Conjugated microporous polytriphenylamine as a high-performance anion-capture electrode for hybrid capacitive deionization with ultrahigh areal adsorption capacity

Conducting polymers with good electron conductivity and rich redox functional groups have attracted considerable attention as anode materials for capacitive deionization (CDI) towards overcoming global freshwater scarcity. However, because of their intrinsically poor porosity and severe particle agg...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 12; no. 32; pp. 21124 - 21133
Main Authors Kong, Weiqing, Lu, Xiaoyuan, Ge, Xu, Zhang, Qingao, Jin, Xiaoyu, Zhang, Meng, Feng, Yuanyuan
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 13.08.2024
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
DOI10.1039/d4ta04010d

Cover

Abstract Conducting polymers with good electron conductivity and rich redox functional groups have attracted considerable attention as anode materials for capacitive deionization (CDI) towards overcoming global freshwater scarcity. However, because of their intrinsically poor porosity and severe particle aggregation nature, conducting polymers used for CDI desalination suffer the disadvantage of low specific surface areas (<50 m 2 g −1 ), sluggish ion diffusion kinetics, limited desalination capacities, and low mass loadings (∼1 mg cm −2 ) on electrodes. Herein, we synthesized amino group-rich conjugated microporous polytriphenylamine (m-PTPA) and for the first time demonstrated its great potential as a high-performance anion-capture electrode material in CDI applications. m-PTPA possesses reversible redox properties, predominant microporous characteristics (<2 nm diameter), and ultrahigh specific surface area (506 m 2 g −1 ), which ensured fast ion transport within the interconnected porous network and maximized the exposure of electrochemical active sites to saline solutions. Owing to these novel features, an m-PTPA-based CDI device, with m-PTPA as the anode at a high mass loading of 8.7 mg cm −2 and activated carbon as the cathode, exhibited high gravimetric/areal/volumetric-normalized salt adsorption capacities (47.21 mg g −1 , 0.41 mg cm −2 , and 10.92 mg cm −3 , respectively), fast adsorption rate (2.83 mg g −1 min −1 ), low energy consumption, and excellent cycling stability. Besides, we evaluated the competitive adsorption of some common anions existing in water and probed the mechanism for Cl − adsorption on m-PTPA. We believe that this work paves a new way for the use of conjugated microporous polymers as a new type of CDI electrode material. We report conjugated microporous polytriphenylamine as a high-performance anion-capture electrode for capacitive deionization (CDI), thus opening a new pathway for the rational design of advanced polymer-based anodes in CDI and beyond.
AbstractList Conducting polymers with good electron conductivity and rich redox functional groups have attracted considerable attention as anode materials for capacitive deionization (CDI) towards overcoming global freshwater scarcity. However, because of their intrinsically poor porosity and severe particle aggregation nature, conducting polymers used for CDI desalination suffer the disadvantage of low specific surface areas (<50 m 2 g −1 ), sluggish ion diffusion kinetics, limited desalination capacities, and low mass loadings (∼1 mg cm −2 ) on electrodes. Herein, we synthesized amino group-rich conjugated microporous polytriphenylamine (m-PTPA) and for the first time demonstrated its great potential as a high-performance anion-capture electrode material in CDI applications. m-PTPA possesses reversible redox properties, predominant microporous characteristics (<2 nm diameter), and ultrahigh specific surface area (506 m 2 g −1 ), which ensured fast ion transport within the interconnected porous network and maximized the exposure of electrochemical active sites to saline solutions. Owing to these novel features, an m-PTPA-based CDI device, with m-PTPA as the anode at a high mass loading of 8.7 mg cm −2 and activated carbon as the cathode, exhibited high gravimetric/areal/volumetric-normalized salt adsorption capacities (47.21 mg g −1 , 0.41 mg cm −2 , and 10.92 mg cm −3 , respectively), fast adsorption rate (2.83 mg g −1 min −1 ), low energy consumption, and excellent cycling stability. Besides, we evaluated the competitive adsorption of some common anions existing in water and probed the mechanism for Cl − adsorption on m-PTPA. We believe that this work paves a new way for the use of conjugated microporous polymers as a new type of CDI electrode material.
Conducting polymers with good electron conductivity and rich redox functional groups have attracted considerable attention as anode materials for capacitive deionization (CDI) towards overcoming global freshwater scarcity. However, because of their intrinsically poor porosity and severe particle aggregation nature, conducting polymers used for CDI desalination suffer the disadvantage of low specific surface areas (<50 m 2 g −1 ), sluggish ion diffusion kinetics, limited desalination capacities, and low mass loadings (∼1 mg cm −2 ) on electrodes. Herein, we synthesized amino group-rich conjugated microporous polytriphenylamine (m-PTPA) and for the first time demonstrated its great potential as a high-performance anion-capture electrode material in CDI applications. m-PTPA possesses reversible redox properties, predominant microporous characteristics (<2 nm diameter), and ultrahigh specific surface area (506 m 2 g −1 ), which ensured fast ion transport within the interconnected porous network and maximized the exposure of electrochemical active sites to saline solutions. Owing to these novel features, an m-PTPA-based CDI device, with m-PTPA as the anode at a high mass loading of 8.7 mg cm −2 and activated carbon as the cathode, exhibited high gravimetric/areal/volumetric-normalized salt adsorption capacities (47.21 mg g −1 , 0.41 mg cm −2 , and 10.92 mg cm −3 , respectively), fast adsorption rate (2.83 mg g −1 min −1 ), low energy consumption, and excellent cycling stability. Besides, we evaluated the competitive adsorption of some common anions existing in water and probed the mechanism for Cl − adsorption on m-PTPA. We believe that this work paves a new way for the use of conjugated microporous polymers as a new type of CDI electrode material. We report conjugated microporous polytriphenylamine as a high-performance anion-capture electrode for capacitive deionization (CDI), thus opening a new pathway for the rational design of advanced polymer-based anodes in CDI and beyond.
Conducting polymers with good electron conductivity and rich redox functional groups have attracted considerable attention as anode materials for capacitive deionization (CDI) towards overcoming global freshwater scarcity. However, because of their intrinsically poor porosity and severe particle aggregation nature, conducting polymers used for CDI desalination suffer the disadvantage of low specific surface areas (<50 m2 g−1), sluggish ion diffusion kinetics, limited desalination capacities, and low mass loadings (∼1 mg cm−2) on electrodes. Herein, we synthesized amino group-rich conjugated microporous polytriphenylamine (m-PTPA) and for the first time demonstrated its great potential as a high-performance anion-capture electrode material in CDI applications. m-PTPA possesses reversible redox properties, predominant microporous characteristics (<2 nm diameter), and ultrahigh specific surface area (506 m2 g−1), which ensured fast ion transport within the interconnected porous network and maximized the exposure of electrochemical active sites to saline solutions. Owing to these novel features, an m-PTPA-based CDI device, with m-PTPA as the anode at a high mass loading of 8.7 mg cm−2 and activated carbon as the cathode, exhibited high gravimetric/areal/volumetric-normalized salt adsorption capacities (47.21 mg g−1, 0.41 mg cm−2, and 10.92 mg cm−3, respectively), fast adsorption rate (2.83 mg g−1 min−1), low energy consumption, and excellent cycling stability. Besides, we evaluated the competitive adsorption of some common anions existing in water and probed the mechanism for Cl− adsorption on m-PTPA. We believe that this work paves a new way for the use of conjugated microporous polymers as a new type of CDI electrode material.
Author Jin, Xiaoyu
Ge, Xu
Lu, Xiaoyuan
Feng, Yuanyuan
Zhang, Qingao
Zhang, Meng
Kong, Weiqing
AuthorAffiliation Qufu Normal University
Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province
College of Chemistry and Chemical Engineering
AuthorAffiliation_xml – sequence: 0
  name: Qufu Normal University
– sequence: 0
  name: Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province
– sequence: 0
  name: College of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Weiqing
  surname: Kong
  fullname: Kong, Weiqing
– sequence: 2
  givenname: Xiaoyuan
  surname: Lu
  fullname: Lu, Xiaoyuan
– sequence: 3
  givenname: Xu
  surname: Ge
  fullname: Ge, Xu
– sequence: 4
  givenname: Qingao
  surname: Zhang
  fullname: Zhang, Qingao
– sequence: 5
  givenname: Xiaoyu
  surname: Jin
  fullname: Jin, Xiaoyu
– sequence: 6
  givenname: Meng
  surname: Zhang
  fullname: Zhang, Meng
– sequence: 7
  givenname: Yuanyuan
  surname: Feng
  fullname: Feng, Yuanyuan
BookMark eNptkUFr3DAQhUXZQNMkl9wLgt4KbiXL9lrHZbdJCgu5JGczluRYi1dyR3KL83f6R6PdDSmU6DJC880bnt4nsnDeGUKuOfvGmZDfdRGBFYwz_YGc56xk2bKQ1eLtXtcfyVUIO5ZOzVgl5Tn5u_ZuNz1BNJrurUI_evRToKMf5oh27I2bB9hbZygECrS3T302Guw87sGp9Oqsd5mCMU5oqBmMiui1oQmg_dyi1TQ1QdlofxuqTaLtM8RU6B8bezoNEeGgSgENDBR08Dge-69z8yU562AI5uq1XpDHmx8P67tse3_7c73aZiqvecx4K1rFSr00NdO5LERddlDmRafySmpRccE7IYC3oFuuZVfLpeKSVyUInauciQvy5aQ7ov81mRCbnZ_QpZWNYDIXleTLA_X1RKXPCgFN14xo94Bzw1lzyKHZFA-rYw6bBLP_4GTo6D65tsP7I59PIxjUm_S_aMULChua8Q
CitedBy_id crossref_primary_10_1016_j_desal_2024_118486
crossref_primary_10_1016_j_cej_2024_157769
crossref_primary_10_1016_j_jwpe_2024_106508
crossref_primary_10_1002_smll_202409342
Cites_doi 10.1016/j.seppur.2021.119379
10.1002/anie.202111823
10.1016/j.desal.2016.07.029
10.1016/j.jpowsour.2020.227868
10.1016/j.seppur.2020.117667
10.1002/ente.201900835
10.1002/pola.29239
10.1002/er.5142
10.1002/anie.202302180
10.1002/adma.201705710
10.1039/C9TA03570B
10.1016/j.desal.2023.116452
10.1002/smll.202402057
10.1002/anie.201905488
10.1016/j.desal.2014.03.041
10.1021/acsami.8b08232
10.1007/s40820-022-00790-z
10.1021/acsnano.8b08046
10.1016/j.seppur.2022.120807
10.1016/j.pmatsci.2013.03.005
10.1021/acs.nanolett.7b00533
10.1038/s41467-023-35809-5
10.1016/j.watres.2018.11.064
10.1039/C4RA14401E
10.1016/S0079-6700(97)00030-0
10.1039/D0TA05563H
10.1021/acsami.5b00504
10.1016/j.cej.2021.133578
10.1021/ja8010176
10.1016/j.jhazmat.2017.05.041
10.1039/C4CC03026E
10.1002/(SICI)1521-4095(199910)11:15<1270::AID-ADMA1270>3.0.CO;2-E
10.1515/pac-2014-1117
10.1016/j.seppur.2020.118175
10.1002/marc.201900455
10.1021/acs.macromol.6b00901
10.1016/j.ceramint.2020.03.034
10.1002/adfm.201701264
10.1002/marc.202300238
10.1002/asia.201701107
10.1016/j.desal.2020.114662
10.1016/j.desal.2023.117222
10.1038/s41578-020-0193-1
10.1002/adfm.202213578
10.1016/j.jcis.2020.08.091
10.1016/j.seppur.2024.127510
10.1021/acs.est.9b07182
10.1016/j.jelechem.2020.114703
10.1021/ma0491053
10.1016/j.partic.2021.03.001
10.1021/acsnano.1c03417
10.1016/j.desal.2017.08.010
10.1021/am402436q
10.1126/science.aam5852
10.1002/adma.202204388
10.1021/acsami.2c07775
10.1002/aenm.201903325
10.1007/s41918-020-00093-0
10.1039/D0TA01102A
10.1002/adma.202101857
10.1002/advs.202002213
10.1116/6.0003081
10.1002/ese3.50
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d4ta04010d
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 21133
ExternalDocumentID 10_1039_D4TA04010D
d4ta04010d
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c281t-1b3bc05d7e80d294385fa524fc269d36131f33a1badb1d9f897c19165a3d2c203
ISSN 2050-7488
IngestDate Mon Jun 30 12:05:27 EDT 2025
Tue Jul 01 03:28:19 EDT 2025
Thu Apr 24 22:51:11 EDT 2025
Tue Dec 17 20:57:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-1b3bc05d7e80d294385fa524fc269d36131f33a1badb1d9f897c19165a3d2c203
Notes https://doi.org/10.1039/d4ta04010d
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0687-8389
0000-0003-2078-0086
0000-0002-3203-6919
PQID 3092369170
PQPubID 2047523
PageCount 1
ParticipantIDs crossref_citationtrail_10_1039_D4TA04010D
proquest_journals_3092369170
crossref_primary_10_1039_D4TA04010D
rsc_primary_d4ta04010d
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-13
PublicationDateYYYYMMDD 2024-08-13
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-13
  day: 13
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Li (D4TA04010D/cit3/1) 2020; 7
Zhu (D4TA04010D/cit45/1) 2020; 44
Qian (D4TA04010D/cit44/1) 2017; 338
Yan (D4TA04010D/cit11/1) 2014; 344
Wang (D4TA04010D/cit52/1) 2021; 254
Thommes (D4TA04010D/cit39/1) 2015; 87
Zornitta (D4TA04010D/cit12/1) 2022; 290
Le (D4TA04010D/cit36/1) 2023; 14
Sun (D4TA04010D/cit1/1) 2023; 33
Yousef (D4TA04010D/cit56/1) 2020; 46
Kong (D4TA04010D/cit62/1) 2019; 7
Zhao (D4TA04010D/cit57/1) 2021; 259
Tang (D4TA04010D/cit60/1) 2019; 150
Bard (D4TA04010D/cit63/1) 2001
Tan (D4TA04010D/cit67/1) 2022; 14
Zuo (D4TA04010D/cit34/1) 2024; 45
Zhang (D4TA04010D/cit10/1) 2021; 8
Ni (D4TA04010D/cit42/1) 2015; 5
Li (D4TA04010D/cit18/1) 2021; 60
Yan (D4TA04010D/cit19/1) 2017; 27
Liao (D4TA04010D/cit33/1) 2018; 30
Tsai (D4TA04010D/cit5/1) 2016; 398
Porada (D4TA04010D/cit66/1) 2013; 58
Shown (D4TA04010D/cit64/1) 2015; 3
Kong (D4TA04010D/cit8/1) 2024; 573
Zhang (D4TA04010D/cit25/1) 2021; 33
Tan (D4TA04010D/cit16/1) 2020; 54
Liao (D4TA04010D/cit29/1) 2014; 50
Ma (D4TA04010D/cit35/1) 2020; 453
Kang (D4TA04010D/cit65/1) 1998; 23
Sun (D4TA04010D/cit24/1) 2017; 356
Liu (D4TA04010D/cit23/1) 2018; 10
Yoon (D4TA04010D/cit7/1) 2017; 422
Miao (D4TA04010D/cit40/1) 2024; 346
Cooper (D4TA04010D/cit50/1) 1999; 11
Kumar (D4TA04010D/cit14/1) 2023; 62
Zhang (D4TA04010D/cit31/1) 2019; 13
Chen (D4TA04010D/cit32/1) 2020; 8
Bagus (D4TA04010D/cit61/1) 2023; 41
Liao (D4TA04010D/cit41/1) 2016; 49
Tang (D4TA04010D/cit22/1) 2013; 5
Macintyre (D4TA04010D/cit49/1) 2004; 37
Wu (D4TA04010D/cit26/1) 2021; 4
Wang (D4TA04010D/cit9/1) 2022; 433
Zhou (D4TA04010D/cit38/1) 2018; 13
Kong (D4TA04010D/cit13/1) 2023; 553
Vafakhah (D4TA04010D/cit28/1) 2020; 493
Yang (D4TA04010D/cit17/1) 2021; 276
Zhong (D4TA04010D/cit55/1) 2022; 14
Zhang (D4TA04010D/cit54/1) 2020; 10
Chen (D4TA04010D/cit59/1) 2018; 56
Yue (D4TA04010D/cit6/1) 2019; 7
Luo (D4TA04010D/cit37/1) 2020; 8
Lide (D4TA04010D/cit46/1) 2004
Zhang (D4TA04010D/cit2/1) 2020; 878
Chen (D4TA04010D/cit30/1) 2019; 58
Kong (D4TA04010D/cit53/1) 2024
Li (D4TA04010D/cit43/1) 2019; 40
Zhang (D4TA04010D/cit51/1) 2017; 17
Chen (D4TA04010D/cit47/1) 2019; 58
Qi (D4TA04010D/cit21/1) 2022; 60
Liu (D4TA04010D/cit4/1) 2021; 15
Zhou (D4TA04010D/cit20/1) 2022; 34
Srimuk (D4TA04010D/cit27/1) 2020; 5
Jiang (D4TA04010D/cit48/1) 2008; 130
Feng (D4TA04010D/cit58/1) 2021; 582
Sekar (D4TA04010D/cit15/1) 2015; 7
References_xml – issn: 2001
  publication-title: Electrochemical Methods: Fundamentals and Applications
  doi: Bard Faulkner
– issn: 2004
  publication-title: CRC Handbook of Chemistry and Physics
  doi: Lide
– volume: 276
  start-page: 119379
  year: 2021
  ident: D4TA04010D/cit17/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119379
– volume: 60
  start-page: 26528
  year: 2021
  ident: D4TA04010D/cit18/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202111823
– volume: 398
  start-page: 171
  year: 2016
  ident: D4TA04010D/cit5/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.07.029
– volume: 453
  start-page: 227868
  year: 2020
  ident: D4TA04010D/cit35/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.227868
– volume: 254
  start-page: 117667
  year: 2021
  ident: D4TA04010D/cit52/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.117667
– volume: 7
  start-page: 1900835
  year: 2019
  ident: D4TA04010D/cit62/1
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900835
– volume: 56
  start-page: 2574
  year: 2018
  ident: D4TA04010D/cit59/1
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.29239
– volume: 44
  start-page: 3215
  year: 2020
  ident: D4TA04010D/cit45/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5142
– volume: 62
  start-page: e202302180
  year: 2023
  ident: D4TA04010D/cit14/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202302180
– volume: 30
  start-page: 1705710
  year: 2018
  ident: D4TA04010D/cit33/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705710
– volume: 7
  start-page: 16892
  year: 2019
  ident: D4TA04010D/cit6/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03570B
– volume: 553
  start-page: 116452
  year: 2023
  ident: D4TA04010D/cit13/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2023.116452
– start-page: 2402057
  year: 2024
  ident: D4TA04010D/cit53/1
  publication-title: Small
  doi: 10.1002/smll.202402057
– volume: 58
  start-page: 11715
  year: 2019
  ident: D4TA04010D/cit30/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201905488
– volume: 344
  start-page: 274
  year: 2014
  ident: D4TA04010D/cit11/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.03.041
– volume: 10
  start-page: 31260
  year: 2018
  ident: D4TA04010D/cit23/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b08232
– volume: 14
  start-page: 50
  year: 2022
  ident: D4TA04010D/cit55/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00790-z
– volume: 13
  start-page: 745
  year: 2019
  ident: D4TA04010D/cit31/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08046
– volume: 290
  start-page: 120807
  year: 2022
  ident: D4TA04010D/cit12/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.120807
– volume: 58
  start-page: 1388
  year: 2013
  ident: D4TA04010D/cit66/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.03.005
– volume: 17
  start-page: 3097
  year: 2017
  ident: D4TA04010D/cit51/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00533
– volume: 14
  start-page: 171
  year: 2023
  ident: D4TA04010D/cit36/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-35809-5
– volume: 150
  start-page: 225
  year: 2019
  ident: D4TA04010D/cit60/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.11.064
– volume: 5
  start-page: 9221
  year: 2015
  ident: D4TA04010D/cit42/1
  publication-title: RSC Adv.
  doi: 10.1039/C4RA14401E
– volume: 23
  start-page: 277
  year: 1998
  ident: D4TA04010D/cit65/1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/S0079-6700(97)00030-0
– volume: 8
  start-page: 22657
  year: 2020
  ident: D4TA04010D/cit32/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05563H
– volume: 7
  start-page: 7661
  year: 2015
  ident: D4TA04010D/cit15/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00504
– volume: 433
  start-page: 133578
  year: 2022
  ident: D4TA04010D/cit9/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133578
– volume: 130
  start-page: 7710
  year: 2008
  ident: D4TA04010D/cit48/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8010176
– volume: 338
  start-page: 224
  year: 2017
  ident: D4TA04010D/cit44/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.05.041
– volume: 50
  start-page: 8002
  year: 2014
  ident: D4TA04010D/cit29/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC03026E
– volume: 11
  start-page: 1270
  year: 1999
  ident: D4TA04010D/cit50/1
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199910)11:15<1270::AID-ADMA1270>3.0.CO;2-E
– volume: 87
  start-page: 1051
  year: 2015
  ident: D4TA04010D/cit39/1
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2014-1117
– volume: 259
  start-page: 118175
  year: 2021
  ident: D4TA04010D/cit57/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.118175
– volume: 40
  start-page: 1900455
  year: 2019
  ident: D4TA04010D/cit43/1
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201900455
– volume: 49
  start-page: 6322
  year: 2016
  ident: D4TA04010D/cit41/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b00901
– volume: 46
  start-page: 15034
  year: 2020
  ident: D4TA04010D/cit56/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.034
– volume: 27
  start-page: 1701264
  year: 2017
  ident: D4TA04010D/cit19/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701264
– volume: 45
  start-page: 2300238
  year: 2024
  ident: D4TA04010D/cit34/1
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.202300238
– volume-title: Electrochemical Methods: Fundamentals and Applications
  year: 2001
  ident: D4TA04010D/cit63/1
– volume: 13
  start-page: 9
  year: 2018
  ident: D4TA04010D/cit38/1
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.201701107
– volume: 493
  start-page: 114662
  year: 2020
  ident: D4TA04010D/cit28/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114662
– volume: 573
  start-page: 117222
  year: 2024
  ident: D4TA04010D/cit8/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2023.117222
– volume: 5
  start-page: 517
  year: 2020
  ident: D4TA04010D/cit27/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0193-1
– volume: 33
  start-page: 2213578
  year: 2023
  ident: D4TA04010D/cit1/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202213578
– volume: 582
  start-page: 447
  year: 2021
  ident: D4TA04010D/cit58/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.08.091
– volume: 346
  start-page: 127510
  year: 2024
  ident: D4TA04010D/cit40/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.127510
– volume: 54
  start-page: 5843
  year: 2020
  ident: D4TA04010D/cit16/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b07182
– volume: 878
  start-page: 114703
  year: 2020
  ident: D4TA04010D/cit2/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2020.114703
– volume: 8
  start-page: 1886
  year: 2021
  ident: D4TA04010D/cit10/1
  publication-title: Environ. Sci.: Nano
– volume: 37
  start-page: 7628
  year: 2004
  ident: D4TA04010D/cit49/1
  publication-title: Macromolecules
  doi: 10.1021/ma0491053
– volume: 60
  start-page: 1
  year: 2022
  ident: D4TA04010D/cit21/1
  publication-title: Particuology
  doi: 10.1016/j.partic.2021.03.001
– volume: 15
  start-page: 13924
  year: 2021
  ident: D4TA04010D/cit4/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c03417
– volume: 422
  start-page: 42
  year: 2017
  ident: D4TA04010D/cit7/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.08.010
– volume: 5
  start-page: 10574
  year: 2013
  ident: D4TA04010D/cit22/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402436q
– volume: 356
  start-page: 599
  year: 2017
  ident: D4TA04010D/cit24/1
  publication-title: Science
  doi: 10.1126/science.aam5852
– volume: 34
  start-page: 2204388
  year: 2022
  ident: D4TA04010D/cit20/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202204388
– volume: 14
  start-page: 37259
  year: 2022
  ident: D4TA04010D/cit67/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c07775
– volume: 58
  start-page: 11715
  year: 2019
  ident: D4TA04010D/cit47/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201905488
– volume: 10
  start-page: 1903325
  year: 2020
  ident: D4TA04010D/cit54/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903325
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2004
  ident: D4TA04010D/cit46/1
– volume: 4
  start-page: 382
  year: 2021
  ident: D4TA04010D/cit26/1
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-020-00093-0
– volume: 8
  start-page: 6434
  year: 2020
  ident: D4TA04010D/cit37/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA01102A
– volume: 33
  start-page: 2101857
  year: 2021
  ident: D4TA04010D/cit25/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101857
– volume: 7
  start-page: 2002213
  year: 2020
  ident: D4TA04010D/cit3/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202002213
– volume: 41
  start-page: 068501
  year: 2023
  ident: D4TA04010D/cit61/1
  publication-title: J. Vac. Sci. Technol., A
  doi: 10.1116/6.0003081
– volume: 3
  start-page: 2
  year: 2015
  ident: D4TA04010D/cit64/1
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.50
SSID ssj0000800699
Score 2.473851
Snippet Conducting polymers with good electron conductivity and rich redox functional groups have attracted considerable attention as anode materials for capacitive...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21124
SubjectTerms Activated carbon
Adsorption
Anions
Anodes
Competitive materials
Conducting polymers
Deionization
Desalination
Electrochemistry
Electrode materials
Electrodes
Electron conductivity
Energy consumption
Functional groups
Ion diffusion
Ion transport
Polymers
Porosity
Redox properties
Saline solutions
Specific surface
Surface area
Water scarcity
Title Conjugated microporous polytriphenylamine as a high-performance anion-capture electrode for hybrid capacitive deionization with ultrahigh areal adsorption capacity
URI https://www.proquest.com/docview/3092369170
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 2050-7496
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800699
  issn: 2050-7488
  databaseCode: AETIL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbW7gWEELeJwkCWQEgoykjsXJrHaus0oAwhpaJvkWOn2lBpujZ5KH-HP8o5sXMpnRDwErWOnaQ5X48_H58LIa-lK52Mu7BSVZLZHmPCjrIwsrnnCJ-HIQ9SjEb-dBlcTL0PM3920LvX8Voqi_RE_rg1ruR_pAptIFeMkv0HyTYXhQb4DPKFI0gYjn8l49N8-a1EO5iyvqNjHXBp9Ghd5YttAcrgKltuQeDII8XGEhamJrZXO5EC8Gi2FKtqG8FUxFE6DfjVFmO5LDgppPYvUhnabnXYprbflosCdBVc1RJrTFAs1CZfax1kxu1sGnfIL_Bk_YIsWVecO7FGOnioPlMlI9ehiZV1vw71Qm_eZiPgo3Ep_ppd39SzMPoXldg4uxb5tmzxPyv1NsCetfwLFgbPuxYQ5qFJVwewGtcptLPUTq6VE4t58FaXMsd3MG2qVvVZt00X1G0mA9YBvbG81qrd1dHehifAd53CY28ScjjmcFVeIUBDuo5qp9raveDyc3I-nUySeDyL36xubCyChs4CpiJMjxyyMAhYnxyOxvH7SWM0RHofVDVRmx9Up9zl0bv2jrskq1059dZ1WZuKPsUPyH0jejrSIH5IDrLlI3K3kw3zMfnZwpl24Ez34UzFhgr6O5zpDpxpA2cKHaiGM23hTLtwpghn2sCZVnCmLZzrcdsnZHo-jk8vbFNDxJZs6Ba2m_JUOr4Ks6GjWOTxoT8XPvPmkgWR4kBm3Tnnwk2FSl0VzYdRKF1YMvmCKyaZw49If5kvs6eEArNnXLIsANYNiwwxDICaC-AKAjM6sXBA3tYvPZEmwT7WeVkklaMHj5IzLx5VAjobkFdN35VOK3Nrr-NadolRO5uEO7AmCyI3dAbkCOTZjG_F_-zP456TO-3f6Jj0i3WZvQBqXaQvDeB-AW2b3Ck
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conjugated+microporous+polytriphenylamine+as+a+high-performance+anion-capture+electrode+for+hybrid+capacitive+deionization+with+ultrahigh+areal+adsorption+capacity&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Kong%2C+Weiqing&rft.au=Lu%2C+Xiaoyuan&rft.au=Xu%2C+Ge&rft.au=Zhang%2C+Qingao&rft.date=2024-08-13&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=12&rft.issue=32&rft.spage=21124&rft.epage=21133&rft_id=info:doi/10.1039%2Fd4ta04010d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon