Log‐Sobolev Inequality for the Continuum Sine‐Gordon Model

We derive a multiscale generalisation of the Bakry‐Émery criterion for a measure to satisfy a log‐Sobolev inequality. Our criterion relies on the control of an associated PDE well‐known in renormalisation theory: the Polchinski equation. It implies the usual Bakry‐Émery criterion, but we show that i...

Full description

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 74; no. 10; pp. 2064 - 2113
Main Authors Bauerschmidt, Roland, Bodineau, Thierry
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons Australia, Ltd 01.10.2021
John Wiley and Sons, Limited
Subjects
Online AccessGet full text
ISSN0010-3640
1097-0312
DOI10.1002/cpa.21926

Cover

Abstract We derive a multiscale generalisation of the Bakry‐Émery criterion for a measure to satisfy a log‐Sobolev inequality. Our criterion relies on the control of an associated PDE well‐known in renormalisation theory: the Polchinski equation. It implies the usual Bakry‐Émery criterion, but we show that it remains effective for measures that are far from log‐concave. Indeed, using our criterion, we prove that the massive continuum sine‐Gordon model with β < 6π satisfies asymptotically optimal log‐Sobolev inequalities for Glauber and Kawasaki dynamics. These dynamics can be seen as singular SPDEs recently constructed via regularity structures, but our results are independent of this theory. © 2021 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC.
AbstractList We derive a multiscale generalisation of the Bakry‐Émery criterion for a measure to satisfy a log‐Sobolev inequality. Our criterion relies on the control of an associated PDE well‐known in renormalisation theory: the Polchinski equation. It implies the usual Bakry‐Émery criterion, but we show that it remains effective for measures that are far from log‐concave. Indeed, using our criterion, we prove that the massive continuum sine‐Gordon model with β < 6π satisfies asymptotically optimal log‐Sobolev inequalities for Glauber and Kawasaki dynamics. These dynamics can be seen as singular SPDEs recently constructed via regularity structures, but our results are independent of this theory. © 2021 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC.
We derive a multiscale generalisation of the Bakry‐Émery criterion for a measure to satisfy a log‐Sobolev inequality. Our criterion relies on the control of an associated PDE well‐known in renormalisation theory: the Polchinski equation. It implies the usual Bakry‐Émery criterion, but we show that it remains effective for measures that are far from log‐concave. Indeed, using our criterion, we prove that the massive continuum sine‐Gordon model with β  < 6 π satisfies asymptotically optimal log‐Sobolev inequalities for Glauber and Kawasaki dynamics. These dynamics can be seen as singular SPDEs recently constructed via regularity structures, but our results are independent of this theory. © 2021 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC.
Author Bauerschmidt, Roland
Bodineau, Thierry
Author_xml – sequence: 1
  givenname: Roland
  surname: Bauerschmidt
  fullname: Bauerschmidt, Roland
  email: rb812@cam.ac.uk
  organization: Centre of Mathematical Sciences
– sequence: 2
  givenname: Thierry
  surname: Bodineau
  fullname: Bodineau, Thierry
  email: thierry.bodineau@polytechnique.edu
  organization: Centre de Mathématiques Appliquées
BookMark eNp1kMFKAzEYhINUsK0efIMFTx62zZ9kN92LUBathYpC9Ryy2aymbJM2u6v05iP4jD6J0fYkevoZ-GZ-ZgaoZ53VCJ0DHgHGZKw2ckQgI-kR6gPOeIwpkB7qYww4pinDJ2jQNKsggU1oH10t3PPn-8fSFa7Wr9Hc6m0na9Puosr5qH3RUe5sa2zXraOlsTqwM-dLZ6M7V-r6FB1Xsm702eEO0dPN9WN-Gy_uZ_N8uogVmUAaa1JIXmaEAxREy6ogCpMMCMtYUfFMQ1nQBDAHLTGTtKoUUB76MEXVhCaYDtHFPnfj3bbTTStWrvM2vBQkSYElnDMI1HhPKe-axutKKNPK1oQGXppaABbfI4kwkvgZKTgufzk23qyl3_3JHtLfTK13_4Mif5juHV-l4nhw
CitedBy_id crossref_primary_10_1007_s00220_023_04850_2
crossref_primary_10_1007_s00440_024_01326_9
crossref_primary_10_1007_s00039_022_00612_9
crossref_primary_10_1214_21_AOP1537
crossref_primary_10_1007_s00220_022_04609_1
crossref_primary_10_1007_s40072_024_00328_x
crossref_primary_10_1002_cpa_22173
crossref_primary_10_1016_j_spa_2024_104548
crossref_primary_10_1214_24_PS27
crossref_primary_10_1002_cpa_22172
crossref_primary_10_1103_PhysRevD_108_025003
crossref_primary_10_1007_s00023_023_01351_9
crossref_primary_10_1007_s00220_020_03908_9
crossref_primary_10_1142_S0219199723500359
Cites_doi 10.1007/s000230050005
10.1214/07-AIHP200
10.1017/CBO9780511622779
10.1007/s00220-008-0619-x
10.1353/ajm.0.0110
10.1007/978-3-319-00227-9_1
10.1103/PhysRevA.8.401
10.1007/BF02101009
10.1063/1.1664760
10.1007/BF01961240
10.1007/s00220-012-1454-7
10.1007/s00220-015-2525-3
10.1007/BF02431881
10.1016/0550-3213(84)90287-6
10.1017/CBO9780511750854
10.1007/978-3-319-11970-0_9
10.1007/BF02096863
10.1007/BF01127719
10.4153/CJM-1998-041-5
10.1007/BFb0075847
10.1017/CBO9781139165372
10.1007/BF01941802
10.1002/cpa.21655
10.4310/jdg/1214436922
10.1007/s002200050478
10.2307/2373688
10.1103/PhysRevD.11.2088
10.1103/PhysRevB.4.3174
10.1007/s00220-016-2788-3
10.1007/BF01211104
10.1016/S0246-0203(02)01108-1
10.1007/s00220-019-03553-x
10.1007/s00526-009-0223-8
10.1007/BF02179380
10.1007/978-1-4899-6762-6_4
10.1103/PhysRevLett.34.833
10.1214/17-AOP1212
10.1007/s10955-019-02370-9
10.1007/978-3-7643-7434-1_12
10.1007/BF01009952
10.1016/j.jfa.2006.10.002
10.1007/s00222-012-0404-5
10.1214/17-AOP1188
10.1007/BF01213609
10.1007/978-981-32-9593-3
10.1007/BF01010398
10.1214/17-AIHP837
10.1214/18-AIHP947
10.1016/0022-1236(76)90004-5
10.1214/11-AOP715
10.1007/BF01197700
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
JQ2
DOI 10.1002/cpa.21926
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0312
EndPage 2113
ExternalDocumentID 10_1002_cpa_21926
CPA21926
Genre article
GroupedDBID --Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6OB
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABIJN
ABLJU
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
S10
SAMSI
SUPJJ
TN5
TWZ
UB1
UHB
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YZZ
ZY4
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
ID FETCH-LOGICAL-c2816-e2ba7d92711b2eafb2c02912494bf79e1db351071ea04a3ffc1371004c3c83503
IEDL.DBID 24P
ISSN 0010-3640
IngestDate Fri Jul 25 19:16:03 EDT 2025
Tue Jul 01 02:50:31 EDT 2025
Thu Apr 24 22:56:30 EDT 2025
Wed Jan 22 16:29:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2816-e2ba7d92711b2eafb2c02912494bf79e1db351071ea04a3ffc1371004c3c83503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21926
PQID 2561457741
PQPubID 48818
PageCount 50
ParticipantIDs proquest_journals_2561457741
crossref_citationtrail_10_1002_cpa_21926
crossref_primary_10_1002_cpa_21926
wiley_primary_10_1002_cpa_21926_CPA21926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: New York
PublicationTitle Communications on pure and applied mathematics
PublicationYear 2021
Publisher John Wiley & Sons Australia, Ltd
John Wiley and Sons, Limited
Publisher_xml – name: John Wiley & Sons Australia, Ltd
– name: John Wiley and Sons, Limited
References 2009; 45
1717; 1999
1982; 17
1976; 22
2019; 55
1995; 79
2016; 341
1996; 181
1975; 97
2000; 1
1975; 11
1998; 198
1981; 82
2018; 46
1984; 231
1981; 81
1986; 105
2017; 70
2000
1986; 42
1980; 73
2020; 373
1985
1983
1998; 50
2009; 285
2013; 191
1987; 48
1971; 4
1987; 49
2002; 38
1989; 1
2010
2007; 243
1969; 10
2013; 41
1975; 34
2007
2006
2004
1755; 2001
1976; 49
1991; 137
2009; 36
1982; 83
2010; 132
2019
2014
2012; 312
2018; 54
2019; 177
1993; 156
2017; 349
1966
Fröhlich J. (e_1_2_1_30_1) 1976; 49
e_1_2_1_60_1
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_66_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_62_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_64_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_8_1
e_1_2_1_56_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_58_1
e_1_2_1_18_1
e_1_2_1_42_1
e_1_2_1_65_1
e_1_2_1_40_1
e_1_2_1_67_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_63_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_29_1
e_1_2_1_7_1
e_1_2_1_55_1
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – year: 1985
– volume: 41
  start-page: 2182
  issue: 3B
  year: 2013
  end-page: 2224
  article-title: Uniform logarithmic Sobolev inequalities for conservative spin systems with super‐quadratic single‐site potential
  publication-title: Ann. Probab.
– volume: 132
  start-page: 711
  issue: 3
  year: 2010
  end-page: 730
  article-title: Ricci flow entropy and optimal transportation
  publication-title: Amer. J. Math.
– year: 1966
– volume: 49
  start-page: 1
  issue: 1‐2
  year: 1987
  end-page: 32
  article-title: Debye screening for two‐dimensional Coulomb systems at high temperatures
  publication-title: J. Statist. Phys.
– volume: 73
  start-page: 197
  issue: 3
  year: 1980
  end-page: 246
  article-title: Debye screening
  publication-title: Comm. Math. Phys.
– volume: 137
  start-page: 263
  issue: 2
  year: 1991
  end-page: 287
  article-title: A renormalization group analysis of the Kosterlitz‐Thouless phase
  publication-title: Comm. Math. Phys.
– volume: 48
  start-page: 19
  issue: 1‐2
  year: 1987
  end-page: 49
  article-title: Mayer expansions and the Hamilton‐Jacobi equation
  publication-title: J. Statist. Phys.
– volume: 46
  start-page: 1651
  issue: 3
  year: 2018
  end-page: 1709
  article-title: Discretisations of rough stochastic PDEs
  publication-title: Ann. Probab.
– volume: 341
  start-page: 933
  issue: 3
  year: 2016
  end-page: 989
  article-title: The dynamical sine‐Gordon model
  publication-title: Comm. Math. Phys.
– volume: 22
  start-page: 366
  issue: 4
  year: 1976
  end-page: 389
  article-title: On extensions of the Brunn‐Minkowski and Prékopa‐Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation
  publication-title: J. Functional Analysis
– volume: 54
  start-page: 1204
  issue: 3
  year: 2018
  end-page: 1249
  article-title: Spectral gap for the stochastic quantization equation on the 2‐dimensional torus
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
– year: 2014
– volume: 105
  start-page: 291
  issue: 2
  year: 1986
  end-page: 326
  article-title: On the massive sine‐Gordon equation in all regions of collapse
  publication-title: Comm. Math. Phys.
– volume: 231
  start-page: 269
  issue: 2
  year: 1984
  end-page: 295
  article-title: Renormalization and effective lagrangians
  publication-title: Nuclear Physics B
– volume: 1999
  year: 1717
  article-title: Springer
  publication-title: Berlin
– volume: 70
  start-page: 717
  issue: 4
  year: 2017
  end-page: 812
  article-title: Convergence of the two‐dimensional dynamic Ising‐Kac model to
  publication-title: Comm. Pure Appl. Math.
– volume: 38
  start-page: 739
  issue: 5
  year: 2002
  end-page: 777
  article-title: Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems
  publication-title: Ann. Inst. H. Poincaré Probab. Statist.
– year: 2004
– year: 2019
– volume: 83
  start-page: 387
  issue: 3
  year: 1982
  end-page: 410
  article-title: On the massive sine‐Gordon equation in the first few regions of collapse
  publication-title: Comm. Math. Phys.
– year: 1983
– volume: 50
  start-page: 756
  issue: 4
  year: 1998
  end-page: 793
  article-title: Estimates on renormalization group transformations
  publication-title: Canad. J. Math.
– volume: 243
  start-page: 121
  issue: 1
  year: 2007
  end-page: 157
  article-title: A new criterion for the logarithmic Sobolev inequality and two applications
  publication-title: J. Funct. Anal.
– volume: 349
  start-page: 165
  issue: 1
  year: 2017
  end-page: 269
  article-title: KPZ reloaded
  publication-title: Comm. Math. Phys.
– volume: 82
  start-page: 545
  issue: 4
  year: 1981
  end-page: 606
  article-title: Proof of confinement of static quarks in 3‐dimensional U(1) lattice gauge theory for all values of the coupling constant
  publication-title: Comm. Math. Phys.
– volume: 177
  start-page: 324
  issue: 2
  year: 2019
  end-page: 364
  article-title: On the Mayer series of two‐dimensional Yukawa gas at inverse temperature in the interval of collapse
  publication-title: J. Stat. Phys.
– year: 2007
– volume: 373
  start-page: 1167
  issue: 3
  year: 2020
  end-page: 1206
  article-title: Spectral gap critical exponent for Glauber dynamics of hierarchical spin models
  publication-title: Comm. Math. Phys.
– year: 2000
– volume: 1
  year: 1989
– volume: 46
  start-page: 397
  issue: 1
  year: 2018
  end-page: 455
  article-title: Lattice approximation to the dynamical model
  publication-title: Ann. Probab.
– volume: 191
  start-page: 719
  issue: 3
  year: 2013
  end-page: 755
  article-title: Cutoff for the Ising model on the lattice
  publication-title: Invent. Math.
– volume: 1
  start-page: 499
  issue: 3
  year: 2000
  end-page: 541
  article-title: Sine‐Gordon revisited
  publication-title: Ann. Henri Poincaré
– volume: 10
  start-page: 50
  issue: 1
  year: 1969
  end-page: 52
  article-title: Partially alternate derivation of a result of Nelson
  publication-title: J. Math. Phys.
– year: 2010
– volume: 79
  start-page: 1
  issue: 1
  year: 1995
  end-page: 11
  article-title: On the absence of intermediate phases in the two‐dimensional Coulomb gas
  publication-title: J. Stat. Phys.
– volume: 11
  start-page: 2088
  year: 1975
  end-page: 2097
  article-title: Quantum sine‐Gordon equation as the massive Thirring model
  publication-title: Phys. Rev. D
– volume: 285
  start-page: 713
  issue: 2
  year: 2009
  end-page: 762
  article-title: Massless sine‐Gordon and massive Thirring models: proof of Coleman's equivalence
  publication-title: Comm. Math. Phys.
– volume: 17
  start-page: 255
  issue: 2
  year: 1982
  end-page: 306
  article-title: Three‐manifolds with positive Ricci curvature
  publication-title: J. Differential Geometry
– volume: 2001
  year: 1755
  article-title: Springer
  publication-title: Berlin
– volume: 45
  start-page: 302
  issue: 2
  year: 2009
  end-page: 351
  article-title: A two‐scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
– year: 2006
– volume: 55
  start-page: 2209
  issue: 4
  year: 2019
  end-page: 2248
  article-title: Discretisation of regularity structures
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
– volume: 4
  start-page: 3174
  year: 1971
  end-page: 3183
  article-title: Renormalization group and critical phenomena
  publication-title: I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B
– volume: 36
  start-page: 49
  issue: 1
  year: 2009
  end-page: 84
  article-title: Optimal transport and Perelman's reduced volume
  publication-title: Calc. Var. Partial Differential Equations
– volume: 198
  start-page: 247
  issue: 2
  year: 1998
  end-page: 281
  article-title: Bosonization of massive fermions
  publication-title: Comm. Math. Phys.
– volume: 312
  start-page: 559
  issue: 2
  year: 2012
  end-page: 609
  article-title: Kosterlitz‐Thouless transition line for the two dimensional Coulomb gas
  publication-title: Comm. Math. Phys.
– volume: 49
  start-page: 889
  issue: 6
  year: 1976
  end-page: 924
  article-title: The massive Thirring‐Schwinger model (QED ): convergence of perturbation theory and particle structure
  publication-title: Helv. Phys. Acta
– volume: 156
  start-page: 547
  issue: 3
  year: 1993
  end-page: 580
  article-title: Construction of the two‐dimensional sine‐Gordon model for  < 8
  publication-title: Comm. Math. Phys.
– volume: 81
  start-page: 97
  issue: 1
  year: 1981
  end-page: 126
  article-title: Iterated Mayer expansion for classical gases at low temperatures
  publication-title: Comm. Math. Phys.
– volume: 42
  start-page: 425
  issue: 3‐4
  year: 1986
  end-page: 435
  article-title: Convergence of Mayer expansions
  publication-title: J. Statist. Phys.
– volume: 181
  start-page: 367
  issue: 2
  year: 1996
  end-page: 408
  article-title: Logarithmic Sobolev inequality for lattice gases with mixing conditions
  publication-title: Comm. Math. Phys.
– volume: 34
  start-page: 833
  year: 1975
  end-page: 836
  article-title: Quantized “sine‐Gordon” equation with a nonvanishing mass term in two space‐time dimensions
  publication-title: Phys. Rev. Lett.
– volume: 97
  start-page: 1061
  issue: 4
  year: 1975
  end-page: 1083
  article-title: Logarithmic Sobolev inequalities
  publication-title: Amer. J. Math.
– ident: e_1_2_1_22_1
  doi: 10.1007/s000230050005
– ident: e_1_2_1_34_1
  doi: 10.1214/07-AIHP200
– ident: e_1_2_1_40_1
  doi: 10.1017/CBO9780511622779
– ident: e_1_2_1_9_1
  doi: 10.1007/s00220-008-0619-x
– ident: e_1_2_1_53_1
  doi: 10.1353/ajm.0.0110
– ident: e_1_2_1_5_1
  doi: 10.1007/978-3-319-00227-9_1
– ident: e_1_2_1_51_1
– ident: e_1_2_1_63_1
  doi: 10.1103/PhysRevA.8.401
– ident: e_1_2_1_66_1
  doi: 10.1007/BF02101009
– ident: e_1_2_1_26_1
– ident: e_1_2_1_27_1
  doi: 10.1063/1.1664760
– ident: e_1_2_1_32_1
  doi: 10.1007/BF01961240
– ident: e_1_2_1_25_1
  doi: 10.1007/s00220-012-1454-7
– ident: e_1_2_1_37_1
  doi: 10.1007/s00220-015-2525-3
– ident: e_1_2_1_20_1
  doi: 10.1007/BF02431881
– ident: e_1_2_1_60_1
  doi: 10.1016/0550-3213(84)90287-6
– ident: e_1_2_1_47_1
  doi: 10.1017/CBO9780511750854
– ident: e_1_2_1_59_1
– ident: e_1_2_1_16_1
  doi: 10.1007/978-3-319-11970-0_9
– ident: e_1_2_1_21_1
  doi: 10.1007/BF02096863
– ident: e_1_2_1_12_1
  doi: 10.1007/BF01127719
– ident: e_1_2_1_13_1
  doi: 10.4153/CJM-1998-041-5
– ident: e_1_2_1_45_1
– ident: e_1_2_1_61_1
– ident: e_1_2_1_4_1
  doi: 10.1007/BFb0075847
– ident: e_1_2_1_48_1
– ident: e_1_2_1_56_1
– ident: e_1_2_1_2_1
– ident: e_1_2_1_42_1
  doi: 10.1017/CBO9781139165372
– ident: e_1_2_1_31_1
  doi: 10.1007/BF01941802
– ident: e_1_2_1_55_1
  doi: 10.1002/cpa.21655
– ident: e_1_2_1_38_1
  doi: 10.4310/jdg/1214436922
– ident: e_1_2_1_19_1
  doi: 10.1007/s002200050478
– ident: e_1_2_1_33_1
  doi: 10.2307/2373688
– ident: e_1_2_1_18_1
  doi: 10.1103/PhysRevD.11.2088
– ident: e_1_2_1_64_1
  doi: 10.1103/PhysRevB.4.3174
– ident: e_1_2_1_35_1
  doi: 10.1007/s00220-016-2788-3
– ident: e_1_2_1_23_1
– ident: e_1_2_1_57_1
  doi: 10.1007/BF01211104
– ident: e_1_2_1_46_1
  doi: 10.1016/S0246-0203(02)01108-1
– ident: e_1_2_1_7_1
  doi: 10.1007/s00220-019-03553-x
– ident: e_1_2_1_49_1
  doi: 10.1007/s00526-009-0223-8
– ident: e_1_2_1_28_1
  doi: 10.1007/BF02179380
– ident: e_1_2_1_39_1
  doi: 10.1007/978-1-4899-6762-6_4
– ident: e_1_2_1_29_1
  doi: 10.1103/PhysRevLett.34.833
– ident: e_1_2_1_36_1
  doi: 10.1214/17-AOP1212
– volume: 49
  start-page: 889
  issue: 6
  year: 1976
  ident: e_1_2_1_30_1
  article-title: The massive Thirring‐Schwinger model (QED2): convergence of perturbation theory and particle structure
  publication-title: Helv. Phys. Acta
– ident: e_1_2_1_44_1
  doi: 10.1007/s10955-019-02370-9
– ident: e_1_2_1_43_1
  doi: 10.1007/978-3-7643-7434-1_12
– ident: e_1_2_1_65_1
  doi: 10.1007/BF01009952
– ident: e_1_2_1_58_1
  doi: 10.1016/j.jfa.2006.10.002
– ident: e_1_2_1_50_1
  doi: 10.1007/s00222-012-0404-5
– ident: e_1_2_1_17_1
– ident: e_1_2_1_6_1
– ident: e_1_2_1_3_1
– ident: e_1_2_1_41_1
– ident: e_1_2_1_67_1
  doi: 10.1214/17-AOP1188
– ident: e_1_2_1_10_1
  doi: 10.1007/BF01213609
– ident: e_1_2_1_8_1
  doi: 10.1007/978-981-32-9593-3
– ident: e_1_2_1_15_1
  doi: 10.1007/BF01010398
– ident: e_1_2_1_62_1
  doi: 10.1214/17-AIHP837
– ident: e_1_2_1_24_1
  doi: 10.1214/18-AIHP947
– ident: e_1_2_1_11_1
  doi: 10.1016/0022-1236(76)90004-5
– ident: e_1_2_1_54_1
  doi: 10.1214/11-AOP715
– ident: e_1_2_1_14_1
  doi: 10.1007/BF01197700
– ident: e_1_2_1_52_1
SSID ssj0011483
Score 2.4544048
Snippet We derive a multiscale generalisation of the Bakry‐Émery criterion for a measure to satisfy a log‐Sobolev inequality. Our criterion relies on the control of an...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2064
SubjectTerms Applications of mathematics
Criteria
Title Log‐Sobolev Inequality for the Continuum Sine‐Gordon Model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21926
https://www.proquest.com/docview/2561457741
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMfDnBc9iD9xOiWIBy91aZqmLYIwpnOKk-Ec7FaaNBFhtsNtgjf_BP9G_xLz2rVTUPBSenht6Wtf8s2P93kIHbteQH2tI1gfpBaTnFi-A2w87ouYu4LGEhKFu3e8M2A3Q3dYQWdFLkzOhygn3CAysvYaAjwSk8YCGirH0akJN8qX0DKk1kLdBsp65RKC0fn58jI0NJyRAitEaKO89GdntFCY33Vq1tG019HaXCHiZv5JN1BFJZtotVviVSdb6Pw2ffx8_-inIh2pV3ydqDw38g0bCYqNIQbo1FMymz3jvnlRY3tlBplpgqH02WgbDdqXD62ONS-EYEnq29xSVEReHFDPtgVVkRZUEhpA2WgmtBcoOxaOiS3PVhFhkaO1tB2g9jDpSKOwiLODqkmaqF2EXQGEPcK1iFwWe76QZrwkhIlsol0S8xo6KTwSyjklHIpVjMKcb0xD47wwc14NHZWm4xyN8ZtRvXBrOI-OSUgBP-oa4Wmbx2Wu_vsGYavXzE72_m-6j1YobD3J9tzVUXX6MlMHRjtMxWH2j5jjxT39AuHovyU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeDzoN6EH_idGoQD17q0jRNWxBhDOem2xhsg91CkyYizHa4TfDmn-Df6F9i0nadgoK3Hl5b-tKXfPPjfR4AF64XYF-p0OwPYosIiizfMWw86vOIuhxHwiQKd7q0OST3I3e0Aq4XuTAZH6JYcDORkfbXJsDNgnR1SQ0Vk_BKxxumq2CNaF1uyPmY9Io9BC30s_1l09NQghZcIYSrxa0_R6OlxPwuVNORprENtnKJCGtZm-6AFRnvgs1OwVed7oGbdvL4-f7RT3gylq-wFcssOfINag0KtSE01KmneD5_hn39pdr2Ts8ykxia2mfjfTBs3A7qTSuvhGAJ7NvUkpiHXhRgz7Y5lqHiWCAcmLrRhCsvkHbEHR1cni1DREJHKWE7BttDhCO0xELOASjFSSwPAXS5QewhqnjoksjzudATJs51aCPlooiWweXCI0zkmHBTrWLMMsAxZtp5LHVeGZwXppOMjfGbUWXhVpaHx5Rhwx91tfK09etSV__9AFbv1dKLo_-bnoH15qDTZu1W9-EYbGBzDiU9gFcBpdnLXJ5oITHjp-n_8gXO68Gu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMfDnCB6EH_idGoQD16qaZqmLYIwpnPTbQzmYLfQpIkIsx1uE7z5J_g3-peYtGunoOCth9eWvvYl3_TlfR4Ap64XYF-p0OQHsUUERZbvGDYe9XlEXY4jYQqFO13aHJC7oTssgcu8FibjQxQ_3ExkpOO1CfBxpC4W0FAxDs91uGG6BJZNss_0bcCkV6QQtM7P0stmoKEE5VghhC-KU39ORguF-V2nphNNYwOszxUirGWvdBOUZLwF1joFXnWyDa7ayePn-0c_4clIvsJWLLPayDeoJSjUhtBAp57i2ewZ9vWDattbvchMYmhan412wKBx81BvWvNGCJbAvk0tiXnoRQH2bJtjGSqOBcKBaRtNuPICaUfc0bHl2TJEJHSUErZjqD1EOEIrLOTsgnKcxHIPQJcbwh6iiocuiTyfC71e4lxHNlIuimgFnOUeYWJOCTfNKkYs4xtjpp3HUudVwElhOs7QGL8ZVXO3snl0TBg2-FFXC09b3y519d8XYPVeLT3Y_7_pMVjpXTdYu9W9PwCr2OxCSbffVUF5-jKTh1pGTPlR-rl8Ac7MwNc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Log%E2%80%90Sobolev+Inequality+for+the+Continuum+Sine%E2%80%90Gordon+Model&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Bauerschmidt%2C+Roland&rft.au=Bodineau%2C+Thierry&rft.date=2021-10-01&rft.pub=John+Wiley+%26+Sons+Australia%2C+Ltd&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=74&rft.issue=10&rft.spage=2064&rft.epage=2113&rft_id=info:doi/10.1002%2Fcpa.21926&rft.externalDBID=10.1002%252Fcpa.21926&rft.externalDocID=CPA21926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon