Self‐Organization of 2D and 3D Metamaterials in Nematic Liquid Crystals
Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming self‐organized 2D and 3D photonic structures. They form a versatile medium to support self‐organization of structures into periodic, aperiodic, and q...
Saved in:
Published in | Chemphyschem Vol. 26; no. 17; p. e202500272 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
10.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1439-4235 1439-7641 1439-7641 |
DOI | 10.1002/cphc.202500272 |
Cover
Abstract | Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming self‐organized 2D and 3D photonic structures. They form a versatile medium to support self‐organization of structures into periodic, aperiodic, and quasiperiodic structures in 2D and 3D. Key driving forces behind self‐organization in LCs include elastic distortions, surface anchoring, and external fields. External stimuli such as electric or magnetic fields, temperature gradients, or light irradiation can reorient LC molecules, providing dynamic control over the self‐assembled structures. Hence, these structures interact with incoming light, enabling applications in tunable photonic devices. These photonic structures, particularly in the subdiffraction limit, called as metamaterials, give rise to unprecedented control of light. Metamaterials and their novel applications as well as self‐assembly in LCs are well‐reviewed subjects. However, there are very few articles on burgeoning and novel field of LC‐integrated metamaterials, which is a subject of interest in the current article. In this article, we provide an extensive review of nematic LC‐based metasurfaces giving rise to advanced functionalities of light manipulation such as beam steering, light detection and ranging, holography, sensing, and multifunctional and reconfigurable optoelectronic devices. |
---|---|
AbstractList | Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming self‐organized 2D and 3D photonic structures. They form a versatile medium to support self‐organization of structures into periodic, aperiodic, and quasiperiodic structures in 2D and 3D. Key driving forces behind self‐organization in LCs include elastic distortions, surface anchoring, and external fields. External stimuli such as electric or magnetic fields, temperature gradients, or light irradiation can reorient LC molecules, providing dynamic control over the self‐assembled structures. Hence, these structures interact with incoming light, enabling applications in tunable photonic devices. These photonic structures, particularly in the subdiffraction limit, called as metamaterials, give rise to unprecedented control of light. Metamaterials and their novel applications as well as self‐assembly in LCs are well‐reviewed subjects. However, there are very few articles on burgeoning and novel field of LC‐integrated metamaterials, which is a subject of interest in the current article. In this article, we provide an extensive review of nematic LC‐based metasurfaces giving rise to advanced functionalities of light manipulation such as beam steering, light detection and ranging, holography, sensing, and multifunctional and reconfigurable optoelectronic devices. Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming self-organized 2D and 3D photonic structures. They form a versatile medium to support self-organization of structures into periodic, aperiodic, and quasiperiodic structures in 2D and 3D. Key driving forces behind self-organization in LCs include elastic distortions, surface anchoring, and external fields. External stimuli such as electric or magnetic fields, temperature gradients, or light irradiation can reorient LC molecules, providing dynamic control over the self-assembled structures. Hence, these structures interact with incoming light, enabling applications in tunable photonic devices. These photonic structures, particularly in the subdiffraction limit, called as metamaterials, give rise to unprecedented control of light. Metamaterials and their novel applications as well as self-assembly in LCs are well-reviewed subjects. However, there are very few articles on burgeoning and novel field of LC-integrated metamaterials, which is a subject of interest in the current article. In this article, we provide an extensive review of nematic LC-based metasurfaces giving rise to advanced functionalities of light manipulation such as beam steering, light detection and ranging, holography, sensing, and multifunctional and reconfigurable optoelectronic devices.Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming self-organized 2D and 3D photonic structures. They form a versatile medium to support self-organization of structures into periodic, aperiodic, and quasiperiodic structures in 2D and 3D. Key driving forces behind self-organization in LCs include elastic distortions, surface anchoring, and external fields. External stimuli such as electric or magnetic fields, temperature gradients, or light irradiation can reorient LC molecules, providing dynamic control over the self-assembled structures. Hence, these structures interact with incoming light, enabling applications in tunable photonic devices. These photonic structures, particularly in the subdiffraction limit, called as metamaterials, give rise to unprecedented control of light. Metamaterials and their novel applications as well as self-assembly in LCs are well-reviewed subjects. However, there are very few articles on burgeoning and novel field of LC-integrated metamaterials, which is a subject of interest in the current article. In this article, we provide an extensive review of nematic LC-based metasurfaces giving rise to advanced functionalities of light manipulation such as beam steering, light detection and ranging, holography, sensing, and multifunctional and reconfigurable optoelectronic devices. |
Author | Dontabhaktuni, Jayasri Manian, Anu Koviloor |
Author_xml | – sequence: 1 givenname: Anu Koviloor surname: Manian fullname: Manian, Anu Koviloor organization: Department of Physics Mahindra University Bahadurpally Hyderabad 500 043 India – sequence: 2 givenname: Jayasri orcidid: 0000-0003-3428-0170 surname: Dontabhaktuni fullname: Dontabhaktuni, Jayasri organization: Department of Physics Mahindra University Bahadurpally Hyderabad 500 043 India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40720676$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0TtPwzAQB3ALgegDVkZkiYUl5fxInIyo5VGp0AGYI8dxwFXqtHYylImPwGfkk-CqpQPT-eSfTqf7D9CxbaxG6ILAiADQG7X6UCMKNA6NoEeoTzjLIpFwcrx_c8riHhp4vwCAFAQ5RT0OgkIikj6avui6-vn6nrt3ac2nbE1jcVNhOsHSlphN8JNu5VK22hlZe2wsftahNQrPzLozJR67jW_D1xk6qULR5_s6RG_3d6_jx2g2f5iOb2eRoim0kS4Yz6hOypgBTWkWV6wAKZKyAK4EJFkpdJyUnNCKM17IQhdVRikBRXhaVooN0fVu7so16077Nl8ar3RdS6ubzueMMs4gZTEN9OofXTSds2G7oGKSpQJSEdTlXnXFUpf5ypmldJv870gBjHZAucZ7p6sDIZBvU8i3KeSHFNgvv0l4MQ |
Cites_doi | 10.3389/fphy.2022.849470 10.1002/lpor.201700143 10.1103/PhysRevE.57.610 10.1103/PhysRevE.94.062703 10.1364/OE.386563 10.3390/app8122366 10.3390/cryst8070275 10.1103/PhysRevE.66.032701 10.1021/acsami.6b15343 10.1088/0034-4885/54/3/002 10.1146/annurev-conmatphys-070909-104101 10.1002/adma.201506084 10.1364/OE.16.002597 10.1038/s41565-021-00881-9 10.1021/acs.nanolett.1c00356 10.1021/acs.nanolett.6b02326 10.1002/lpor.200900047 10.1080/02678290903359283 10.1038/s41467-018-07518-x 10.1080/23746149.2020.1806728 10.1080/1358314X.2022.2179827 10.1038/35036539 10.1002/anie.200461890 10.1038/s41467-021-23814-5 10.1201/9780429258770 10.1038/s41467-017-00659-5 10.1002/anie.201001451 10.1364/OL.472927 10.1364/OE.24.016815 10.1021/nl9042104 10.1039/B714250A 10.1063/1.4942969 10.1002/adom.201300384 10.1364/OE.18.016492 10.1021/acsami.3c09896 10.1038/nnano.2010.128 10.1364/OE.27.016206 10.1126/science.1129660 10.1002/adom.202200196 10.1038/srep00627 10.1038/s41467-019-13012-9 10.1002/adma.201504924 10.1126/science.aaf3417 10.1364/OE.389968 10.1021/acs.nanolett.4c01703 10.1038/nmat2487 10.1126/science.1176587 10.1021/la4038588 10.1073/pnas.1015831108 10.1002/adom.201400333 10.1038/s41377-020-00452-y 10.3390/nano10020250 10.1186/s43593-021-00003-x 10.1038/lsa.2017.117 10.37188/CJLCD.2021-0049 10.1038/s41598-023-33693-z 10.1364/OE.15.003342 10.1038/srep13137 10.1103/PhysRevLett.130.053602 10.1515/nanoph-2023-0446 10.1039/c1sm05111c 10.1080/09500340.2016.1194493 10.1002/adfm.201001606 10.1126/sciadv.adh9393 10.1364/OE.420972 10.1103/PhysRevLett.85.4719 10.1002/adma.201506002 10.1515/nanoph-2022-0101 10.1021/acs.nanolett.5b00184 10.1038/s41566-020-0679-9 10.1016/S0370-1573(00)00144-7 10.1515/nanoph-2022-0075 10.1038/ncomms14594 10.1117/1.AP.2.3.036002 10.1038/s41598-019-45091-5 10.1103/PhysRevLett.110.177403 10.1186/s43593-022-00032-0 10.1021/acsphotonics.2c00453 10.1039/b419223k 10.1002/adom.201400494 10.3390/app8112211 10.1080/1358314X.2011.589162 10.1021/acsanm.5c00499 10.1016/j.rinp.2020.103600 10.1038/lsa.2015.32 10.1021/acsphotonics.7b00249 10.1038/nature01935 10.1063/1.2795345 10.1039/C4SM00419A 10.1073/pnas.1312670111 10.34133/adi.0040 10.3390/ma11010024 10.1103/PhysRevA.78.061802 10.1039/c3sm27579e 10.1038/s41377-022-00832-6 10.1002/adpr.202300334 10.1126/science.275.5307.1770 10.1021/acs.nanolett.1c00104 10.1103/PhysRevE.86.021703 10.1063/1.3695165 10.1103/PhysRevLett.128.027801 10.1016/j.jmat.2024.04.012 10.1021/acsphotonics.9b00301 10.1038/lsa.2014.94 10.1038/s41377-022-00930-5 10.1038/nmat2010 10.1038/s41467-021-24071-2 10.1126/sciadv.abe9943 10.1038/ncomms2486 10.1038/ncomms14992 10.1038/s41598-017-17612-7 10.1103/PhysRevE.91.040501 10.1038/nmat3433 10.1038/s41377-023-01202-6 10.1103/PhysRevB.106.045416 10.1038/nphoton.2011.81 10.1364/OE.14.013089 10.1038/s41467-020-17390-3 10.1364/OL.528486 10.1038/s41467-018-08210-w 10.1002/adma.201805912 10.1073/pnas.1615006114 10.1038/s41377-022-00806-8 10.1080/02678290903056095 10.1038/s41377-022-01046-6 10.1364/OE.20.016684 10.1021/acs.chemrev.5b00047 10.1364/OME.491603 10.1002/advs.202102646 10.1515/nanoph-2022-0656 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/cphc.202500272 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1439-7641 |
ExternalDocumentID | 40720676 10_1002_cphc_202500272 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Mahindra University |
GroupedDBID | --- -DZ -~X 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 4ZD 50Y 5GY 5VS 66C 6J9 77Q 8-0 8-1 8UM AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AAXRX AAYCA AAYXX AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CITATION CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IH2 IX1 JPC KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- OIG P2P P2W PQQKQ QRW R.K RNS ROL RX1 SUPJJ UPT V2E W99 WBKPD WH7 WJL WOHZO WXSBR XPP XV2 Y6R YZZ ZZTAW ~S- NPM K9. 7X8 LH4 |
ID | FETCH-LOGICAL-c280t-eb3492e6d53028295f3b0a76db04c7069d7e56d412f434babebf92210c148dfc3 |
ISSN | 1439-4235 1439-7641 |
IngestDate | Fri Sep 05 15:31:25 EDT 2025 Fri Sep 19 09:10:41 EDT 2025 Sat Sep 20 02:12:56 EDT 2025 Thu Sep 25 00:34:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | reconfigurable photonic structures multifunctional metasurfaces liquid crystal‐based metamaterials liquid crystal‐based photonic structures |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c280t-eb3492e6d53028295f3b0a76db04c7069d7e56d412f434babebf92210c148dfc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3428-0170 |
PMID | 40720676 |
PQID | 3251987087 |
PQPubID | 986334 |
ParticipantIDs | proquest_miscellaneous_3234308352 proquest_journals_3251987087 pubmed_primary_40720676 crossref_primary_10_1002_cphc_202500272 |
PublicationCentury | 2000 |
PublicationDate | 2025-Sep-10 |
PublicationDateYYYYMMDD | 2025-09-10 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-Sep-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemphyschem |
PublicationTitleAlternate | Chemphyschem |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_12_6_1 e_1_2_12_130_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_115_1 e_1_2_12_134_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_81_1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_127_1 e_1_2_12_31_1 e_1_2_12_54_1 e_1_2_12_96_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_114_1 e_1_2_12_133_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_122_1 e_1_2_12_29_1 Xiao S. (e_1_2_12_66_1) 2009; 95 e_1_2_12_126_1 e_1_2_12_103_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 Rahimi H. (e_1_2_12_77_1) 2024; 52 e_1_2_12_13_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_19_1 e_1_2_12_38_1 e_1_2_12_132_1 e_1_2_12_113_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_49_1 e_1_2_12_121_1 e_1_2_12_102_1 e_1_2_12_125_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_75_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_5_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_135_1 e_1_2_12_39_1 e_1_2_12_116_1 e_1_2_12_131_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_128_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_120_1 e_1_2_12_105_1 e_1_2_12_124_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_15_1 e_1_2_12_91_1 Shen C. (e_1_2_12_109_1) 2021; 13 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 |
References_xml | – ident: e_1_2_12_111_1 doi: 10.3389/fphy.2022.849470 – ident: e_1_2_12_89_1 doi: 10.1002/lpor.201700143 – ident: e_1_2_12_12_1 doi: 10.1103/PhysRevE.57.610 – ident: e_1_2_12_56_1 doi: 10.1103/PhysRevE.94.062703 – volume: 52 start-page: 1 year: 2024 ident: e_1_2_12_77_1 publication-title: Liquid Crystals – ident: e_1_2_12_125_1 doi: 10.1364/OE.386563 – ident: e_1_2_12_82_1 doi: 10.3390/app8122366 – ident: e_1_2_12_32_1 doi: 10.3390/cryst8070275 – ident: e_1_2_12_16_1 doi: 10.1103/PhysRevE.66.032701 – ident: e_1_2_12_55_1 doi: 10.1021/acsami.6b15343 – ident: e_1_2_12_5_1 doi: 10.1088/0034-4885/54/3/002 – ident: e_1_2_12_34_1 doi: 10.1146/annurev-conmatphys-070909-104101 – ident: e_1_2_12_65_1 doi: 10.1002/adma.201506084 – ident: e_1_2_12_94_1 doi: 10.1364/OE.16.002597 – ident: e_1_2_12_6_1 doi: 10.1038/s41565-021-00881-9 – ident: e_1_2_12_116_1 doi: 10.1021/acs.nanolett.1c00356 – ident: e_1_2_12_103_1 doi: 10.1021/acs.nanolett.6b02326 – ident: e_1_2_12_91_1 doi: 10.1002/lpor.200900047 – ident: e_1_2_12_42_1 doi: 10.1080/02678290903359283 – ident: e_1_2_12_133_1 doi: 10.1038/s41467-018-07518-x – ident: e_1_2_12_30_1 doi: 10.1080/23746149.2020.1806728 – ident: e_1_2_12_134_1 doi: 10.1080/1358314X.2022.2179827 – ident: e_1_2_12_18_1 doi: 10.1038/35036539 – ident: e_1_2_12_36_1 doi: 10.1002/anie.200461890 – ident: e_1_2_12_118_1 doi: 10.1038/s41467-021-23814-5 – ident: e_1_2_12_33_1 doi: 10.1201/9780429258770 – ident: e_1_2_12_35_1 doi: 10.1038/s41467-017-00659-5 – ident: e_1_2_12_21_1 doi: 10.1002/anie.201001451 – ident: e_1_2_12_10_1 doi: 10.1364/OL.472927 – ident: e_1_2_12_76_1 doi: 10.1364/OE.24.016815 – ident: e_1_2_12_132_1 doi: 10.1021/nl9042104 – ident: e_1_2_12_19_1 doi: 10.1039/B714250A – ident: e_1_2_12_63_1 doi: 10.1063/1.4942969 – ident: e_1_2_12_99_1 doi: 10.1002/adom.201300384 – ident: e_1_2_12_68_1 doi: 10.1364/OE.18.016492 – ident: e_1_2_12_29_1 doi: 10.1021/acsami.3c09896 – ident: e_1_2_12_37_1 doi: 10.1038/nnano.2010.128 – ident: e_1_2_12_81_1 doi: 10.1364/OE.27.016206 – ident: e_1_2_12_23_1 doi: 10.1126/science.1129660 – ident: e_1_2_12_120_1 doi: 10.1002/adom.202200196 – ident: e_1_2_12_47_1 doi: 10.1038/srep00627 – ident: e_1_2_12_131_1 doi: 10.1038/s41467-019-13012-9 – ident: e_1_2_12_62_1 doi: 10.1002/adma.201504924 – ident: e_1_2_12_102_1 doi: 10.1126/science.aaf3417 – ident: e_1_2_12_8_1 doi: 10.1364/OE.389968 – ident: e_1_2_12_9_1 doi: 10.1021/acs.nanolett.4c01703 – ident: e_1_2_12_44_1 doi: 10.1038/nmat2487 – ident: e_1_2_12_22_1 doi: 10.1126/science.1176587 – ident: e_1_2_12_41_1 doi: 10.1021/la4038588 – ident: e_1_2_12_57_1 doi: 10.1073/pnas.1015831108 – ident: e_1_2_12_60_1 doi: 10.1002/adom.201400333 – ident: e_1_2_12_84_1 doi: 10.1038/s41377-020-00452-y – ident: e_1_2_12_128_1 doi: 10.3390/nano10020250 – ident: e_1_2_12_85_1 doi: 10.1186/s43593-021-00003-x – ident: e_1_2_12_95_1 doi: 10.1038/lsa.2017.117 – ident: e_1_2_12_86_1 doi: 10.37188/CJLCD.2021-0049 – ident: e_1_2_12_73_1 doi: 10.1038/s41598-023-33693-z – ident: e_1_2_12_61_1 doi: 10.1364/OE.15.003342 – ident: e_1_2_12_59_1 doi: 10.1038/srep13137 – ident: e_1_2_12_92_1 doi: 10.1103/PhysRevLett.130.053602 – ident: e_1_2_12_127_1 doi: 10.1515/nanoph-2023-0446 – ident: e_1_2_12_40_1 doi: 10.1039/c1sm05111c – ident: e_1_2_12_46_1 doi: 10.1080/09500340.2016.1194493 – ident: e_1_2_12_64_1 doi: 10.1002/adfm.201001606 – ident: e_1_2_12_27_1 doi: 10.1126/sciadv.adh9393 – ident: e_1_2_12_112_1 doi: 10.1364/OE.420972 – ident: e_1_2_12_14_1 doi: 10.1103/PhysRevLett.85.4719 – ident: e_1_2_12_72_1 doi: 10.1002/adma.201506002 – ident: e_1_2_12_79_1 doi: 10.1515/nanoph-2022-0101 – ident: e_1_2_12_104_1 doi: 10.1021/acs.nanolett.5b00184 – ident: e_1_2_12_54_1 doi: 10.1038/s41566-020-0679-9 – ident: e_1_2_12_13_1 doi: 10.1016/S0370-1573(00)00144-7 – ident: e_1_2_12_119_1 doi: 10.1515/nanoph-2022-0075 – ident: e_1_2_12_20_1 doi: 10.1038/ncomms14594 – ident: e_1_2_12_25_1 doi: 10.1073/pnas.1015831108 – ident: e_1_2_12_115_1 doi: 10.1117/1.AP.2.3.036002 – ident: e_1_2_12_98_1 doi: 10.1038/s41598-019-45091-5 – ident: e_1_2_12_69_1 doi: 10.1103/PhysRevLett.110.177403 – ident: e_1_2_12_129_1 doi: 10.1186/s43593-022-00032-0 – volume: 13 start-page: 1 year: 2021 ident: e_1_2_12_109_1 publication-title: IEEE Photonics J. – ident: e_1_2_12_110_1 doi: 10.1021/acsphotonics.2c00453 – ident: e_1_2_12_2_1 doi: 10.1039/b419223k – volume: 95 start-page: 225 year: 2009 ident: e_1_2_12_66_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_12_71_1 doi: 10.1002/adom.201400494 – ident: e_1_2_12_75_1 doi: 10.3390/app8112211 – ident: e_1_2_12_4_1 doi: 10.1080/1358314X.2011.589162 – ident: e_1_2_12_126_1 doi: 10.1021/acsanm.5c00499 – ident: e_1_2_12_45_1 doi: 10.1016/j.rinp.2020.103600 – ident: e_1_2_12_101_1 doi: 10.1038/lsa.2015.32 – ident: e_1_2_12_135_1 doi: 10.1021/acsphotonics.7b00249 – ident: e_1_2_12_87_1 doi: 10.1038/nature01935 – ident: e_1_2_12_70_1 doi: 10.1063/1.2795345 – ident: e_1_2_12_26_1 doi: 10.1039/C4SM00419A – ident: e_1_2_12_52_1 doi: 10.1073/pnas.1312670111 – ident: e_1_2_12_78_1 doi: 10.34133/adi.0040 – ident: e_1_2_12_15_1 doi: 10.3390/ma11010024 – ident: e_1_2_12_90_1 doi: 10.1103/PhysRevA.78.061802 – ident: e_1_2_12_39_1 doi: 10.1039/c3sm27579e – ident: e_1_2_12_96_1 doi: 10.1038/s41377-022-00832-6 – ident: e_1_2_12_122_1 doi: 10.1002/adpr.202300334 – ident: e_1_2_12_17_1 doi: 10.1126/science.275.5307.1770 – ident: e_1_2_12_108_1 doi: 10.1021/acs.nanolett.1c00104 – ident: e_1_2_12_50_1 doi: 10.1103/PhysRevE.86.021703 – ident: e_1_2_12_67_1 doi: 10.1063/1.3695165 – ident: e_1_2_12_49_1 doi: 10.1103/PhysRevLett.128.027801 – ident: e_1_2_12_130_1 doi: 10.1016/j.jmat.2024.04.012 – ident: e_1_2_12_123_1 doi: 10.1021/acsphotonics.9b00301 – ident: e_1_2_12_83_1 doi: 10.1038/lsa.2014.94 – ident: e_1_2_12_28_1 doi: 10.1038/s41377-022-00930-5 – ident: e_1_2_12_43_1 doi: 10.1038/nmat2010 – ident: e_1_2_12_107_1 doi: 10.1038/s41467-021-24071-2 – ident: e_1_2_12_121_1 doi: 10.1126/sciadv.abe9943 – ident: e_1_2_12_24_1 doi: 10.1038/ncomms2486 – ident: e_1_2_12_106_1 doi: 10.1038/ncomms14992 – ident: e_1_2_12_124_1 doi: 10.1038/s41598-017-17612-7 – ident: e_1_2_12_51_1 doi: 10.1103/PhysRevE.91.040501 – ident: e_1_2_12_11_1 doi: 10.1038/nmat3433 – ident: e_1_2_12_100_1 doi: 10.1038/s41377-023-01202-6 – ident: e_1_2_12_7_1 doi: 10.1103/PhysRevB.106.045416 – ident: e_1_2_12_88_1 doi: 10.1038/nphoton.2011.81 – ident: e_1_2_12_93_1 doi: 10.1364/OE.14.013089 – ident: e_1_2_12_117_1 doi: 10.1038/s41467-020-17390-3 – ident: e_1_2_12_53_1 doi: 10.1364/OL.528486 – ident: e_1_2_12_31_1 doi: 10.1038/s41467-018-08210-w – ident: e_1_2_12_105_1 doi: 10.1002/adma.201805912 – ident: e_1_2_12_58_1 doi: 10.1073/pnas.1615006114 – ident: e_1_2_12_113_1 doi: 10.1038/s41377-022-00806-8 – ident: e_1_2_12_3_1 doi: 10.1080/02678290903056095 – ident: e_1_2_12_80_1 doi: 10.1038/s41377-022-01046-6 – ident: e_1_2_12_48_1 doi: 10.1364/OE.20.016684 – ident: e_1_2_12_38_1 doi: 10.1021/acs.chemrev.5b00047 – ident: e_1_2_12_97_1 doi: 10.1364/OME.491603 – ident: e_1_2_12_114_1 doi: 10.1002/advs.202102646 – ident: e_1_2_12_74_1 doi: 10.1515/nanoph-2022-0656 |
SSID | ssj0008071 |
Score | 2.4654515 |
SecondaryResourceType | review_article |
Snippet | Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | e202500272 |
SubjectTerms | Beam steering Dielectric properties Dynamic control Lidar Light irradiation Liquid crystals Metamaterials Nematic crystals Optical properties Optoelectronic devices Photonics Self-assembly |
Title | Self‐Organization of 2D and 3D Metamaterials in Nematic Liquid Crystals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40720676 https://www.proquest.com/docview/3251987087 https://www.proquest.com/docview/3234308352 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgSLDLxO8VBjISEocqkNpO4hxRA0wDdoBN2i2yY1uL6JKuTZC2v57nOE5b6CTgEkVxEkfvc16-5_h9D6HX0YSHvIggUk15BAGK0oEkigQTrSdcES206Vb5HseHp-zoLDrztcr77JJGvi2ut-aV_A-qcAxwtVmy_4DscFM4APuAL2wBYdj-Fcbf9cwE69mUlvqRrPshQLPxV90IIKTuSezExnEv0PqlvGxLNZ4uroAbzpbrBNUKCNjZDsDyYjVbXZWilxpox5_rn-WsrodFvVldNUKeix9N25WHGh-JK7FclOvzCSSyix_6laXa-UDgKEESOz0q7yRdWrsfDMmay9P2Jja6JVs9slN4LebnVi9yy4lg0flFh4-VaoNv52_C2N2n1jfdRndIAhzJkt9vK5kwDjzJC3KG5N1mZ7vorr98k3vcEFB0xOLkPtrrIwL83sH7AN3S1UN0b-oL8T1Cn_6AGdcGkwwDzJhmeANmXFa4hxk7mLGH-TE6_fjhZHoY9PUvgoLwsAm0tNKROla2shMnaWSoDEUSKxmyIgnjVCU6ihWbEMMok0JqaVICMXwBMa4yBX2Cdqq60vsIRwU3iqVCGB4xzZSIBY2N4IwLoCOsGKE33jL53Mmc5E7QmuTWnPlgzhE68IbL-1dhmVOb_wyenycj9GpoBjPZv0-i0nVrz6GMdoR_hJ46gw9deYCe3djyHO2uBusB2mkWrX4BdLCRL7ux8AvlDlxe |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Organization+of+2D+and+3D+Metamaterials+in+Nematic+Liquid+Crystals&rft.jtitle=Chemphyschem&rft.au=Manian%2C+Anu+Koviloor&rft.au=Dontabhaktuni%2C+Jayasri&rft.date=2025-09-10&rft.eissn=1439-7641&rft.volume=26&rft.issue=17&rft.spage=e202500272&rft_id=info:doi/10.1002%2Fcphc.202500272&rft_id=info%3Apmid%2F40720676&rft.externalDocID=40720676 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon |