Tool wear intelligent monitoring techniques in cutting: a review

Tool wear is inevitable in cutting process. If tool wear failure is not detected in time, it will lead to abnormal cutting process and affect the machining efficiency and quality seriously. The intelligent monitoring of tool wear can make the machining system perceive the real-time status of tools i...

Full description

Saved in:
Bibliographic Details
Published inJournal of mechanical science and technology Vol. 37; no. 1; pp. 289 - 303
Main Authors Cheng, Yaonan, Gai, Xiaoyu, Guan, Rui, Jin, Yingbo, Lu, Mengda, Ding, Ya
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Mechanical Engineers 01.01.2023
Springer Nature B.V
대한기계학회
Subjects
Online AccessGet full text
ISSN1738-494X
1976-3824
DOI10.1007/s12206-022-1229-9

Cover

Abstract Tool wear is inevitable in cutting process. If tool wear failure is not detected in time, it will lead to abnormal cutting process and affect the machining efficiency and quality seriously. The intelligent monitoring of tool wear can make the machining system perceive the real-time status of tools in advance and make early warning and decision-making, which is an effective way to ensure the efficient operation of machining and manufacturing system. By reviewing the research status of intelligent monitoring of tool wear, the key technical principles and methods of multisource-correlation signal selection, feature extraction and pattern recognition are classified. On the basis, the current application status of tool wear monitoring is discussed. In view of its shortcomings, this paper puts forward the prospect of the future, in order to provide a theoretical basis and reference for the development of tool wear intelligent monitoring technology and intelligent manufacturing industry.
AbstractList Tool wear is inevitable in cutting process. If tool wear failure is not detected in time, it will lead to abnormal cutting process and affect the machining efficiency and quality seriously. The intelligent monitoring of tool wear can make the machining system perceive the real-time status of tools in advance and make early warning and decision-making, which is an effective way to ensure the efficient operation of machining and manufacturing system. By reviewing the research status of intelligent monitoring of tool wear, the key technical principles and methods of multisource-correlation signal selection, feature extraction and pattern recognition are classified. On the basis, the current application status of tool wear monitoring is discussed. In view of its shortcomings, this paper puts forward the prospect of the future, in order to provide a theoretical basis and reference for the development of tool wear intelligent monitoring technology and intelligent manufacturing industry.
Tool wear is inevitable in cutting process. If tool wear failure is not detected in time, it will lead to abnormal cutting process and affect the machining efficiency and quality seriously. The intelligent monitoring of tool wear can make the machining system perceive the real-time status of tools in advance and make early warning and decision-making, which is an effective way to ensure the efficient operation of machining and manufacturing system. By reviewing the research status of intelligent monitoring of tool wear, the key technical principles and methods of multisource-correlation signal selection, feature extraction and pattern recognition are classified. On the basis, the current application status of tool wear monitoring is discussed. In view of its shortcomings, this paper puts forward the prospect of the future, in order to provide a theoretical basis and reference for the development of tool wear intelligent monitoring technology and intelligent manufacturing industry. KCI Citation Count: 0
Author Jin, Yingbo
Ding, Ya
Gai, Xiaoyu
Cheng, Yaonan
Lu, Mengda
Guan, Rui
Author_xml – sequence: 1
  givenname: Yaonan
  surname: Cheng
  fullname: Cheng, Yaonan
  email: yaonancheng@163.com
  organization: College of Mechanical and Power Engineering, Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology
– sequence: 2
  givenname: Xiaoyu
  surname: Gai
  fullname: Gai, Xiaoyu
  organization: College of Mechanical and Power Engineering, Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology
– sequence: 3
  givenname: Rui
  surname: Guan
  fullname: Guan, Rui
  organization: College of Mechanical and Power Engineering, Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology
– sequence: 4
  givenname: Yingbo
  surname: Jin
  fullname: Jin, Yingbo
  organization: College of Mechanical and Power Engineering, Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology
– sequence: 5
  givenname: Mengda
  surname: Lu
  fullname: Lu, Mengda
  organization: College of Mechanical and Power Engineering, Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology
– sequence: 6
  givenname: Ya
  surname: Ding
  fullname: Ding, Ya
  organization: College of Mechanical and Power Engineering, Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002921330$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kF9LwzAUxYNMcE4_gG8F34RqbpomjU-O4Z_BQJAJvoUuTWe2Lplp5vDbm1pBEPTl3svlnMPhd4wG1lmN0BngS8CYX7VACGYpJiSNl0jFARqC4CzNCkIH8eZZkVJBX47QcduuMGaEAgzRzdy5Jtnr0ifGBt00ZqltSDbOmuC8scskaPVqzdtOt1GRqF0I8XudlInX70bvT9BhXTatPv3eI_R8dzufPKSzx_vpZDxLFSkgpCDIQmdMEc50RjOq4iSUqaKqalEBoRUwDTRjNa-40MCgrHNS51jVuaYLko3QRZ9rfS3XykhXmq-9dHLt5fhpPpWAAedQiCg-78Vb77rmQa7cztvYT8YCORakIDyqeK9S3rWt17VUJpTBOBt8aZoYJzu2smcrI1vZsZVdPvxybr3ZlP7jXw_pPe2246r9T6e_TZ-Md4wg
CitedBy_id crossref_primary_10_1007_s13369_023_08397_1
crossref_primary_10_3390_lubricants11090389
crossref_primary_10_3390_lubricants11090384
crossref_primary_10_1007_s00170_024_14273_5
crossref_primary_10_3390_machines13040256
crossref_primary_10_1109_JSEN_2024_3361683
crossref_primary_10_3390_jmmp8060244
crossref_primary_10_1007_s40430_024_05097_1
crossref_primary_10_1016_j_measurement_2023_114076
crossref_primary_10_3390_machines12120892
crossref_primary_10_3390_s24113394
crossref_primary_10_3390_machines12120833
crossref_primary_10_1007_s12206_024_0419_z
crossref_primary_10_1007_s42235_023_00444_9
crossref_primary_10_1088_1361_6501_ad95ad
crossref_primary_10_3390_machines12120876
crossref_primary_10_1007_s12206_024_1134_5
crossref_primary_10_1080_19397038_2023_2287478
crossref_primary_10_1007_s00170_024_14196_1
crossref_primary_10_1016_j_ymssp_2024_111922
crossref_primary_10_1155_2023_2139906
crossref_primary_10_1007_s13369_024_09543_z
crossref_primary_10_1088_1361_6501_ad66f1
crossref_primary_10_1016_j_ifacol_2024_09_070
crossref_primary_10_3390_app14198951
crossref_primary_10_1088_1755_1315_1344_1_012016
Cites_doi 10.1109/TIE.2013.2274422
10.1007/s12206-013-0982-1
10.1177/1369433218818921
10.1007/s00170-012-4177-1
10.3390/ma12193091
10.1007/s00170-011-3703-x
10.1016/j.precisioneng.2021.07.019
10.3901/JME.2018.17.124
10.5120/5082-7268
10.1016/j.jmrt.2019.10.031
10.1016/j.precisioneng.2020.09.025
10.1016/j.ifacol.2020.12.1310
10.1007/s12206-015-0834-2
10.1016/j.ijmecsci.2019.105254
10.1177/16878140211026720
10.1007/s00170-015-7441-3
10.1016/j.cirp.2021.03.024
10.1016/j.measurement.2016.05.022
10.1016/j.procir.2021.11.315
10.1109/JAS.2016.7510190
10.30880/ijie.2018.10.05.015
10.1109/TII.2017.2723943
10.1016/j.ijmachtools.2009.02.003
10.1007/s00170-011-3536-7
10.1109/TIM.2019.2952476
10.1243/0954405001518233
10.1007/s00170-019-04880-y
10.20473/jisebi.6.1.70-78
10.1016/j.sna.2014.01.004
10.4028/www.scientific.net/AMM.787.907
10.1007/s00170-018-1768-5
10.1088/1757-899X/598/1/012088
10.1109/TIM.2011.2161938
10.3390/electronics8111354
10.1007/s00170-019-03906-9
10.1109/TII.2012.2205583
10.1016/j.wear.2020.203479
10.1007/s00170-015-8230-8
10.1016/j.patrec.2011.07.016
10.1080/10910344.2016.1191026
10.1016/j.ymssp.2017.11.021
10.1016/j.procir.2017.03.320
10.1016/j.ymssp.2017.02.004
10.3390/app6060166
10.1080/00207543.2021.1956675
10.3390/su12114424
10.1016/j.ymssp.2005.10.010
10.1016/j.engappai.2013.06.005
10.1109/PHM-Qingdao46334.2019.8942820
ContentType Journal Article
Copyright The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2023
The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2023.
Copyright_xml – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2023
– notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2023.
DBID AAYXX
CITATION
7TB
8FD
FR3
ACYCR
DOI 10.1007/s12206-022-1229-9
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Korean Citation Index
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3824
EndPage 303
ExternalDocumentID oai_kci_go_kr_ARTI_10105189
10_1007_s12206_022_1229_9
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.UV
.VR
06D
0R~
0VY
1N0
2.D
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
6NX
8FE
8FG
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LLZTM
M7S
MA-
MK~
ML~
MZR
NDZJH
NF0
NPVJJ
NQJWS
O9-
P9P
PF0
PT4
PTHSS
Q2X
QOS
R89
R9I
RHV
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TDB
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8R
Z8T
Z8W
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7TB
8FD
ABRTQ
FR3
AABYN
AAFGU
AAYFA
ABFGW
ABKAG
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADMVV
ADOXG
AEEQQ
AEFTE
AEKVL
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
UNUBA
ID FETCH-LOGICAL-c281t-192be36c276e3434ce34246c8ddf9d124d16e1436f7d79e161af52f50cf5e4b23
IEDL.DBID U2A
ISSN 1738-494X
IngestDate Sun Feb 18 03:18:23 EST 2024
Thu Sep 18 00:05:12 EDT 2025
Thu Apr 24 22:51:20 EDT 2025
Tue Jul 01 04:23:37 EDT 2025
Fri Feb 21 02:45:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Intelligent monitoring
Multisource-correlation sensor signal
Feature extraction
Pattern recognition
Tool wear
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c281t-192be36c276e3434ce34246c8ddf9d124d16e1436f7d79e161af52f50cf5e4b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2765092827
PQPubID 326249
PageCount 15
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10105189
proquest_journals_2765092827
crossref_citationtrail_10_1007_s12206_022_1229_9
crossref_primary_10_1007_s12206_022_1229_9
springer_journals_10_1007_s12206_022_1229_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
2023-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Journal of mechanical science and technology
PublicationTitleAbbrev J Mech Sci Technol
PublicationYear 2023
Publisher Korean Society of Mechanical Engineers
Springer Nature B.V
대한기계학회
Publisher_xml – name: Korean Society of Mechanical Engineers
– name: Springer Nature B.V
– name: 대한기계학회
References Wu, Meng, Wu, Zhang (CR19) 2018; 16
Zhu, Yu (CR9) 2017; 93
Kong, Chen, Li, Duan (CR64) 2019; 69
Silva, Silva, Hassui (CR32) 2016; 20
Malmstrm, Skog, Axehill, Gustafsson (CR44) 2020; 53
Bhat, Dutta, Vashisth, Pal, Pal, Sen (CR60) 2016; 83
Xu, Chen, Guo, Yan (CR58) 2007; 21
Hsieh, Lu, Chiou (CR38) 2012; 61
Yu, Shuang, Tang, Liu (CR24) 2017; 91
Li, Bao, Gu, Chen (CR35) 2019; 22
CR75
CR74
Wang, Li, Wang, Zhang, Liu (CR47) 2019; 8
Wang, Wang (CR14) 2012; 59
Huffaker, Bittelli, Rosa (CR37) 2017
Fu (CR11) 2017
Yang (CR15) 2009; 37
Zhu (CR54) 2012; 36
Goharrizi, Sepehri (CR41) 2012; 61
Wang, Pan, Pei, Yang, Yi (CR2) 2020; 12
Long, Wang, Li, Fan (CR39) 2017; 4
You, Gao, Guo, Liu (CR10) 2020; 460–461
Wu (CR79) 2020
Xu (CR67) 2016; 14
Liu, Liu, Wang (CR77) 2016; 38
Zhu, Wong, Hong (CR40) 2009; 49
Retrialisca, Chotijah (CR1) 2020; 6
Zhou, Xue (CR8) 2018; 96
Dutta, Kiran, Paul (CR29) 2000; 214
Adam, Yusof, Iliyas, Saif, Hatem (CR4) 2018; 10
Twardowski, Tabaszewski, Wiciak-Pikua, Felusiak-Czyryca (CR26) 2021; 72
Huang, Zhu, Lei, Li, Tian (CR23) 2021; 2021
CR48
Kong, Chen, Li (CR68) 2018; 104
Mohanraj, Shankar, Rajasekar, Sakthivel, Pramanik (CR43) 2020; 9
Wu, Fu, Guan (CR61) 2016; 6
Liao, Zhou, Zhang, Lu, Ma (CR66) 2019; 104
Sun, Zhang, Niu (CR30) 2016; 86
Li, Cheng, Jin, Yao (CR53) 2009; 19
Yudha, Surjandari, Zulkarnain (CR36) 2019; 598
Wang, Yang, Zhang, Xie (CR20) 2014; 209
Huynh, Won (CR45) 2011; 32
Siddhpura, Paurobally (CR33) 2013; 65
Cerce, Pusavec, Kopac (CR12) 2015; 29
Lu, Yao (CR55) 2003; 41
Zhuang (CR78) 2009
Cui (CR49) 2018; 56
CR13
Xu, Huang, Li, Wang, Liu, Wang (CR57) 2020; 32
CR50
Shan, Zhu (CR63) 2018; 54
Hassan, Sadek, Attia (CR76) 2021; 70
Zhu, Liu (CR18) 2017; 14
Gomes, Brito, Silva, Duarte (CR62) 2021; 67
Shi, Chuah, Yap (CR34) 2020; 107
Baig, Javed, Khaisar, Mwafak, Purushothaman (CR51) 2021; 13
Ma, Wang (CR59) 2001; 28
Uchikata, Beaucamp, Takeuchi (CR7) 2017; 63
Cao, Fu, Zhang (CR56) 2014; 33
Vukadinovic, Majstorovic, Zivkovic, Stojadinovic, Djurdjanovic (CR5) 2021; 104
Gadgay, Kulkarni, Chandrasekhar (CR46) 2012; 39
Bhaskaran (CR25) 2015; 787
Bhat, Dutta, Pal, Pal (CR72) 2016; 90
Xie, Wang, Zhang, Wu, Zeng (CR27) 2016; 38
CR69
Jamshidi, Rimpault, Balazinski, Chatelain (CR17) 2020; 106
Geramifard, Xu, Zhou, Li (CR73) 2014; 61
Ghosh, Ravi, Patra, Mukhopadhyay, Paul, Mohanty, Chattopadhyay (CR28) 2007; 21
Zhu, Hu, Tang (CR31) 2021; 30
Geramifard, Xu, Panda (CR70) 2013; 26
CR21
CR65
Wang, Guo, Lei (CR16) 2014; 28
Rai, Tiwari, Ivanov, Dolgui (CR3) 2021; 59
Zhou (CR6) 2015; 26
Geramifard, Xu, Zhou, Li (CR71) 2012; 8
Wang, Cao (CR22) 2019; 38
Twardowski, Wiciak-Pikuła (CR52) 2019; 12
Zhou, Yang, Guo, Liu, Sun, Song, Zhu, Sun, Jiang (CR42) 2019; 166
M Wu (1229_CR79) 2020
R U Baig (1229_CR51) 2021; 13
1229_CR69
N Ghosh (1229_CR28) 2007; 21
Y Liu (1229_CR77) 2016; 38
Y Fu (1229_CR11) 2017
G Q Zhu (1229_CR31) 2021; 30
A Siddhpura (1229_CR33) 2013; 65
M Jamshidi (1229_CR17) 2020; 106
1229_CR21
R Huffaker (1229_CR37) 2017
1229_CR65
J S Yu (1229_CR24) 2017; 91
N N Bhat (1229_CR60) 2016; 83
N N Bhat (1229_CR72) 2016; 90
Z J Li (1229_CR53) 2009; 19
X P Liao (1229_CR66) 2019; 104
R H L Silva (1229_CR32) 2016; 20
M Wang (1229_CR14) 2012; 59
P Twardowski (1229_CR52) 2019; 12
1229_CR13
C A Zhou (1229_CR42) 2019; 166
L F Wu (1229_CR61) 2016; 6
V Vukadinovic (1229_CR5) 2021; 104
L Cerce (1229_CR12) 2015; 29
Z C You (1229_CR10) 2020; 460–461
H Li (1229_CR35) 2019; 22
A Adam (1229_CR4) 2018; 10
J J Wang (1229_CR22) 2019; 38
1229_CR50
J F Ma (1229_CR59) 2001; 28
N Cui (1229_CR49) 2018; 56
J Zhou (1229_CR6) 2015; 26
J Y Xie (1229_CR27) 2016; 38
G F Wang (1229_CR16) 2014; 28
W Q Cao (1229_CR56) 2014; 33
F Wu (1229_CR19) 2018; 16
M Hassan (1229_CR76) 2021; 70
P Twardowski (1229_CR26) 2021; 72
M Malmstrm (1229_CR44) 2020; 53
Y Wang (1229_CR2) 2020; 12
1229_CR48
R K Dutta (1229_CR29) 2000; 214
A Y Goharrizi (1229_CR41) 2012; 61
S Uchikata (1229_CR7) 2017; 63
K Zhu (1229_CR40) 2009; 49
Y W Shi (1229_CR34) 2020; 107
Z W Huang (1229_CR23) 2021; 2021
Y Q Zhou (1229_CR8) 2018; 96
Z J Zhuang (1229_CR78) 2009
O Geramifard (1229_CR71) 2012; 8
Y Lu (1229_CR55) 2003; 41
Y Zhu (1229_CR54) 2012; 36
M A Yudha (1229_CR36) 2019; 598
D D Kong (1229_CR64) 2019; 69
R Rai (1229_CR3) 2021; 59
G F Wang (1229_CR20) 2014; 209
K P Zhu (1229_CR18) 2017; 14
T Mohanraj (1229_CR43) 2020; 9
B Gadgay (1229_CR46) 2012; 39
O Geramifard (1229_CR73) 2014; 61
Z D Shan (1229_CR63) 2018; 54
1229_CR74
Y Yang (1229_CR15) 2009; 37
C W Xu (1229_CR58) 2007; 21
X Xu (1229_CR67) 2016; 14
J Bhaskaran (1229_CR25) 2015; 787
1229_CR75
M C Gomes (1229_CR62) 2021; 67
H Sun (1229_CR30) 2016; 86
W H Hsieh (1229_CR38) 2012; 61
J Long (1229_CR39) 2017; 4
D D Kong (1229_CR68) 2018; 104
K Zhu (1229_CR9) 2017; 93
H T Huynh (1229_CR45) 2011; 32
L H Xu (1229_CR57) 2020; 32
O Geramifard (1229_CR70) 2013; 26
F Retrialisca (1229_CR1) 2020; 6
G J Wang (1229_CR47) 2019; 8
References_xml – volume: 61
  start-page: 2900
  issue: 6
  year: 2014
  end-page: 2911
  ident: CR73
  article-title: Multimodal hidden markov model-based approach for tool wear monitoring
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2013.2274422
– year: 2009
  ident: CR78
  publication-title: Research on Tool Wearing Condition Monitoring based on AE and Vibration
– volume: 19
  start-page: 103
  issue: 5
  year: 2009
  end-page: 106
  ident: CR53
  article-title: BP algorithm improvement based on sample expected training number
  publication-title: Computer Technology and Development
– volume: 28
  start-page: 317
  issue: 1
  year: 2014
  end-page: 322
  ident: CR16
  article-title: Tool wear prediction considering uncovered data based on partial least square regression
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-013-0982-1
– volume: 22
  start-page: 1519
  issue: 7
  year: 2019
  end-page: 1530
  ident: CR35
  article-title: Vibration feature extraction based on the improved variational mode decomposition and singular spectrum analysis combination algorithm
  publication-title: Advances in Structural Engineering
  doi: 10.1177/1369433218818921
– volume: 65
  start-page: 371
  issue: 1–4
  year: 2013
  end-page: 393
  ident: CR33
  article-title: A review of flank wear prediction methods for tool condition monitoring in a turning process
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-012-4177-1
– volume: 33
  start-page: 1682
  issue: 11
  year: 2014
  end-page: 1687
  ident: CR56
  article-title: Application of GA-fuzzy-neural networks in tool wear diagnosis
  publication-title: Mechanical Science and Technology for Aerospace Engineering
– ident: CR74
– volume: 38
  start-page: 103
  issue: 2
  year: 2019
  end-page: 108
  ident: CR22
  article-title: Research on milling cutter wear monitoring based on spindle vibration signal
  publication-title: Foreign Electronic Measurement Technology
– start-page: 51
  year: 2017
  end-page: 82
  ident: CR37
  article-title: Phase space reconstruction
  publication-title: Nonlinear Time Series Analysis with R
– volume: 12
  start-page: 3091
  issue: 19
  year: 2019
  end-page: 3106
  ident: CR52
  article-title: Prediction of tool wear using artificial neural networks during turning of hardened steel
  publication-title: Materials
  doi: 10.3390/ma12193091
– volume: 61
  start-page: 53
  issue: 1–4
  year: 2012
  end-page: 61
  ident: CR38
  article-title: Application of back-propagation neural network for spindle vibration-based tool wear monitoring in micro-milling
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-011-3703-x
– volume: 38
  start-page: 137
  issue: 5
  year: 2016
  end-page: 143
  ident: CR77
  article-title: An intelligent tool wear estimation technology based on multi-feature and support vector machine
  publication-title: Manufacturing Automation
– volume: 72
  start-page: 738
  year: 2021
  end-page: 744
  ident: CR26
  article-title: Identification of tool wear using acoustic emission signal and machine learning methods
  publication-title: Precision Engineering
  doi: 10.1016/j.precisioneng.2021.07.019
– volume: 54
  start-page: 124
  issue: 17
  year: 2018
  end-page: 132
  ident: CR63
  article-title: Wear mechanism and prediction model of polycrystalline diamond tool in milling sand mould
  publication-title: Journal of Mechanical Engineering
  doi: 10.3901/JME.2018.17.124
– volume: 39
  start-page: 37
  issue: 18
  year: 2012
  end-page: 45
  ident: CR46
  article-title: Novel ensemble neural network models for better prediction using variable input approach
  publication-title: International Journal of Computer Applications
  doi: 10.5120/5082-7268
– volume: 26
  start-page: 2273
  issue: 17
  year: 2015
  end-page: 2284
  ident: CR6
  article-title: Intelligent manufacturing-main direction of “made in China 2025”
  publication-title: Journal of Mechanical Engineering
– volume: 9
  start-page: 1032
  issue: 1
  year: 2020
  end-page: 1042
  ident: CR43
  article-title: Tool condition monitoring techniques in milling process-a review
  publication-title: Journal of Materials Research and Technology
  doi: 10.1016/j.jmrt.2019.10.031
– volume: 2021
  start-page: 1
  issue: 6
  year: 2021
  end-page: 14
  ident: CR23
  article-title: Tool wear monitoring with vibration signals based on short-time fourier transform and deep convolutional neural network in milling
  publication-title: Mathematical Problems in Engineering
– volume: 21
  start-page: 219
  issue: 3
  year: 2007
  end-page: 224
  ident: CR58
  article-title: Recognizing tool wear based on radical basic function network
  publication-title: Journal of Test and Measurement Technology
– volume: 67
  start-page: 137
  year: 2021
  end-page: 151
  ident: CR62
  article-title: Tool wear monitoring in micromilling using support vector machine with vibration and sound sensors
  publication-title: Precision Engineering
  doi: 10.1016/j.precisioneng.2020.09.025
– ident: CR21
– volume: 56
  start-page: 74
  issue: 7
  year: 2018
  end-page: 77
  ident: CR49
  article-title: Research on tool wear state monitoring based on BP neural network
  publication-title: Agricultural Equipment and Vehicle Engineering
– volume: 53
  start-page: 1108
  issue: 2
  year: 2020
  end-page: 1113
  ident: CR44
  article-title: Asymptotic prediction error variance for feedforward neural networks
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2020.12.1310
– volume: 29
  start-page: 3885
  issue: 9
  year: 2015
  end-page: 3895
  ident: CR12
  article-title: 3D cutting tool-wear monitoring in the process
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-015-0834-2
– volume: 166
  start-page: 105254
  year: 2019
  ident: CR42
  article-title: Vibration singularity analysis for milling tool condition monitoring
  publication-title: International Journal of Mechanical Sciences
  doi: 10.1016/j.ijmecsci.2019.105254
– volume: 13
  start-page: 1
  issue: 6
  year: 2021
  end-page: 14
  ident: CR51
  article-title: Development of an ANN model for prediction of tool wear in turning EN9 and EN24 steel alloy
  publication-title: Advances in Mechanical Engineering
  doi: 10.1177/16878140211026720
– ident: CR75
– volume: 83
  start-page: 1487
  issue: 9–12
  year: 2016
  end-page: 1502
  ident: CR60
  article-title: Tool condition monitoring by SVM classification of machined surfaceimages in turning
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-015-7441-3
– year: 2020
  ident: CR79
  publication-title: Research on Tool Wear Status Intelligent Monitoring based on the Power and Vibration Signals
– ident: CR50
– volume: 70
  start-page: 1
  issue: 1
  year: 2021
  end-page: 4
  ident: CR76
  article-title: Novel sensor-based tool wear monitoring approach for seamless implementation in high speed milling applications
  publication-title: CIRP Annals-Manufacturing Technology
  doi: 10.1016/j.cirp.2021.03.024
– volume: 90
  start-page: 500
  year: 2016
  end-page: 509
  ident: CR72
  article-title: Tool condition classification in turning process using hidden Markov model based on texture analysis of machined surface images
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.022
– volume: 104
  start-page: 1867
  year: 2021
  end-page: 1872
  ident: CR5
  article-title: Digital manufacturing as a basis for the development of the industry 4.0 model
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.11.315
– volume: 38
  start-page: 1
  issue: 7
  year: 2016
  end-page: 4
  ident: CR27
  article-title: Tool wear predicting based on multi-sensing and data fusion
  publication-title: Manufacturing Automation
– volume: 4
  start-page: 734
  issue: 4
  year: 2017
  end-page: 750
  ident: CR39
  article-title: Applications of fractional lower order time-frequency representation to machine bearing fault diagnosis
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2016.7510190
– volume: 10
  start-page: 93
  issue: 5
  year: 2018
  end-page: 98
  ident: CR4
  article-title: Review on manufacturing for advancement of industrial revolution 4.0
  publication-title: International Journal of Integrated Engineering
  doi: 10.30880/ijie.2018.10.05.015
– volume: 14
  start-page: 69
  issue: 1
  year: 2017
  end-page: 78
  ident: CR18
  article-title: On-line tool wear monitoring via Hidden Semi-Markov model with dependent durations
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2017.2723943
– volume: 41
  start-page: 47
  issue: 3
  year: 2003
  end-page: 49
  ident: CR55
  article-title: Applications of the fuzzy neural network in tool wear detection
  publication-title: Machinery Manufacturing
– volume: 49
  start-page: 537
  issue: 7–8
  year: 2009
  end-page: 553
  ident: CR40
  article-title: Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2009.02.003
– volume: 107
  start-page: 4837
  issue: 11–12
  year: 2020
  end-page: 4857
  ident: CR34
  article-title: Technical data-driven tool condition monitoring challenges for CNC milling: a review
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 59
  start-page: 463
  issue: 5–8
  year: 2012
  end-page: 471
  ident: CR14
  article-title: CHMM for tool condition monitoring and remaining useful life prediction
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-011-3536-7
– volume: 69
  start-page: 5219
  issue: 7
  year: 2019
  end-page: 5232
  ident: CR64
  article-title: Tool wear estimation in end-milling of titanium alloy using NPE and a novel WOA-SVM model
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2019.2952476
– volume: 214
  start-page: 535
  issue: 7
  year: 2000
  end-page: 546
  ident: CR29
  article-title: Assessment of machining features for tool condition monitoring in face milling using an artificial neural network
  publication-title: Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture
  doi: 10.1243/0954405001518233
– volume: 106
  start-page: 3859
  issue: 9
  year: 2020
  end-page: 3868
  ident: CR17
  article-title: Fractal analysis implementation for tool wear monitoring based on cutting force signals during CFRP/titanium stack machining
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-019-04880-y
– volume: 6
  start-page: 70
  issue: 1
  year: 2020
  end-page: 78
  ident: CR1
  article-title: The maturity measurement of big data adoption in manufacturing companies using the TDWI maturity model
  publication-title: Journal of Information Systems Engineering and Business Intelligence
  doi: 10.20473/jisebi.6.1.70-78
– volume: 30
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR31
  article-title: Prediction of tool wear in CFRP drilling based on neural network with multicharacteristics and multisignal sources
  publication-title: Advances in Material Processing Mechanism and Monitoring Technology
– volume: 209
  start-page: 24
  year: 2014
  end-page: 32
  ident: CR20
  article-title: Vibration sensor based tool condition monitoring using v-support vector machine and locality preserving projection
  publication-title: Sensors and Actuators A Physical
  doi: 10.1016/j.sna.2014.01.004
– volume: 32
  start-page: 77
  issue: 1–4
  year: 2020
  end-page: 90
  ident: CR57
  article-title: Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining
  publication-title: Journal of Intelligent Manufacturing
– volume: 36
  start-page: 1252
  issue: 6
  year: 2012
  end-page: 1255
  ident: CR54
  article-title: Improved BP neural network prediction model and its application
  publication-title: Journal of Wuhan University of Technology
– volume: 37
  start-page: 250
  issue: 7
  year: 2009
  end-page: 251
  ident: CR15
  article-title: Monitoring of cutting tool wear based on cutting force by using wavelet neural network
  publication-title: Machine Tools and Hydraulics
– volume: 787
  start-page: 907
  year: 2015
  end-page: 911
  ident: CR25
  article-title: On-line monitoring the hard turning using distribution parameters of acoustic emission signal
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.787.907
– ident: CR69
– volume: 96
  start-page: 2509
  issue: 4
  year: 2018
  end-page: 2532
  ident: CR8
  article-title: Review of tool condition monitoring methods in milling processes
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-018-1768-5
– ident: CR48
– volume: 598
  start-page: 012088
  issue: 1
  year: 2019
  ident: CR36
  article-title: Feature extraction o condition monitoring data on heavy equipment’s component using principal component analysis (PCA)
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/598/1/012088
– volume: 61
  start-page: 368
  issue: 2
  year: 2012
  end-page: 378
  ident: CR41
  article-title: Internal leakage detection in hydraulic actuators using empirical mode decomposition and hilbert spectrum
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2011.2161938
– volume: 28
  start-page: 12
  issue: 5
  year: 2001
  end-page: 13
  ident: CR59
  article-title: Tool wear monitoring on milling based on RBF neural network
  publication-title: Mechanics
– ident: CR65
– volume: 91
  start-page: 1
  issue: 1–4
  year: 2017
  end-page: 11
  ident: CR24
  article-title: A weighted hidden Markov model approach for continuous-state tool wear monitoring and tool life prediction
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 8
  start-page: 1354
  issue: 11
  year: 2019
  ident: CR47
  article-title: Elderly fall detection with an accelerometer using lightweight neural networks
  publication-title: Electronics
  doi: 10.3390/electronics8111354
– year: 2017
  ident: CR11
  publication-title: Research on Intelligent Monitoring Method for Vibration States and Tool Wear in Machining
– ident: CR13
– volume: 104
  start-page: 1051
  issue: 1
  year: 2019
  end-page: 1063
  ident: CR66
  article-title: Tool wear state recognition based on GWO-SVM with feature selection of genetic algorithm
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-019-03906-9
– volume: 14
  start-page: 97
  issue: 11
  year: 2016
  end-page: 99
  ident: CR67
  article-title: Gaussian process regression method and its prediction model
  publication-title: Science and Technology Information
– volume: 8
  start-page: 964
  issue: 4
  year: 2012
  end-page: 973
  ident: CR71
  article-title: A physically segmented hidden markov model approach for continuous tool condition monitoring, diagnostics and prognostics
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2012.2205583
– volume: 460–461
  start-page: 203479
  year: 2020
  ident: CR10
  article-title: Online milling cutter wear monitoring in a wide field-of-view camera
  publication-title: Wear
  doi: 10.1016/j.wear.2020.203479
– volume: 86
  start-page: 841
  issue: 1–4
  year: 2016
  end-page: 851
  ident: CR30
  article-title: In-process cutting tool remaining useful life evaluation based on operational reliability assessment
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-015-8230-8
– volume: 32
  start-page: 1930
  issue: 14
  year: 2011
  end-page: 1935
  ident: CR45
  article-title: Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2011.07.016
– volume: 16
  start-page: 76
  issue: 2
  year: 2018
  end-page: 80
  ident: CR19
  article-title: Measurement and analysis system of rotor vibration and noise of rotating machinery
  publication-title: Digital Manufacturing Science
– volume: 20
  start-page: 26
  issue: 3
  year: 2016
  end-page: 29
  ident: CR32
  article-title: A probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signals
  publication-title: Machining Science and Technology
  doi: 10.1080/10910344.2016.1191026
– volume: 104
  start-page: 556
  issue: 51
  year: 2018
  end-page: 574
  ident: CR68
  article-title: Gaussian process regression for tool wear prediction
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.11.021
– volume: 63
  start-page: 313
  year: 2017
  end-page: 317
  ident: CR7
  article-title: 5-Axis control finishing for decreased tool wear
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.03.320
– volume: 93
  start-page: 80
  year: 2017
  end-page: 91
  ident: CR9
  article-title: The monitoring of micro milling tool wear conditions by wear area estimation
  publication-title: Mechanical Systems & Signal Processing
  doi: 10.1016/j.ymssp.2017.02.004
– volume: 6
  start-page: 166
  issue: 6
  year: 2016
  end-page: 176
  ident: CR61
  article-title: Review of the remaining useful life prognostics of vehicle lithium-Ion batteries using data-driven methodologies
  publication-title: Applied Sciences
  doi: 10.3390/app6060166
– volume: 59
  start-page: 4773
  issue: 16
  year: 2021
  end-page: 4778
  ident: CR3
  article-title: Machine learning in manufacturing and industry 4.0 applications
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2021.1956675
– volume: 12
  start-page: 1
  issue: 11
  year: 2020
  end-page: 25
  ident: CR2
  article-title: A framework for assessing green capacity utilization considering CO emissions in China’s high-tech manufacturing industry
  publication-title: Sustainability
  doi: 10.3390/su12114424
– volume: 21
  start-page: 466
  issue: 1
  year: 2007
  end-page: 479
  ident: CR28
  article-title: Estimation of tool wear during CNC milling using neural network-based sensor fusion
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.10.010
– volume: 26
  start-page: 1919
  issue: 8
  year: 2013
  end-page: 1929
  ident: CR70
  article-title: Fault detection and diagnosis in synchronous motors using hidden Markov model-based semi-nonparametric approach
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2013.06.005
– volume: 26
  start-page: 2273
  issue: 17
  year: 2015
  ident: 1229_CR6
  publication-title: Journal of Mechanical Engineering
– volume: 10
  start-page: 93
  issue: 5
  year: 2018
  ident: 1229_CR4
  publication-title: International Journal of Integrated Engineering
  doi: 10.30880/ijie.2018.10.05.015
– volume: 38
  start-page: 103
  issue: 2
  year: 2019
  ident: 1229_CR22
  publication-title: Foreign Electronic Measurement Technology
– volume: 61
  start-page: 368
  issue: 2
  year: 2012
  ident: 1229_CR41
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2011.2161938
– volume: 104
  start-page: 556
  issue: 51
  year: 2018
  ident: 1229_CR68
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.11.021
– volume-title: Research on Tool Wearing Condition Monitoring based on AE and Vibration
  year: 2009
  ident: 1229_CR78
– volume: 19
  start-page: 103
  issue: 5
  year: 2009
  ident: 1229_CR53
  publication-title: Computer Technology and Development
– volume: 598
  start-page: 012088
  issue: 1
  year: 2019
  ident: 1229_CR36
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/598/1/012088
– volume: 53
  start-page: 1108
  issue: 2
  year: 2020
  ident: 1229_CR44
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2020.12.1310
– ident: 1229_CR75
– volume: 29
  start-page: 3885
  issue: 9
  year: 2015
  ident: 1229_CR12
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-015-0834-2
– volume: 22
  start-page: 1519
  issue: 7
  year: 2019
  ident: 1229_CR35
  publication-title: Advances in Structural Engineering
  doi: 10.1177/1369433218818921
– volume: 12
  start-page: 1
  issue: 11
  year: 2020
  ident: 1229_CR2
  publication-title: Sustainability
  doi: 10.3390/su12114424
– start-page: 51
  volume-title: Nonlinear Time Series Analysis with R
  year: 2017
  ident: 1229_CR37
– ident: 1229_CR13
– volume: 33
  start-page: 1682
  issue: 11
  year: 2014
  ident: 1229_CR56
  publication-title: Mechanical Science and Technology for Aerospace Engineering
– volume: 787
  start-page: 907
  year: 2015
  ident: 1229_CR25
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.787.907
– volume: 20
  start-page: 26
  issue: 3
  year: 2016
  ident: 1229_CR32
  publication-title: Machining Science and Technology
  doi: 10.1080/10910344.2016.1191026
– volume-title: Research on Intelligent Monitoring Method for Vibration States and Tool Wear in Machining
  year: 2017
  ident: 1229_CR11
– volume: 69
  start-page: 5219
  issue: 7
  year: 2019
  ident: 1229_CR64
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2019.2952476
– volume: 9
  start-page: 1032
  issue: 1
  year: 2020
  ident: 1229_CR43
  publication-title: Journal of Materials Research and Technology
  doi: 10.1016/j.jmrt.2019.10.031
– volume: 56
  start-page: 74
  issue: 7
  year: 2018
  ident: 1229_CR49
  publication-title: Agricultural Equipment and Vehicle Engineering
– volume: 59
  start-page: 4773
  issue: 16
  year: 2021
  ident: 1229_CR3
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2021.1956675
– volume: 59
  start-page: 463
  issue: 5–8
  year: 2012
  ident: 1229_CR14
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-011-3536-7
– ident: 1229_CR48
– volume: 32
  start-page: 77
  issue: 1–4
  year: 2020
  ident: 1229_CR57
  publication-title: Journal of Intelligent Manufacturing
– volume: 104
  start-page: 1867
  year: 2021
  ident: 1229_CR5
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.11.315
– volume: 72
  start-page: 738
  year: 2021
  ident: 1229_CR26
  publication-title: Precision Engineering
  doi: 10.1016/j.precisioneng.2021.07.019
– volume: 13
  start-page: 1
  issue: 6
  year: 2021
  ident: 1229_CR51
  publication-title: Advances in Mechanical Engineering
  doi: 10.1177/16878140211026720
– ident: 1229_CR69
– volume: 90
  start-page: 500
  year: 2016
  ident: 1229_CR72
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.022
– volume: 14
  start-page: 69
  issue: 1
  year: 2017
  ident: 1229_CR18
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2017.2723943
– volume: 104
  start-page: 1051
  issue: 1
  year: 2019
  ident: 1229_CR66
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-019-03906-9
– volume: 30
  start-page: 1
  year: 2021
  ident: 1229_CR31
  publication-title: Advances in Material Processing Mechanism and Monitoring Technology
– volume: 4
  start-page: 734
  issue: 4
  year: 2017
  ident: 1229_CR39
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2016.7510190
– volume: 83
  start-page: 1487
  issue: 9–12
  year: 2016
  ident: 1229_CR60
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-015-7441-3
– volume: 65
  start-page: 371
  issue: 1–4
  year: 2013
  ident: 1229_CR33
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-012-4177-1
– volume: 6
  start-page: 166
  issue: 6
  year: 2016
  ident: 1229_CR61
  publication-title: Applied Sciences
  doi: 10.3390/app6060166
– volume: 460–461
  start-page: 203479
  year: 2020
  ident: 1229_CR10
  publication-title: Wear
  doi: 10.1016/j.wear.2020.203479
– volume: 36
  start-page: 1252
  issue: 6
  year: 2012
  ident: 1229_CR54
  publication-title: Journal of Wuhan University of Technology
– volume: 28
  start-page: 12
  issue: 5
  year: 2001
  ident: 1229_CR59
  publication-title: Mechanics
– volume: 63
  start-page: 313
  year: 2017
  ident: 1229_CR7
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.03.320
– ident: 1229_CR50
– volume: 16
  start-page: 76
  issue: 2
  year: 2018
  ident: 1229_CR19
  publication-title: Digital Manufacturing Science
– volume: 91
  start-page: 1
  issue: 1–4
  year: 2017
  ident: 1229_CR24
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 61
  start-page: 53
  issue: 1–4
  year: 2012
  ident: 1229_CR38
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-011-3703-x
– volume: 54
  start-page: 124
  issue: 17
  year: 2018
  ident: 1229_CR63
  publication-title: Journal of Mechanical Engineering
  doi: 10.3901/JME.2018.17.124
– volume: 2021
  start-page: 1
  issue: 6
  year: 2021
  ident: 1229_CR23
  publication-title: Mathematical Problems in Engineering
– volume: 67
  start-page: 137
  year: 2021
  ident: 1229_CR62
  publication-title: Precision Engineering
  doi: 10.1016/j.precisioneng.2020.09.025
– volume: 12
  start-page: 3091
  issue: 19
  year: 2019
  ident: 1229_CR52
  publication-title: Materials
  doi: 10.3390/ma12193091
– volume-title: Research on Tool Wear Status Intelligent Monitoring based on the Power and Vibration Signals
  year: 2020
  ident: 1229_CR79
– volume: 106
  start-page: 3859
  issue: 9
  year: 2020
  ident: 1229_CR17
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-019-04880-y
– volume: 26
  start-page: 1919
  issue: 8
  year: 2013
  ident: 1229_CR70
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2013.06.005
– volume: 38
  start-page: 137
  issue: 5
  year: 2016
  ident: 1229_CR77
  publication-title: Manufacturing Automation
– volume: 32
  start-page: 1930
  issue: 14
  year: 2011
  ident: 1229_CR45
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2011.07.016
– volume: 166
  start-page: 105254
  year: 2019
  ident: 1229_CR42
  publication-title: International Journal of Mechanical Sciences
  doi: 10.1016/j.ijmecsci.2019.105254
– ident: 1229_CR65
  doi: 10.1109/PHM-Qingdao46334.2019.8942820
– volume: 8
  start-page: 964
  issue: 4
  year: 2012
  ident: 1229_CR71
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2012.2205583
– volume: 214
  start-page: 535
  issue: 7
  year: 2000
  ident: 1229_CR29
  publication-title: Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture
  doi: 10.1243/0954405001518233
– ident: 1229_CR21
– volume: 8
  start-page: 1354
  issue: 11
  year: 2019
  ident: 1229_CR47
  publication-title: Electronics
  doi: 10.3390/electronics8111354
– volume: 6
  start-page: 70
  issue: 1
  year: 2020
  ident: 1229_CR1
  publication-title: Journal of Information Systems Engineering and Business Intelligence
  doi: 10.20473/jisebi.6.1.70-78
– volume: 107
  start-page: 4837
  issue: 11–12
  year: 2020
  ident: 1229_CR34
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 70
  start-page: 1
  issue: 1
  year: 2021
  ident: 1229_CR76
  publication-title: CIRP Annals-Manufacturing Technology
  doi: 10.1016/j.cirp.2021.03.024
– volume: 41
  start-page: 47
  issue: 3
  year: 2003
  ident: 1229_CR55
  publication-title: Machinery Manufacturing
– volume: 61
  start-page: 2900
  issue: 6
  year: 2014
  ident: 1229_CR73
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2013.2274422
– volume: 93
  start-page: 80
  year: 2017
  ident: 1229_CR9
  publication-title: Mechanical Systems & Signal Processing
  doi: 10.1016/j.ymssp.2017.02.004
– volume: 37
  start-page: 250
  issue: 7
  year: 2009
  ident: 1229_CR15
  publication-title: Machine Tools and Hydraulics
– ident: 1229_CR74
– volume: 28
  start-page: 317
  issue: 1
  year: 2014
  ident: 1229_CR16
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-013-0982-1
– volume: 86
  start-page: 841
  issue: 1–4
  year: 2016
  ident: 1229_CR30
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-015-8230-8
– volume: 49
  start-page: 537
  issue: 7–8
  year: 2009
  ident: 1229_CR40
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2009.02.003
– volume: 21
  start-page: 466
  issue: 1
  year: 2007
  ident: 1229_CR28
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.10.010
– volume: 209
  start-page: 24
  year: 2014
  ident: 1229_CR20
  publication-title: Sensors and Actuators A Physical
  doi: 10.1016/j.sna.2014.01.004
– volume: 39
  start-page: 37
  issue: 18
  year: 2012
  ident: 1229_CR46
  publication-title: International Journal of Computer Applications
  doi: 10.5120/5082-7268
– volume: 14
  start-page: 97
  issue: 11
  year: 2016
  ident: 1229_CR67
  publication-title: Science and Technology Information
– volume: 38
  start-page: 1
  issue: 7
  year: 2016
  ident: 1229_CR27
  publication-title: Manufacturing Automation
– volume: 96
  start-page: 2509
  issue: 4
  year: 2018
  ident: 1229_CR8
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-018-1768-5
– volume: 21
  start-page: 219
  issue: 3
  year: 2007
  ident: 1229_CR58
  publication-title: Journal of Test and Measurement Technology
SSID ssj0062411
Score 2.4566917
Snippet Tool wear is inevitable in cutting process. If tool wear failure is not detected in time, it will lead to abnormal cutting process and affect the machining...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 289
SubjectTerms Control
Cutting wear
Decision making
Dynamical Systems
Engineering
Feature extraction
Industrial and Production Engineering
Intelligent manufacturing systems
Machining
Mechanical Engineering
Monitoring
Original Article
Pattern recognition
Tool wear
Vibration
기계공학
Title Tool wear intelligent monitoring techniques in cutting: a review
URI https://link.springer.com/article/10.1007/s12206-022-1229-9
https://www.proquest.com/docview/2765092827
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002921330
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Mechanical Science and Technology, 2023, 37(1), , pp.289-303
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8ULnowfkYUSRM9aZpA126dJ8GAqAknSPDUbF1rCLgZGPHf93UfIEZNvGyHvW3Z68fv99bX30PoKggVM1Q5JAL0IYxpQ3ymFXGFNsZVomnCLEF24PZH7GnMx8U-7kWZ7V4uSWYz9XqzG6U2-qW2GAf1ib-NqtzKSUEnHtF2Of26AElZlOXBSGY-G5dLmT89YgOMtuO52eCZ35ZGM8Tp7aO9giridt62B2hLx4do94uA4BG6GybJDH9Ab8WTlbZmit-ygWpN8EqjdQEWWC2zNOdbHOB8z8oxGvW6w_s-KWoiEEVFKyVAyELtuIp6rnaYwxQcKQOnRpHxIwDrqOVq4ECu8SLP18DnAsOp4U1luGYhdU5QJU5ifYpwxI3QQgQB2DOAytALBIfoAjA8CinXNdQsnSNVIRhu61bM5Frq2PpTgj-l9af0a-h6dct7rpbxl_EleFxO1URajWt7fk3kdC6ByT_a1DOYLwRY1csWkcXwWkj4eiA6EC16NXRTttL68q-vPPuX9TnascXl8x8udVRJ50t9ARQkDRuo2u51OgN7fnh57jayLvgJ8AvUHQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8ED-rB-BlR1CZ60jSBrus6TxIjAUVOkHBrtq41BNwMjPjv-7oPEKMmXrbD3rbs9eP3e3tfCF0HoWKGKodEgD6EMW2Iz7QiXGhjuBINE2YBsn3eGbKnkTsq8rjnZbR76ZLMdupVshul1vqlthkH9YlfQZvWy2gtriFtldsvB0jKrCwPVjLz2ah0Zf70iDUwqsQzs8Yzv7lGM8Rp76HdgiriVj62-2hDxwdo50sBwUN0P0iSKf6A2YrHy9qaKX7LFqoVwcsarXOQwGqRhTnf4QDnOStHaNh-HDx0SNETgSgqmikBQhZqhyvqce0whyk4UgZKjSLjRwDWUZNr4EDceJHna-BzgXGpcRvKuJqF1DlG1TiJ9QnCkWuEFiIIQJ4BVIZeIFywLgDDo5C6uoYapXKkKgqG274VU7kqdWz1KUGf0upT-jV0s7zlPa-W8ZfwFWhcTtRY2hrX9vyayMlMApPv2tAz2C8ESNXLEZHF8ppL-HogOmAtejV0W47S6vKvrzz9l_Ql2uoMXnqy1-0_n6Ft22g-__lSR9V0ttDnQEfS8CKbfp-h_dPw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gujBt1ituqAnJVo3m5cnRa2tinhooZ7WZB8i1bS0KYK_3tk8WhUVxEtyyOSxM7s732RnvwHYDSPBNBW2JdH7WIwpbQVMCcv1ldau8Ks6ShNkb916i121nXZe53RQZLsXS5LZngbD0hQnhz2pD8cb3yg1kTA1hTloYAWTMMVMCYkSTJ1e3l9fFJOxiw4qjbk8HNcsYO1iYfO7h3xyTZNxX39CnV8WSlP_U5uHh-LLs7STzsEwiQ7E2xdSx380bQHmcmxKTrPOtAgTKl6C2Q-Mhctw0ux2n8krDg_yNCLzTMhLOjMYETIihR2gBBHDNK_6mIQk2ySzAq3aRfOsbuVFGCxB_aPEQgQYKdsV1HOVzWwm8EgZWlFKHUhEB_LIVQi6XO1JL1AIIEPtUO1UhXYUi6i9CqW4G6s1INLRvvL9MER5hr458kLfwXAGQYOMqKPKUC30z0XOUG4KZTzzMbeyUQ5H5XCjHB6UYW90Sy-j5_hNeAeNyjviiRtSbXN-7PJOn2Po0DC5bjhB-ShVKYzO8_E84Nh6RFYYnnpl2C9sOL784yvX_yS9DdN35zV-07i93oAZU9g--9lTgVLSH6pNhD9JtJV38XcmxvmR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tool+wear+intelligent+monitoring+techniques+in+cutting%3A+a+review&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.au=Cheng%2C+Yaonan&rft.au=Gai%2C+Xiaoyu&rft.au=Guan%2C+Rui&rft.au=Jin%2C+Yingbo&rft.date=2023-01-01&rft.issn=1738-494X&rft.eissn=1976-3824&rft.volume=37&rft.issue=1&rft.spage=289&rft.epage=303&rft_id=info:doi/10.1007%2Fs12206-022-1229-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12206_022_1229_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon