8RU6B8bezoNEeGgSgENDBR08Dge-69z8yU562AI5uq1XpDHmx8P67tse3_7c73aZiqvecx4K1rFSr00NdO5LERddlDmRafySmpRccE7IYC3oFuuZVfLpeKSVyUInauciQvy5aQ7ov81mRCbnZ_QpZWNYDIXleTLA_X1RKXPCgFN14xo94Bzw1lzyKHZFA-rYw6bBLP_4GTo6D65tsP7I59PIxjUm_S_aMULChua8Q |
CitedBy_id | crossref_primary_10_1016_j_desal_2024_118486 crossref_primary_10_1016_j_cej_2024_157769 crossref_primary_10_1016_j_jwpe_2024_106508 crossref_primary_10_1002_smll_202409342 |
Cites_doi | 10.1016/j.seppur.2021.119379 10.1002/anie.202111823 10.1016/j.desal.2016.07.029 10.1016/j.jpowsour.2020.227868 10.1016/j.seppur.2020.117667 10.1002/ente.201900835 10.1002/pola.29239 10.1002/er.5142 10.1002/anie.202302180 10.1002/adma.201705710 10.1039/C9TA03570B 10.1016/j.desal.2023.116452 10.1002/smll.202402057 10.1002/anie.201905488 10.1016/j.desal.2014.03.041 10.1021/acsami.8b08232 10.1007/s40820-022-00790-z 10.1021/acsnano.8b08046 10.1016/j.seppur.2022.120807 10.1016/j.pmatsci.2013.03.005 10.1021/acs.nanolett.7b00533 10.1038/s41467-023-35809-5 10.1016/j.watres.2018.11.064 10.1039/C4RA14401E 10.1016/S0079-6700(97)00030-0 10.1039/D0TA05563H 10.1021/acsami.5b00504 10.1016/j.cej.2021.133578 10.1021/ja8010176 10.1016/j.jhazmat.2017.05.041 10.1039/C4CC03026E 10.1002/(SICI)1521-4095(199910)11:15<1270::AID-ADMA1270>3.0.CO;2-E 10.1515/pac-2014-1117 10.1016/j.seppur.2020.118175 10.1002/marc.201900455 10.1021/acs.macromol.6b00901 10.1016/j.ceramint.2020.03.034 10.1002/adfm.201701264 10.1002/marc.202300238 10.1002/asia.201701107 10.1016/j.desal.2020.114662 10.1016/j.desal.2023.117222 10.1038/s41578-020-0193-1 10.1002/adfm.202213578 10.1016/j.jcis.2020.08.091 10.1016/j.seppur.2024.127510 10.1021/acs.est.9b07182 10.1016/j.jelechem.2020.114703 10.1021/ma0491053 10.1016/j.partic.2021.03.001 10.1021/acsnano.1c03417 10.1016/j.desal.2017.08.010 10.1021/am402436q 10.1126/science.aam5852 10.1002/adma.202204388 10.1021/acsami.2c07775 10.1002/aenm.201903325 10.1007/s41918-020-00093-0 10.1039/D0TA01102A 10.1002/adma.202101857 10.1002/advs.202002213 10.1116/6.0003081 10.1002/ese3.50 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d4ta04010d |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 21133 |
ExternalDocumentID | 10_1039_D4TA04010D d4ta04010d |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c281t-1b3bc05d7e80d294385fa524fc269d36131f33a1badb1d9f897c19165a3d2c203 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 12:05:27 EDT 2025 Tue Jul 01 03:28:19 EDT 2025 Thu Apr 24 22:51:11 EDT 2025 Tue Dec 17 20:57:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-1b3bc05d7e80d294385fa524fc269d36131f33a1badb1d9f897c19165a3d2c203 |
Notes | https://doi.org/10.1039/d4ta04010d Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0687-8389 0000-0003-2078-0086 0000-0002-3203-6919 |
PQID | 3092369170 |
PQPubID | 2047523 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1039_D4TA04010D proquest_journals_3092369170 crossref_primary_10_1039_D4TA04010D rsc_primary_d4ta04010d |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-13 |
PublicationDateYYYYMMDD | 2024-08-13 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Li (D4TA04010D/cit3/1) 2020; 7 Zhu (D4TA04010D/cit45/1) 2020; 44 Qian (D4TA04010D/cit44/1) 2017; 338 Yan (D4TA04010D/cit11/1) 2014; 344 Wang (D4TA04010D/cit52/1) 2021; 254 Thommes (D4TA04010D/cit39/1) 2015; 87 Zornitta (D4TA04010D/cit12/1) 2022; 290 Le (D4TA04010D/cit36/1) 2023; 14 Sun (D4TA04010D/cit1/1) 2023; 33 Yousef (D4TA04010D/cit56/1) 2020; 46 Kong (D4TA04010D/cit62/1) 2019; 7 Zhao (D4TA04010D/cit57/1) 2021; 259 Tang (D4TA04010D/cit60/1) 2019; 150 Bard (D4TA04010D/cit63/1) 2001 Tan (D4TA04010D/cit67/1) 2022; 14 Zuo (D4TA04010D/cit34/1) 2024; 45 Zhang (D4TA04010D/cit10/1) 2021; 8 Ni (D4TA04010D/cit42/1) 2015; 5 Li (D4TA04010D/cit18/1) 2021; 60 Yan (D4TA04010D/cit19/1) 2017; 27 Liao (D4TA04010D/cit33/1) 2018; 30 Tsai (D4TA04010D/cit5/1) 2016; 398 Porada (D4TA04010D/cit66/1) 2013; 58 Shown (D4TA04010D/cit64/1) 2015; 3 Kong (D4TA04010D/cit8/1) 2024; 573 Zhang (D4TA04010D/cit25/1) 2021; 33 Tan (D4TA04010D/cit16/1) 2020; 54 Liao (D4TA04010D/cit29/1) 2014; 50 Ma (D4TA04010D/cit35/1) 2020; 453 Kang (D4TA04010D/cit65/1) 1998; 23 Sun (D4TA04010D/cit24/1) 2017; 356 Liu (D4TA04010D/cit23/1) 2018; 10 Yoon (D4TA04010D/cit7/1) 2017; 422 Miao (D4TA04010D/cit40/1) 2024; 346 Cooper (D4TA04010D/cit50/1) 1999; 11 Kumar (D4TA04010D/cit14/1) 2023; 62 Zhang (D4TA04010D/cit31/1) 2019; 13 Chen (D4TA04010D/cit32/1) 2020; 8 Bagus (D4TA04010D/cit61/1) 2023; 41 Liao (D4TA04010D/cit41/1) 2016; 49 Tang (D4TA04010D/cit22/1) 2013; 5 Macintyre (D4TA04010D/cit49/1) 2004; 37 Wu (D4TA04010D/cit26/1) 2021; 4 Wang (D4TA04010D/cit9/1) 2022; 433 Zhou (D4TA04010D/cit38/1) 2018; 13 Kong (D4TA04010D/cit13/1) 2023; 553 Vafakhah (D4TA04010D/cit28/1) 2020; 493 Yang (D4TA04010D/cit17/1) 2021; 276 Zhong (D4TA04010D/cit55/1) 2022; 14 Zhang (D4TA04010D/cit54/1) 2020; 10 Chen (D4TA04010D/cit59/1) 2018; 56 Yue (D4TA04010D/cit6/1) 2019; 7 Luo (D4TA04010D/cit37/1) 2020; 8 Lide (D4TA04010D/cit46/1) 2004 Zhang (D4TA04010D/cit2/1) 2020; 878 Chen (D4TA04010D/cit30/1) 2019; 58 Kong (D4TA04010D/cit53/1) 2024 Li (D4TA04010D/cit43/1) 2019; 40 Zhang (D4TA04010D/cit51/1) 2017; 17 Chen (D4TA04010D/cit47/1) 2019; 58 Qi (D4TA04010D/cit21/1) 2022; 60 Liu (D4TA04010D/cit4/1) 2021; 15 Zhou (D4TA04010D/cit20/1) 2022; 34 Srimuk (D4TA04010D/cit27/1) 2020; 5 Jiang (D4TA04010D/cit48/1) 2008; 130 Feng (D4TA04010D/cit58/1) 2021; 582 Sekar (D4TA04010D/cit15/1) 2015; 7 |
References_xml | – issn: 2001 publication-title: Electrochemical Methods: Fundamentals and Applications doi: Bard Faulkner – issn: 2004 publication-title: CRC Handbook of Chemistry and Physics doi: Lide – volume: 276 start-page: 119379 year: 2021 ident: D4TA04010D/cit17/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119379 – volume: 60 start-page: 26528 year: 2021 ident: D4TA04010D/cit18/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202111823 – volume: 398 start-page: 171 year: 2016 ident: D4TA04010D/cit5/1 publication-title: Desalination doi: 10.1016/j.desal.2016.07.029 – volume: 453 start-page: 227868 year: 2020 ident: D4TA04010D/cit35/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.227868 – volume: 254 start-page: 117667 year: 2021 ident: D4TA04010D/cit52/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117667 – volume: 7 start-page: 1900835 year: 2019 ident: D4TA04010D/cit62/1 publication-title: Energy Technol. doi: 10.1002/ente.201900835 – volume: 56 start-page: 2574 year: 2018 ident: D4TA04010D/cit59/1 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.29239 – volume: 44 start-page: 3215 year: 2020 ident: D4TA04010D/cit45/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.5142 – volume: 62 start-page: e202302180 year: 2023 ident: D4TA04010D/cit14/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202302180 – volume: 30 start-page: 1705710 year: 2018 ident: D4TA04010D/cit33/1 publication-title: Adv. Mater. doi: 10.1002/adma.201705710 – volume: 7 start-page: 16892 year: 2019 ident: D4TA04010D/cit6/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03570B – volume: 553 start-page: 116452 year: 2023 ident: D4TA04010D/cit13/1 publication-title: Desalination doi: 10.1016/j.desal.2023.116452 – start-page: 2402057 year: 2024 ident: D4TA04010D/cit53/1 publication-title: Small doi: 10.1002/smll.202402057 – volume: 58 start-page: 11715 year: 2019 ident: D4TA04010D/cit30/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905488 – volume: 344 start-page: 274 year: 2014 ident: D4TA04010D/cit11/1 publication-title: Desalination doi: 10.1016/j.desal.2014.03.041 – volume: 10 start-page: 31260 year: 2018 ident: D4TA04010D/cit23/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b08232 – volume: 14 start-page: 50 year: 2022 ident: D4TA04010D/cit55/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00790-z – volume: 13 start-page: 745 year: 2019 ident: D4TA04010D/cit31/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b08046 – volume: 290 start-page: 120807 year: 2022 ident: D4TA04010D/cit12/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120807 – volume: 58 start-page: 1388 year: 2013 ident: D4TA04010D/cit66/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.03.005 – volume: 17 start-page: 3097 year: 2017 ident: D4TA04010D/cit51/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00533 – volume: 14 start-page: 171 year: 2023 ident: D4TA04010D/cit36/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-35809-5 – volume: 150 start-page: 225 year: 2019 ident: D4TA04010D/cit60/1 publication-title: Water Res. doi: 10.1016/j.watres.2018.11.064 – volume: 5 start-page: 9221 year: 2015 ident: D4TA04010D/cit42/1 publication-title: RSC Adv. doi: 10.1039/C4RA14401E – volume: 23 start-page: 277 year: 1998 ident: D4TA04010D/cit65/1 publication-title: Prog. Polym. Sci. doi: 10.1016/S0079-6700(97)00030-0 – volume: 8 start-page: 22657 year: 2020 ident: D4TA04010D/cit32/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05563H – volume: 7 start-page: 7661 year: 2015 ident: D4TA04010D/cit15/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00504 – volume: 433 start-page: 133578 year: 2022 ident: D4TA04010D/cit9/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133578 – volume: 130 start-page: 7710 year: 2008 ident: D4TA04010D/cit48/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8010176 – volume: 338 start-page: 224 year: 2017 ident: D4TA04010D/cit44/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.05.041 – volume: 50 start-page: 8002 year: 2014 ident: D4TA04010D/cit29/1 publication-title: Chem. Commun. doi: 10.1039/C4CC03026E – volume: 11 start-page: 1270 year: 1999 ident: D4TA04010D/cit50/1 publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(199910)11:15<1270::AID-ADMA1270>3.0.CO;2-E – volume: 87 start-page: 1051 year: 2015 ident: D4TA04010D/cit39/1 publication-title: Pure Appl. Chem. doi: 10.1515/pac-2014-1117 – volume: 259 start-page: 118175 year: 2021 ident: D4TA04010D/cit57/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.118175 – volume: 40 start-page: 1900455 year: 2019 ident: D4TA04010D/cit43/1 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201900455 – volume: 49 start-page: 6322 year: 2016 ident: D4TA04010D/cit41/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.6b00901 – volume: 46 start-page: 15034 year: 2020 ident: D4TA04010D/cit56/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.03.034 – volume: 27 start-page: 1701264 year: 2017 ident: D4TA04010D/cit19/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701264 – volume: 45 start-page: 2300238 year: 2024 ident: D4TA04010D/cit34/1 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.202300238 – volume-title: Electrochemical Methods: Fundamentals and Applications year: 2001 ident: D4TA04010D/cit63/1 – volume: 13 start-page: 9 year: 2018 ident: D4TA04010D/cit38/1 publication-title: Chem.–Asian J. doi: 10.1002/asia.201701107 – volume: 493 start-page: 114662 year: 2020 ident: D4TA04010D/cit28/1 publication-title: Desalination doi: 10.1016/j.desal.2020.114662 – volume: 573 start-page: 117222 year: 2024 ident: D4TA04010D/cit8/1 publication-title: Desalination doi: 10.1016/j.desal.2023.117222 – volume: 5 start-page: 517 year: 2020 ident: D4TA04010D/cit27/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0193-1 – volume: 33 start-page: 2213578 year: 2023 ident: D4TA04010D/cit1/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202213578 – volume: 582 start-page: 447 year: 2021 ident: D4TA04010D/cit58/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.08.091 – volume: 346 start-page: 127510 year: 2024 ident: D4TA04010D/cit40/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.127510 – volume: 54 start-page: 5843 year: 2020 ident: D4TA04010D/cit16/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b07182 – volume: 878 start-page: 114703 year: 2020 ident: D4TA04010D/cit2/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2020.114703 – volume: 8 start-page: 1886 year: 2021 ident: D4TA04010D/cit10/1 publication-title: Environ. Sci.: Nano – volume: 37 start-page: 7628 year: 2004 ident: D4TA04010D/cit49/1 publication-title: Macromolecules doi: 10.1021/ma0491053 – volume: 60 start-page: 1 year: 2022 ident: D4TA04010D/cit21/1 publication-title: Particuology doi: 10.1016/j.partic.2021.03.001 – volume: 15 start-page: 13924 year: 2021 ident: D4TA04010D/cit4/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c03417 – volume: 422 start-page: 42 year: 2017 ident: D4TA04010D/cit7/1 publication-title: Desalination doi: 10.1016/j.desal.2017.08.010 – volume: 5 start-page: 10574 year: 2013 ident: D4TA04010D/cit22/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402436q – volume: 356 start-page: 599 year: 2017 ident: D4TA04010D/cit24/1 publication-title: Science doi: 10.1126/science.aam5852 – volume: 34 start-page: 2204388 year: 2022 ident: D4TA04010D/cit20/1 publication-title: Adv. Mater. doi: 10.1002/adma.202204388 – volume: 14 start-page: 37259 year: 2022 ident: D4TA04010D/cit67/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c07775 – volume: 58 start-page: 11715 year: 2019 ident: D4TA04010D/cit47/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905488 – volume: 10 start-page: 1903325 year: 2020 ident: D4TA04010D/cit54/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903325 – volume-title: CRC Handbook of Chemistry and Physics year: 2004 ident: D4TA04010D/cit46/1 – volume: 4 start-page: 382 year: 2021 ident: D4TA04010D/cit26/1 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-020-00093-0 – volume: 8 start-page: 6434 year: 2020 ident: D4TA04010D/cit37/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01102A – volume: 33 start-page: 2101857 year: 2021 ident: D4TA04010D/cit25/1 publication-title: Adv. Mater. doi: 10.1002/adma.202101857 – volume: 7 start-page: 2002213 year: 2020 ident: D4TA04010D/cit3/1 publication-title: Adv. Sci. doi: 10.1002/advs.202002213 – volume: 41 start-page: 068501 year: 2023 ident: D4TA04010D/cit61/1 publication-title: J. Vac. Sci. Technol., A doi: 10.1116/6.0003081 – volume: 3 start-page: 2 year: 2015 ident: D4TA04010D/cit64/1 publication-title: Energy Sci. Eng. doi: 10.1002/ese3.50 |
SSID | ssj0000800699 |
Score | 2.473851 |
Snippet | Conducting polymers with good electron conductivity and rich redox functional groups have attracted considerable attention as anode materials for capacitive... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 21124 |
SubjectTerms | Activated carbon Adsorption Anions Anodes Competitive materials Conducting polymers Deionization Desalination Electrochemistry Electrode materials Electrodes Electron conductivity Energy consumption Functional groups Ion diffusion Ion transport Polymers Porosity Redox properties Saline solutions Specific surface Surface area Water scarcity |
Title | Conjugated microporous polytriphenylamine as a high-performance anion-capture electrode for hybrid capacitive deionization with ultrahigh areal adsorption capacity |
URI | https://www.proquest.com/docview/3092369170 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 2050-7496 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800699 issn: 2050-7488 databaseCode: AETIL dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbW7gWEELeJwkCWQEgoykjsXJrHaus0oAwhpaJvkWOn2lBpujZ5KH-HP8o5sXMpnRDwErWOnaQ5X48_H58LIa-lK52Mu7BSVZLZHmPCjrIwsrnnCJ-HIQ9SjEb-dBlcTL0PM3920LvX8Voqi_RE_rg1ruR_pAptIFeMkv0HyTYXhQb4DPKFI0gYjn8l49N8-a1EO5iyvqNjHXBp9Ghd5YttAcrgKltuQeDII8XGEhamJrZXO5EC8Gi2FKtqG8FUxFE6DfjVFmO5LDgppPYvUhnabnXYprbflosCdBVc1RJrTFAs1CZfax1kxu1sGnfIL_Bk_YIsWVecO7FGOnioPlMlI9ehiZV1vw71Qm_eZiPgo3Ep_ppd39SzMPoXldg4uxb5tmzxPyv1NsCetfwLFgbPuxYQ5qFJVwewGtcptLPUTq6VE4t58FaXMsd3MG2qVvVZt00X1G0mA9YBvbG81qrd1dHehifAd53CY28ScjjmcFVeIUBDuo5qp9raveDyc3I-nUySeDyL36xubCyChs4CpiJMjxyyMAhYnxyOxvH7SWM0RHofVDVRmx9Up9zl0bv2jrskq1059dZ1WZuKPsUPyH0jejrSIH5IDrLlI3K3kw3zMfnZwpl24Ez34UzFhgr6O5zpDpxpA2cKHaiGM23hTLtwpghn2sCZVnCmLZzrcdsnZHo-jk8vbFNDxJZs6Ba2m_JUOr4Ks6GjWOTxoT8XPvPmkgWR4kBm3Tnnwk2FSl0VzYdRKF1YMvmCKyaZw49If5kvs6eEArNnXLIsANYNiwwxDICaC-AKAjM6sXBA3tYvPZEmwT7WeVkklaMHj5IzLx5VAjobkFdN35VOK3Nrr-NadolRO5uEO7AmCyI3dAbkCOTZjG_F_-zP456TO-3f6Jj0i3WZvQBqXaQvDeB-AW2b3Ck |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conjugated+microporous+polytriphenylamine+as+a+high-performance+anion-capture+electrode+for+hybrid+capacitive+deionization+with+ultrahigh+areal+adsorption+capacity&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Kong%2C+Weiqing&rft.au=Lu%2C+Xiaoyuan&rft.au=Xu%2C+Ge&rft.au=Zhang%2C+Qingao&rft.date=2024-08-13&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=12&rft.issue=32&rft.spage=21124&rft.epage=21133&rft_id=info:doi/10.1039%2Fd4ta04010d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |