Log‐Sobolev Inequality for the Continuum Sine‐Gordon Model
We derive a multiscale generalisation of the Bakry‐Émery criterion for a measure to satisfy a log‐Sobolev inequality. Our criterion relies on the control of an associated PDE well‐known in renormalisation theory: the Polchinski equation. It implies the usual Bakry‐Émery criterion, but we show that i...
Saved in:
Published in | Communications on pure and applied mathematics Vol. 74; no. 10; pp. 2064 - 2113 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons Australia, Ltd
01.10.2021
John Wiley and Sons, Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0010-3640 1097-0312 |
DOI | 10.1002/cpa.21926 |
Cover
Abstract | We derive a multiscale generalisation of the Bakry‐Émery criterion for a measure to satisfy a log‐Sobolev inequality. Our criterion relies on the control of an associated PDE well‐known in renormalisation theory: the Polchinski equation. It implies the usual Bakry‐Émery criterion, but we show that it remains effective for measures that are far from log‐concave. Indeed, using our criterion, we prove that the massive continuum sine‐Gordon model with β < 6π satisfies asymptotically optimal log‐Sobolev inequalities for Glauber and Kawasaki dynamics. These dynamics can be seen as singular SPDEs recently constructed via regularity structures, but our results are independent of this theory. © 2021 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC. |
---|---|
AbstractList | We derive a multiscale generalisation of the Bakry‐Émery criterion for a measure to satisfy a log‐Sobolev inequality. Our criterion relies on the control of an associated PDE well‐known in renormalisation theory: the Polchinski equation. It implies the usual Bakry‐Émery criterion, but we show that it remains effective for measures that are far from log‐concave. Indeed, using our criterion, we prove that the massive continuum sine‐Gordon model with β < 6π satisfies asymptotically optimal log‐Sobolev inequalities for Glauber and Kawasaki dynamics. These dynamics can be seen as singular SPDEs recently constructed via regularity structures, but our results are independent of this theory. © 2021 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC. We derive a multiscale generalisation of the Bakry‐Émery criterion for a measure to satisfy a log‐Sobolev inequality. Our criterion relies on the control of an associated PDE well‐known in renormalisation theory: the Polchinski equation. It implies the usual Bakry‐Émery criterion, but we show that it remains effective for measures that are far from log‐concave. Indeed, using our criterion, we prove that the massive continuum sine‐Gordon model with β < 6 π satisfies asymptotically optimal log‐Sobolev inequalities for Glauber and Kawasaki dynamics. These dynamics can be seen as singular SPDEs recently constructed via regularity structures, but our results are independent of this theory. © 2021 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC. |
Author | Bauerschmidt, Roland Bodineau, Thierry |
Author_xml | – sequence: 1 givenname: Roland surname: Bauerschmidt fullname: Bauerschmidt, Roland email: rb812@cam.ac.uk organization: Centre of Mathematical Sciences – sequence: 2 givenname: Thierry surname: Bodineau fullname: Bodineau, Thierry email: thierry.bodineau@polytechnique.edu organization: Centre de Mathématiques Appliquées |
BookMark | eNp1kMFKAzEYhINUsK0efIMFTx62zZ9kN92LUBathYpC9Ryy2aymbJM2u6v05iP4jD6J0fYkevoZ-GZ-ZgaoZ53VCJ0DHgHGZKw2ckQgI-kR6gPOeIwpkB7qYww4pinDJ2jQNKsggU1oH10t3PPn-8fSFa7Wr9Hc6m0na9Puosr5qH3RUe5sa2zXraOlsTqwM-dLZ6M7V-r6FB1Xsm702eEO0dPN9WN-Gy_uZ_N8uogVmUAaa1JIXmaEAxREy6ogCpMMCMtYUfFMQ1nQBDAHLTGTtKoUUB76MEXVhCaYDtHFPnfj3bbTTStWrvM2vBQkSYElnDMI1HhPKe-axutKKNPK1oQGXppaABbfI4kwkvgZKTgufzk23qyl3_3JHtLfTK13_4Mif5juHV-l4nhw |
CitedBy_id | crossref_primary_10_1007_s00220_023_04850_2 crossref_primary_10_1007_s00440_024_01326_9 crossref_primary_10_1007_s00039_022_00612_9 crossref_primary_10_1214_21_AOP1537 crossref_primary_10_1007_s00220_022_04609_1 crossref_primary_10_1007_s40072_024_00328_x crossref_primary_10_1002_cpa_22173 crossref_primary_10_1016_j_spa_2024_104548 crossref_primary_10_1214_24_PS27 crossref_primary_10_1002_cpa_22172 crossref_primary_10_1103_PhysRevD_108_025003 crossref_primary_10_1007_s00023_023_01351_9 crossref_primary_10_1007_s00220_020_03908_9 crossref_primary_10_1142_S0219199723500359 |
Cites_doi | 10.1007/s000230050005 10.1214/07-AIHP200 10.1017/CBO9780511622779 10.1007/s00220-008-0619-x 10.1353/ajm.0.0110 10.1007/978-3-319-00227-9_1 10.1103/PhysRevA.8.401 10.1007/BF02101009 10.1063/1.1664760 10.1007/BF01961240 10.1007/s00220-012-1454-7 10.1007/s00220-015-2525-3 10.1007/BF02431881 10.1016/0550-3213(84)90287-6 10.1017/CBO9780511750854 10.1007/978-3-319-11970-0_9 10.1007/BF02096863 10.1007/BF01127719 10.4153/CJM-1998-041-5 10.1007/BFb0075847 10.1017/CBO9781139165372 10.1007/BF01941802 10.1002/cpa.21655 10.4310/jdg/1214436922 10.1007/s002200050478 10.2307/2373688 10.1103/PhysRevD.11.2088 10.1103/PhysRevB.4.3174 10.1007/s00220-016-2788-3 10.1007/BF01211104 10.1016/S0246-0203(02)01108-1 10.1007/s00220-019-03553-x 10.1007/s00526-009-0223-8 10.1007/BF02179380 10.1007/978-1-4899-6762-6_4 10.1103/PhysRevLett.34.833 10.1214/17-AOP1212 10.1007/s10955-019-02370-9 10.1007/978-3-7643-7434-1_12 10.1007/BF01009952 10.1016/j.jfa.2006.10.002 10.1007/s00222-012-0404-5 10.1214/17-AOP1188 10.1007/BF01213609 10.1007/978-981-32-9593-3 10.1007/BF01010398 10.1214/17-AIHP837 10.1214/18-AIHP947 10.1016/0022-1236(76)90004-5 10.1214/11-AOP715 10.1007/BF01197700 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC. 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION JQ2 |
DOI | 10.1002/cpa.21926 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0312 |
EndPage | 2113 |
ExternalDocumentID | 10_1002_cpa_21926 CPA21926 |
Genre | article |
GroupedDBID | --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 6OB 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABIJN ABLJU ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL S10 SAMSI SUPJJ TN5 TWZ UB1 UHB V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YZZ ZY4 ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 |
ID | FETCH-LOGICAL-c2816-e2ba7d92711b2eafb2c02912494bf79e1db351071ea04a3ffc1371004c3c83503 |
IEDL.DBID | 24P |
ISSN | 0010-3640 |
IngestDate | Fri Jul 25 19:16:03 EDT 2025 Tue Jul 01 02:50:31 EDT 2025 Thu Apr 24 22:56:30 EDT 2025 Wed Jan 22 16:29:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2816-e2ba7d92711b2eafb2c02912494bf79e1db351071ea04a3ffc1371004c3c83503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21926 |
PQID | 2561457741 |
PQPubID | 48818 |
PageCount | 50 |
ParticipantIDs | proquest_journals_2561457741 crossref_citationtrail_10_1002_cpa_21926 crossref_primary_10_1002_cpa_21926 wiley_primary_10_1002_cpa_21926_CPA21926 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: New York |
PublicationTitle | Communications on pure and applied mathematics |
PublicationYear | 2021 |
Publisher | John Wiley & Sons Australia, Ltd John Wiley and Sons, Limited |
Publisher_xml | – name: John Wiley & Sons Australia, Ltd – name: John Wiley and Sons, Limited |
References | 2009; 45 1717; 1999 1982; 17 1976; 22 2019; 55 1995; 79 2016; 341 1996; 181 1975; 97 2000; 1 1975; 11 1998; 198 1981; 82 2018; 46 1984; 231 1981; 81 1986; 105 2017; 70 2000 1986; 42 1980; 73 2020; 373 1985 1983 1998; 50 2009; 285 2013; 191 1987; 48 1971; 4 1987; 49 2002; 38 1989; 1 2010 2007; 243 1969; 10 2013; 41 1975; 34 2007 2006 2004 1755; 2001 1976; 49 1991; 137 2009; 36 1982; 83 2010; 132 2019 2014 2012; 312 2018; 54 2019; 177 1993; 156 2017; 349 1966 Fröhlich J. (e_1_2_1_30_1) 1976; 49 e_1_2_1_60_1 e_1_2_1_20_1 e_1_2_1_41_1 e_1_2_1_66_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_62_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_64_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_26_1 e_1_2_1_47_1 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_8_1 e_1_2_1_56_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_4_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_58_1 e_1_2_1_18_1 e_1_2_1_42_1 e_1_2_1_65_1 e_1_2_1_40_1 e_1_2_1_67_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_61_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_63_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_29_1 e_1_2_1_7_1 e_1_2_1_55_1 e_1_2_1_5_1 e_1_2_1_57_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_53_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_59_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – year: 1985 – volume: 41 start-page: 2182 issue: 3B year: 2013 end-page: 2224 article-title: Uniform logarithmic Sobolev inequalities for conservative spin systems with super‐quadratic single‐site potential publication-title: Ann. Probab. – volume: 132 start-page: 711 issue: 3 year: 2010 end-page: 730 article-title: Ricci flow entropy and optimal transportation publication-title: Amer. J. Math. – year: 1966 – volume: 49 start-page: 1 issue: 1‐2 year: 1987 end-page: 32 article-title: Debye screening for two‐dimensional Coulomb systems at high temperatures publication-title: J. Statist. Phys. – volume: 73 start-page: 197 issue: 3 year: 1980 end-page: 246 article-title: Debye screening publication-title: Comm. Math. Phys. – volume: 137 start-page: 263 issue: 2 year: 1991 end-page: 287 article-title: A renormalization group analysis of the Kosterlitz‐Thouless phase publication-title: Comm. Math. Phys. – volume: 48 start-page: 19 issue: 1‐2 year: 1987 end-page: 49 article-title: Mayer expansions and the Hamilton‐Jacobi equation publication-title: J. Statist. Phys. – volume: 46 start-page: 1651 issue: 3 year: 2018 end-page: 1709 article-title: Discretisations of rough stochastic PDEs publication-title: Ann. Probab. – volume: 341 start-page: 933 issue: 3 year: 2016 end-page: 989 article-title: The dynamical sine‐Gordon model publication-title: Comm. Math. Phys. – volume: 22 start-page: 366 issue: 4 year: 1976 end-page: 389 article-title: On extensions of the Brunn‐Minkowski and Prékopa‐Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation publication-title: J. Functional Analysis – volume: 54 start-page: 1204 issue: 3 year: 2018 end-page: 1249 article-title: Spectral gap for the stochastic quantization equation on the 2‐dimensional torus publication-title: Ann. Inst. Henri Poincaré Probab. Stat. – year: 2014 – volume: 105 start-page: 291 issue: 2 year: 1986 end-page: 326 article-title: On the massive sine‐Gordon equation in all regions of collapse publication-title: Comm. Math. Phys. – volume: 231 start-page: 269 issue: 2 year: 1984 end-page: 295 article-title: Renormalization and effective lagrangians publication-title: Nuclear Physics B – volume: 1999 year: 1717 article-title: Springer publication-title: Berlin – volume: 70 start-page: 717 issue: 4 year: 2017 end-page: 812 article-title: Convergence of the two‐dimensional dynamic Ising‐Kac model to publication-title: Comm. Pure Appl. Math. – volume: 38 start-page: 739 issue: 5 year: 2002 end-page: 777 article-title: Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems publication-title: Ann. Inst. H. Poincaré Probab. Statist. – year: 2004 – year: 2019 – volume: 83 start-page: 387 issue: 3 year: 1982 end-page: 410 article-title: On the massive sine‐Gordon equation in the first few regions of collapse publication-title: Comm. Math. Phys. – year: 1983 – volume: 50 start-page: 756 issue: 4 year: 1998 end-page: 793 article-title: Estimates on renormalization group transformations publication-title: Canad. J. Math. – volume: 243 start-page: 121 issue: 1 year: 2007 end-page: 157 article-title: A new criterion for the logarithmic Sobolev inequality and two applications publication-title: J. Funct. Anal. – volume: 349 start-page: 165 issue: 1 year: 2017 end-page: 269 article-title: KPZ reloaded publication-title: Comm. Math. Phys. – volume: 82 start-page: 545 issue: 4 year: 1981 end-page: 606 article-title: Proof of confinement of static quarks in 3‐dimensional U(1) lattice gauge theory for all values of the coupling constant publication-title: Comm. Math. Phys. – volume: 177 start-page: 324 issue: 2 year: 2019 end-page: 364 article-title: On the Mayer series of two‐dimensional Yukawa gas at inverse temperature in the interval of collapse publication-title: J. Stat. Phys. – year: 2007 – volume: 373 start-page: 1167 issue: 3 year: 2020 end-page: 1206 article-title: Spectral gap critical exponent for Glauber dynamics of hierarchical spin models publication-title: Comm. Math. Phys. – year: 2000 – volume: 1 year: 1989 – volume: 46 start-page: 397 issue: 1 year: 2018 end-page: 455 article-title: Lattice approximation to the dynamical model publication-title: Ann. Probab. – volume: 191 start-page: 719 issue: 3 year: 2013 end-page: 755 article-title: Cutoff for the Ising model on the lattice publication-title: Invent. Math. – volume: 1 start-page: 499 issue: 3 year: 2000 end-page: 541 article-title: Sine‐Gordon revisited publication-title: Ann. Henri Poincaré – volume: 10 start-page: 50 issue: 1 year: 1969 end-page: 52 article-title: Partially alternate derivation of a result of Nelson publication-title: J. Math. Phys. – year: 2010 – volume: 79 start-page: 1 issue: 1 year: 1995 end-page: 11 article-title: On the absence of intermediate phases in the two‐dimensional Coulomb gas publication-title: J. Stat. Phys. – volume: 11 start-page: 2088 year: 1975 end-page: 2097 article-title: Quantum sine‐Gordon equation as the massive Thirring model publication-title: Phys. Rev. D – volume: 285 start-page: 713 issue: 2 year: 2009 end-page: 762 article-title: Massless sine‐Gordon and massive Thirring models: proof of Coleman's equivalence publication-title: Comm. Math. Phys. – volume: 17 start-page: 255 issue: 2 year: 1982 end-page: 306 article-title: Three‐manifolds with positive Ricci curvature publication-title: J. Differential Geometry – volume: 2001 year: 1755 article-title: Springer publication-title: Berlin – volume: 45 start-page: 302 issue: 2 year: 2009 end-page: 351 article-title: A two‐scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit publication-title: Ann. Inst. Henri Poincaré Probab. Stat. – year: 2006 – volume: 55 start-page: 2209 issue: 4 year: 2019 end-page: 2248 article-title: Discretisation of regularity structures publication-title: Ann. Inst. Henri Poincaré Probab. Stat. – volume: 4 start-page: 3174 year: 1971 end-page: 3183 article-title: Renormalization group and critical phenomena publication-title: I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B – volume: 36 start-page: 49 issue: 1 year: 2009 end-page: 84 article-title: Optimal transport and Perelman's reduced volume publication-title: Calc. Var. Partial Differential Equations – volume: 198 start-page: 247 issue: 2 year: 1998 end-page: 281 article-title: Bosonization of massive fermions publication-title: Comm. Math. Phys. – volume: 312 start-page: 559 issue: 2 year: 2012 end-page: 609 article-title: Kosterlitz‐Thouless transition line for the two dimensional Coulomb gas publication-title: Comm. Math. Phys. – volume: 49 start-page: 889 issue: 6 year: 1976 end-page: 924 article-title: The massive Thirring‐Schwinger model (QED ): convergence of perturbation theory and particle structure publication-title: Helv. Phys. Acta – volume: 156 start-page: 547 issue: 3 year: 1993 end-page: 580 article-title: Construction of the two‐dimensional sine‐Gordon model for < 8 publication-title: Comm. Math. Phys. – volume: 81 start-page: 97 issue: 1 year: 1981 end-page: 126 article-title: Iterated Mayer expansion for classical gases at low temperatures publication-title: Comm. Math. Phys. – volume: 42 start-page: 425 issue: 3‐4 year: 1986 end-page: 435 article-title: Convergence of Mayer expansions publication-title: J. Statist. Phys. – volume: 181 start-page: 367 issue: 2 year: 1996 end-page: 408 article-title: Logarithmic Sobolev inequality for lattice gases with mixing conditions publication-title: Comm. Math. Phys. – volume: 34 start-page: 833 year: 1975 end-page: 836 article-title: Quantized “sine‐Gordon” equation with a nonvanishing mass term in two space‐time dimensions publication-title: Phys. Rev. Lett. – volume: 97 start-page: 1061 issue: 4 year: 1975 end-page: 1083 article-title: Logarithmic Sobolev inequalities publication-title: Amer. J. Math. – ident: e_1_2_1_22_1 doi: 10.1007/s000230050005 – ident: e_1_2_1_34_1 doi: 10.1214/07-AIHP200 – ident: e_1_2_1_40_1 doi: 10.1017/CBO9780511622779 – ident: e_1_2_1_9_1 doi: 10.1007/s00220-008-0619-x – ident: e_1_2_1_53_1 doi: 10.1353/ajm.0.0110 – ident: e_1_2_1_5_1 doi: 10.1007/978-3-319-00227-9_1 – ident: e_1_2_1_51_1 – ident: e_1_2_1_63_1 doi: 10.1103/PhysRevA.8.401 – ident: e_1_2_1_66_1 doi: 10.1007/BF02101009 – ident: e_1_2_1_26_1 – ident: e_1_2_1_27_1 doi: 10.1063/1.1664760 – ident: e_1_2_1_32_1 doi: 10.1007/BF01961240 – ident: e_1_2_1_25_1 doi: 10.1007/s00220-012-1454-7 – ident: e_1_2_1_37_1 doi: 10.1007/s00220-015-2525-3 – ident: e_1_2_1_20_1 doi: 10.1007/BF02431881 – ident: e_1_2_1_60_1 doi: 10.1016/0550-3213(84)90287-6 – ident: e_1_2_1_47_1 doi: 10.1017/CBO9780511750854 – ident: e_1_2_1_59_1 – ident: e_1_2_1_16_1 doi: 10.1007/978-3-319-11970-0_9 – ident: e_1_2_1_21_1 doi: 10.1007/BF02096863 – ident: e_1_2_1_12_1 doi: 10.1007/BF01127719 – ident: e_1_2_1_13_1 doi: 10.4153/CJM-1998-041-5 – ident: e_1_2_1_45_1 – ident: e_1_2_1_61_1 – ident: e_1_2_1_4_1 doi: 10.1007/BFb0075847 – ident: e_1_2_1_48_1 – ident: e_1_2_1_56_1 – ident: e_1_2_1_2_1 – ident: e_1_2_1_42_1 doi: 10.1017/CBO9781139165372 – ident: e_1_2_1_31_1 doi: 10.1007/BF01941802 – ident: e_1_2_1_55_1 doi: 10.1002/cpa.21655 – ident: e_1_2_1_38_1 doi: 10.4310/jdg/1214436922 – ident: e_1_2_1_19_1 doi: 10.1007/s002200050478 – ident: e_1_2_1_33_1 doi: 10.2307/2373688 – ident: e_1_2_1_18_1 doi: 10.1103/PhysRevD.11.2088 – ident: e_1_2_1_64_1 doi: 10.1103/PhysRevB.4.3174 – ident: e_1_2_1_35_1 doi: 10.1007/s00220-016-2788-3 – ident: e_1_2_1_23_1 – ident: e_1_2_1_57_1 doi: 10.1007/BF01211104 – ident: e_1_2_1_46_1 doi: 10.1016/S0246-0203(02)01108-1 – ident: e_1_2_1_7_1 doi: 10.1007/s00220-019-03553-x – ident: e_1_2_1_49_1 doi: 10.1007/s00526-009-0223-8 – ident: e_1_2_1_28_1 doi: 10.1007/BF02179380 – ident: e_1_2_1_39_1 doi: 10.1007/978-1-4899-6762-6_4 – ident: e_1_2_1_29_1 doi: 10.1103/PhysRevLett.34.833 – ident: e_1_2_1_36_1 doi: 10.1214/17-AOP1212 – volume: 49 start-page: 889 issue: 6 year: 1976 ident: e_1_2_1_30_1 article-title: The massive Thirring‐Schwinger model (QED2): convergence of perturbation theory and particle structure publication-title: Helv. Phys. Acta – ident: e_1_2_1_44_1 doi: 10.1007/s10955-019-02370-9 – ident: e_1_2_1_43_1 doi: 10.1007/978-3-7643-7434-1_12 – ident: e_1_2_1_65_1 doi: 10.1007/BF01009952 – ident: e_1_2_1_58_1 doi: 10.1016/j.jfa.2006.10.002 – ident: e_1_2_1_50_1 doi: 10.1007/s00222-012-0404-5 – ident: e_1_2_1_17_1 – ident: e_1_2_1_6_1 – ident: e_1_2_1_3_1 – ident: e_1_2_1_41_1 – ident: e_1_2_1_67_1 doi: 10.1214/17-AOP1188 – ident: e_1_2_1_10_1 doi: 10.1007/BF01213609 – ident: e_1_2_1_8_1 doi: 10.1007/978-981-32-9593-3 – ident: e_1_2_1_15_1 doi: 10.1007/BF01010398 – ident: e_1_2_1_62_1 doi: 10.1214/17-AIHP837 – ident: e_1_2_1_24_1 doi: 10.1214/18-AIHP947 – ident: e_1_2_1_11_1 doi: 10.1016/0022-1236(76)90004-5 – ident: e_1_2_1_54_1 doi: 10.1214/11-AOP715 – ident: e_1_2_1_14_1 doi: 10.1007/BF01197700 – ident: e_1_2_1_52_1 |
SSID | ssj0011483 |
Score | 2.4544048 |
Snippet | We derive a multiscale generalisation of the Bakry‐Émery criterion for a measure to satisfy a log‐Sobolev inequality. Our criterion relies on the control of an... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2064 |
SubjectTerms | Applications of mathematics Criteria |
Title | Log‐Sobolev Inequality for the Continuum Sine‐Gordon Model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21926 https://www.proquest.com/docview/2561457741 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMfDnBc9iD9xOiWIBy91aZqmLYIwpnOKk-Ec7FaaNBFhtsNtgjf_BP9G_xLz2rVTUPBSenht6Wtf8s2P93kIHbteQH2tI1gfpBaTnFi-A2w87ouYu4LGEhKFu3e8M2A3Q3dYQWdFLkzOhygn3CAysvYaAjwSk8YCGirH0akJN8qX0DKk1kLdBsp65RKC0fn58jI0NJyRAitEaKO89GdntFCY33Vq1tG019HaXCHiZv5JN1BFJZtotVviVSdb6Pw2ffx8_-inIh2pV3ydqDw38g0bCYqNIQbo1FMymz3jvnlRY3tlBplpgqH02WgbDdqXD62ONS-EYEnq29xSVEReHFDPtgVVkRZUEhpA2WgmtBcoOxaOiS3PVhFhkaO1tB2g9jDpSKOwiLODqkmaqF2EXQGEPcK1iFwWe76QZrwkhIlsol0S8xo6KTwSyjklHIpVjMKcb0xD47wwc14NHZWm4xyN8ZtRvXBrOI-OSUgBP-oa4Wmbx2Wu_vsGYavXzE72_m-6j1YobD3J9tzVUXX6MlMHRjtMxWH2j5jjxT39AuHovyU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeDzoN6EH_idGoQD17q0jRNWxBhDOem2xhsg91CkyYizHa4TfDmn-Df6F9i0nadgoK3Hl5b-tKXfPPjfR4AF64XYF-p0OwPYosIiizfMWw86vOIuhxHwiQKd7q0OST3I3e0Aq4XuTAZH6JYcDORkfbXJsDNgnR1SQ0Vk_BKxxumq2CNaF1uyPmY9Io9BC30s_1l09NQghZcIYSrxa0_R6OlxPwuVNORprENtnKJCGtZm-6AFRnvgs1OwVed7oGbdvL4-f7RT3gylq-wFcssOfINag0KtSE01KmneD5_hn39pdr2Ts8ykxia2mfjfTBs3A7qTSuvhGAJ7NvUkpiHXhRgz7Y5lqHiWCAcmLrRhCsvkHbEHR1cni1DREJHKWE7BttDhCO0xELOASjFSSwPAXS5QewhqnjoksjzudATJs51aCPlooiWweXCI0zkmHBTrWLMMsAxZtp5LHVeGZwXppOMjfGbUWXhVpaHx5Rhwx91tfK09etSV__9AFbv1dKLo_-bnoH15qDTZu1W9-EYbGBzDiU9gFcBpdnLXJ5oITHjp-n_8gXO68Gu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMfDnCB6EH_idGoQD16qaZqmLYIwpnPTbQzmYLfQpIkIsx1uE7z5J_g3-peYtGunoOCth9eWvvYl3_TlfR4Ap64XYF-p0OQHsUUERZbvGDYe9XlEXY4jYQqFO13aHJC7oTssgcu8FibjQxQ_3ExkpOO1CfBxpC4W0FAxDs91uGG6BJZNss_0bcCkV6QQtM7P0stmoKEE5VghhC-KU39ORguF-V2nphNNYwOszxUirGWvdBOUZLwF1joFXnWyDa7ayePn-0c_4clIvsJWLLPayDeoJSjUhtBAp57i2ewZ9vWDattbvchMYmhan412wKBx81BvWvNGCJbAvk0tiXnoRQH2bJtjGSqOBcKBaRtNuPICaUfc0bHl2TJEJHSUErZjqD1EOEIrLOTsgnKcxHIPQJcbwh6iiocuiTyfC71e4lxHNlIuimgFnOUeYWJOCTfNKkYs4xtjpp3HUudVwElhOs7QGL8ZVXO3snl0TBg2-FFXC09b3y519d8XYPVeLT3Y_7_pMVjpXTdYu9W9PwCr2OxCSbffVUF5-jKTh1pGTPlR-rl8Ac7MwNc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Log%E2%80%90Sobolev+Inequality+for+the+Continuum+Sine%E2%80%90Gordon+Model&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Bauerschmidt%2C+Roland&rft.au=Bodineau%2C+Thierry&rft.date=2021-10-01&rft.pub=John+Wiley+%26+Sons+Australia%2C+Ltd&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=74&rft.issue=10&rft.spage=2064&rft.epage=2113&rft_id=info:doi/10.1002%2Fcpa.21926&rft.externalDBID=10.1002%252Fcpa.21926&rft.externalDocID=CPA21926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon |