Self‐Organization of 2D and 3D Metamaterials in Nematic Liquid Crystals

Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming self‐organized 2D and 3D photonic structures. They form a versatile medium to support self‐organization of structures into periodic, aperiodic, and q...

Full description

Saved in:
Bibliographic Details
Published inChemphyschem Vol. 26; no. 17; p. e202500272
Main Authors Manian, Anu Koviloor, Dontabhaktuni, Jayasri
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.09.2025
Subjects
Online AccessGet full text
ISSN1439-4235
1439-7641
1439-7641
DOI10.1002/cphc.202500272

Cover

Abstract Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming self‐organized 2D and 3D photonic structures. They form a versatile medium to support self‐organization of structures into periodic, aperiodic, and quasiperiodic structures in 2D and 3D. Key driving forces behind self‐organization in LCs include elastic distortions, surface anchoring, and external fields. External stimuli such as electric or magnetic fields, temperature gradients, or light irradiation can reorient LC molecules, providing dynamic control over the self‐assembled structures. Hence, these structures interact with incoming light, enabling applications in tunable photonic devices. These photonic structures, particularly in the subdiffraction limit, called as metamaterials, give rise to unprecedented control of light. Metamaterials and their novel applications as well as self‐assembly in LCs are well‐reviewed subjects. However, there are very few articles on burgeoning and novel field of LC‐integrated metamaterials, which is a subject of interest in the current article. In this article, we provide an extensive review of nematic LC‐based metasurfaces giving rise to advanced functionalities of light manipulation such as beam steering, light detection and ranging, holography, sensing, and multifunctional and reconfigurable optoelectronic devices.
AbstractList Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming self‐organized 2D and 3D photonic structures. They form a versatile medium to support self‐organization of structures into periodic, aperiodic, and quasiperiodic structures in 2D and 3D. Key driving forces behind self‐organization in LCs include elastic distortions, surface anchoring, and external fields. External stimuli such as electric or magnetic fields, temperature gradients, or light irradiation can reorient LC molecules, providing dynamic control over the self‐assembled structures. Hence, these structures interact with incoming light, enabling applications in tunable photonic devices. These photonic structures, particularly in the subdiffraction limit, called as metamaterials, give rise to unprecedented control of light. Metamaterials and their novel applications as well as self‐assembly in LCs are well‐reviewed subjects. However, there are very few articles on burgeoning and novel field of LC‐integrated metamaterials, which is a subject of interest in the current article. In this article, we provide an extensive review of nematic LC‐based metasurfaces giving rise to advanced functionalities of light manipulation such as beam steering, light detection and ranging, holography, sensing, and multifunctional and reconfigurable optoelectronic devices.
Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming self-organized 2D and 3D photonic structures. They form a versatile medium to support self-organization of structures into periodic, aperiodic, and quasiperiodic structures in 2D and 3D. Key driving forces behind self-organization in LCs include elastic distortions, surface anchoring, and external fields. External stimuli such as electric or magnetic fields, temperature gradients, or light irradiation can reorient LC molecules, providing dynamic control over the self-assembled structures. Hence, these structures interact with incoming light, enabling applications in tunable photonic devices. These photonic structures, particularly in the subdiffraction limit, called as metamaterials, give rise to unprecedented control of light. Metamaterials and their novel applications as well as self-assembly in LCs are well-reviewed subjects. However, there are very few articles on burgeoning and novel field of LC-integrated metamaterials, which is a subject of interest in the current article. In this article, we provide an extensive review of nematic LC-based metasurfaces giving rise to advanced functionalities of light manipulation such as beam steering, light detection and ranging, holography, sensing, and multifunctional and reconfigurable optoelectronic devices.Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming self-organized 2D and 3D photonic structures. They form a versatile medium to support self-organization of structures into periodic, aperiodic, and quasiperiodic structures in 2D and 3D. Key driving forces behind self-organization in LCs include elastic distortions, surface anchoring, and external fields. External stimuli such as electric or magnetic fields, temperature gradients, or light irradiation can reorient LC molecules, providing dynamic control over the self-assembled structures. Hence, these structures interact with incoming light, enabling applications in tunable photonic devices. These photonic structures, particularly in the subdiffraction limit, called as metamaterials, give rise to unprecedented control of light. Metamaterials and their novel applications as well as self-assembly in LCs are well-reviewed subjects. However, there are very few articles on burgeoning and novel field of LC-integrated metamaterials, which is a subject of interest in the current article. In this article, we provide an extensive review of nematic LC-based metasurfaces giving rise to advanced functionalities of light manipulation such as beam steering, light detection and ranging, holography, sensing, and multifunctional and reconfigurable optoelectronic devices.
Author Dontabhaktuni, Jayasri
Manian, Anu Koviloor
Author_xml – sequence: 1
  givenname: Anu Koviloor
  surname: Manian
  fullname: Manian, Anu Koviloor
  organization: Department of Physics Mahindra University Bahadurpally Hyderabad 500 043 India
– sequence: 2
  givenname: Jayasri
  orcidid: 0000-0003-3428-0170
  surname: Dontabhaktuni
  fullname: Dontabhaktuni, Jayasri
  organization: Department of Physics Mahindra University Bahadurpally Hyderabad 500 043 India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40720676$$D View this record in MEDLINE/PubMed
BookMark eNpd0TtPwzAQB3ALgegDVkZkiYUl5fxInIyo5VGp0AGYI8dxwFXqtHYylImPwGfkk-CqpQPT-eSfTqf7D9CxbaxG6ILAiADQG7X6UCMKNA6NoEeoTzjLIpFwcrx_c8riHhp4vwCAFAQ5RT0OgkIikj6avui6-vn6nrt3ac2nbE1jcVNhOsHSlphN8JNu5VK22hlZe2wsftahNQrPzLozJR67jW_D1xk6qULR5_s6RG_3d6_jx2g2f5iOb2eRoim0kS4Yz6hOypgBTWkWV6wAKZKyAK4EJFkpdJyUnNCKM17IQhdVRikBRXhaVooN0fVu7so16077Nl8ar3RdS6ubzueMMs4gZTEN9OofXTSds2G7oGKSpQJSEdTlXnXFUpf5ypmldJv870gBjHZAucZ7p6sDIZBvU8i3KeSHFNgvv0l4MQ
Cites_doi 10.3389/fphy.2022.849470
10.1002/lpor.201700143
10.1103/PhysRevE.57.610
10.1103/PhysRevE.94.062703
10.1364/OE.386563
10.3390/app8122366
10.3390/cryst8070275
10.1103/PhysRevE.66.032701
10.1021/acsami.6b15343
10.1088/0034-4885/54/3/002
10.1146/annurev-conmatphys-070909-104101
10.1002/adma.201506084
10.1364/OE.16.002597
10.1038/s41565-021-00881-9
10.1021/acs.nanolett.1c00356
10.1021/acs.nanolett.6b02326
10.1002/lpor.200900047
10.1080/02678290903359283
10.1038/s41467-018-07518-x
10.1080/23746149.2020.1806728
10.1080/1358314X.2022.2179827
10.1038/35036539
10.1002/anie.200461890
10.1038/s41467-021-23814-5
10.1201/9780429258770
10.1038/s41467-017-00659-5
10.1002/anie.201001451
10.1364/OL.472927
10.1364/OE.24.016815
10.1021/nl9042104
10.1039/B714250A
10.1063/1.4942969
10.1002/adom.201300384
10.1364/OE.18.016492
10.1021/acsami.3c09896
10.1038/nnano.2010.128
10.1364/OE.27.016206
10.1126/science.1129660
10.1002/adom.202200196
10.1038/srep00627
10.1038/s41467-019-13012-9
10.1002/adma.201504924
10.1126/science.aaf3417
10.1364/OE.389968
10.1021/acs.nanolett.4c01703
10.1038/nmat2487
10.1126/science.1176587
10.1021/la4038588
10.1073/pnas.1015831108
10.1002/adom.201400333
10.1038/s41377-020-00452-y
10.3390/nano10020250
10.1186/s43593-021-00003-x
10.1038/lsa.2017.117
10.37188/CJLCD.2021-0049
10.1038/s41598-023-33693-z
10.1364/OE.15.003342
10.1038/srep13137
10.1103/PhysRevLett.130.053602
10.1515/nanoph-2023-0446
10.1039/c1sm05111c
10.1080/09500340.2016.1194493
10.1002/adfm.201001606
10.1126/sciadv.adh9393
10.1364/OE.420972
10.1103/PhysRevLett.85.4719
10.1002/adma.201506002
10.1515/nanoph-2022-0101
10.1021/acs.nanolett.5b00184
10.1038/s41566-020-0679-9
10.1016/S0370-1573(00)00144-7
10.1515/nanoph-2022-0075
10.1038/ncomms14594
10.1117/1.AP.2.3.036002
10.1038/s41598-019-45091-5
10.1103/PhysRevLett.110.177403
10.1186/s43593-022-00032-0
10.1021/acsphotonics.2c00453
10.1039/b419223k
10.1002/adom.201400494
10.3390/app8112211
10.1080/1358314X.2011.589162
10.1021/acsanm.5c00499
10.1016/j.rinp.2020.103600
10.1038/lsa.2015.32
10.1021/acsphotonics.7b00249
10.1038/nature01935
10.1063/1.2795345
10.1039/C4SM00419A
10.1073/pnas.1312670111
10.34133/adi.0040
10.3390/ma11010024
10.1103/PhysRevA.78.061802
10.1039/c3sm27579e
10.1038/s41377-022-00832-6
10.1002/adpr.202300334
10.1126/science.275.5307.1770
10.1021/acs.nanolett.1c00104
10.1103/PhysRevE.86.021703
10.1063/1.3695165
10.1103/PhysRevLett.128.027801
10.1016/j.jmat.2024.04.012
10.1021/acsphotonics.9b00301
10.1038/lsa.2014.94
10.1038/s41377-022-00930-5
10.1038/nmat2010
10.1038/s41467-021-24071-2
10.1126/sciadv.abe9943
10.1038/ncomms2486
10.1038/ncomms14992
10.1038/s41598-017-17612-7
10.1103/PhysRevE.91.040501
10.1038/nmat3433
10.1038/s41377-023-01202-6
10.1103/PhysRevB.106.045416
10.1038/nphoton.2011.81
10.1364/OE.14.013089
10.1038/s41467-020-17390-3
10.1364/OL.528486
10.1038/s41467-018-08210-w
10.1002/adma.201805912
10.1073/pnas.1615006114
10.1038/s41377-022-00806-8
10.1080/02678290903056095
10.1038/s41377-022-01046-6
10.1364/OE.20.016684
10.1021/acs.chemrev.5b00047
10.1364/OME.491603
10.1002/advs.202102646
10.1515/nanoph-2022-0656
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2025 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/cphc.202500272
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1439-7641
ExternalDocumentID 40720676
10_1002_cphc_202500272
Genre Journal Article
Review
GrantInformation_xml – fundername: Mahindra University
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAXRX
AAYCA
AAYXX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CITATION
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
PQQKQ
QRW
R.K
RNS
ROL
RX1
SUPJJ
UPT
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
XPP
XV2
Y6R
YZZ
ZZTAW
~S-
NPM
K9.
7X8
LH4
ID FETCH-LOGICAL-c280t-eb3492e6d53028295f3b0a76db04c7069d7e56d412f434babebf92210c148dfc3
ISSN 1439-4235
1439-7641
IngestDate Fri Sep 05 15:31:25 EDT 2025
Fri Sep 19 09:10:41 EDT 2025
Sat Sep 20 02:12:56 EDT 2025
Thu Sep 25 00:34:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords reconfigurable photonic structures
multifunctional metasurfaces
liquid crystal‐based metamaterials
liquid crystal‐based photonic structures
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c280t-eb3492e6d53028295f3b0a76db04c7069d7e56d412f434babebf92210c148dfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3428-0170
PMID 40720676
PQID 3251987087
PQPubID 986334
ParticipantIDs proquest_miscellaneous_3234308352
proquest_journals_3251987087
pubmed_primary_40720676
crossref_primary_10_1002_cphc_202500272
PublicationCentury 2000
PublicationDate 2025-Sep-10
PublicationDateYYYYMMDD 2025-09-10
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-Sep-10
  day: 10
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemphyschem
PublicationTitleAlternate Chemphyschem
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_12_6_1
e_1_2_12_130_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_115_1
e_1_2_12_134_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_31_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_114_1
e_1_2_12_133_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_122_1
e_1_2_12_29_1
Xiao S. (e_1_2_12_66_1) 2009; 95
e_1_2_12_126_1
e_1_2_12_103_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
Rahimi H. (e_1_2_12_77_1) 2024; 52
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_19_1
e_1_2_12_38_1
e_1_2_12_132_1
e_1_2_12_113_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_49_1
e_1_2_12_121_1
e_1_2_12_102_1
e_1_2_12_125_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_39_1
e_1_2_12_116_1
e_1_2_12_131_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_124_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
Shen C. (e_1_2_12_109_1) 2021; 13
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – ident: e_1_2_12_111_1
  doi: 10.3389/fphy.2022.849470
– ident: e_1_2_12_89_1
  doi: 10.1002/lpor.201700143
– ident: e_1_2_12_12_1
  doi: 10.1103/PhysRevE.57.610
– ident: e_1_2_12_56_1
  doi: 10.1103/PhysRevE.94.062703
– volume: 52
  start-page: 1
  year: 2024
  ident: e_1_2_12_77_1
  publication-title: Liquid Crystals
– ident: e_1_2_12_125_1
  doi: 10.1364/OE.386563
– ident: e_1_2_12_82_1
  doi: 10.3390/app8122366
– ident: e_1_2_12_32_1
  doi: 10.3390/cryst8070275
– ident: e_1_2_12_16_1
  doi: 10.1103/PhysRevE.66.032701
– ident: e_1_2_12_55_1
  doi: 10.1021/acsami.6b15343
– ident: e_1_2_12_5_1
  doi: 10.1088/0034-4885/54/3/002
– ident: e_1_2_12_34_1
  doi: 10.1146/annurev-conmatphys-070909-104101
– ident: e_1_2_12_65_1
  doi: 10.1002/adma.201506084
– ident: e_1_2_12_94_1
  doi: 10.1364/OE.16.002597
– ident: e_1_2_12_6_1
  doi: 10.1038/s41565-021-00881-9
– ident: e_1_2_12_116_1
  doi: 10.1021/acs.nanolett.1c00356
– ident: e_1_2_12_103_1
  doi: 10.1021/acs.nanolett.6b02326
– ident: e_1_2_12_91_1
  doi: 10.1002/lpor.200900047
– ident: e_1_2_12_42_1
  doi: 10.1080/02678290903359283
– ident: e_1_2_12_133_1
  doi: 10.1038/s41467-018-07518-x
– ident: e_1_2_12_30_1
  doi: 10.1080/23746149.2020.1806728
– ident: e_1_2_12_134_1
  doi: 10.1080/1358314X.2022.2179827
– ident: e_1_2_12_18_1
  doi: 10.1038/35036539
– ident: e_1_2_12_36_1
  doi: 10.1002/anie.200461890
– ident: e_1_2_12_118_1
  doi: 10.1038/s41467-021-23814-5
– ident: e_1_2_12_33_1
  doi: 10.1201/9780429258770
– ident: e_1_2_12_35_1
  doi: 10.1038/s41467-017-00659-5
– ident: e_1_2_12_21_1
  doi: 10.1002/anie.201001451
– ident: e_1_2_12_10_1
  doi: 10.1364/OL.472927
– ident: e_1_2_12_76_1
  doi: 10.1364/OE.24.016815
– ident: e_1_2_12_132_1
  doi: 10.1021/nl9042104
– ident: e_1_2_12_19_1
  doi: 10.1039/B714250A
– ident: e_1_2_12_63_1
  doi: 10.1063/1.4942969
– ident: e_1_2_12_99_1
  doi: 10.1002/adom.201300384
– ident: e_1_2_12_68_1
  doi: 10.1364/OE.18.016492
– ident: e_1_2_12_29_1
  doi: 10.1021/acsami.3c09896
– ident: e_1_2_12_37_1
  doi: 10.1038/nnano.2010.128
– ident: e_1_2_12_81_1
  doi: 10.1364/OE.27.016206
– ident: e_1_2_12_23_1
  doi: 10.1126/science.1129660
– ident: e_1_2_12_120_1
  doi: 10.1002/adom.202200196
– ident: e_1_2_12_47_1
  doi: 10.1038/srep00627
– ident: e_1_2_12_131_1
  doi: 10.1038/s41467-019-13012-9
– ident: e_1_2_12_62_1
  doi: 10.1002/adma.201504924
– ident: e_1_2_12_102_1
  doi: 10.1126/science.aaf3417
– ident: e_1_2_12_8_1
  doi: 10.1364/OE.389968
– ident: e_1_2_12_9_1
  doi: 10.1021/acs.nanolett.4c01703
– ident: e_1_2_12_44_1
  doi: 10.1038/nmat2487
– ident: e_1_2_12_22_1
  doi: 10.1126/science.1176587
– ident: e_1_2_12_41_1
  doi: 10.1021/la4038588
– ident: e_1_2_12_57_1
  doi: 10.1073/pnas.1015831108
– ident: e_1_2_12_60_1
  doi: 10.1002/adom.201400333
– ident: e_1_2_12_84_1
  doi: 10.1038/s41377-020-00452-y
– ident: e_1_2_12_128_1
  doi: 10.3390/nano10020250
– ident: e_1_2_12_85_1
  doi: 10.1186/s43593-021-00003-x
– ident: e_1_2_12_95_1
  doi: 10.1038/lsa.2017.117
– ident: e_1_2_12_86_1
  doi: 10.37188/CJLCD.2021-0049
– ident: e_1_2_12_73_1
  doi: 10.1038/s41598-023-33693-z
– ident: e_1_2_12_61_1
  doi: 10.1364/OE.15.003342
– ident: e_1_2_12_59_1
  doi: 10.1038/srep13137
– ident: e_1_2_12_92_1
  doi: 10.1103/PhysRevLett.130.053602
– ident: e_1_2_12_127_1
  doi: 10.1515/nanoph-2023-0446
– ident: e_1_2_12_40_1
  doi: 10.1039/c1sm05111c
– ident: e_1_2_12_46_1
  doi: 10.1080/09500340.2016.1194493
– ident: e_1_2_12_64_1
  doi: 10.1002/adfm.201001606
– ident: e_1_2_12_27_1
  doi: 10.1126/sciadv.adh9393
– ident: e_1_2_12_112_1
  doi: 10.1364/OE.420972
– ident: e_1_2_12_14_1
  doi: 10.1103/PhysRevLett.85.4719
– ident: e_1_2_12_72_1
  doi: 10.1002/adma.201506002
– ident: e_1_2_12_79_1
  doi: 10.1515/nanoph-2022-0101
– ident: e_1_2_12_104_1
  doi: 10.1021/acs.nanolett.5b00184
– ident: e_1_2_12_54_1
  doi: 10.1038/s41566-020-0679-9
– ident: e_1_2_12_13_1
  doi: 10.1016/S0370-1573(00)00144-7
– ident: e_1_2_12_119_1
  doi: 10.1515/nanoph-2022-0075
– ident: e_1_2_12_20_1
  doi: 10.1038/ncomms14594
– ident: e_1_2_12_25_1
  doi: 10.1073/pnas.1015831108
– ident: e_1_2_12_115_1
  doi: 10.1117/1.AP.2.3.036002
– ident: e_1_2_12_98_1
  doi: 10.1038/s41598-019-45091-5
– ident: e_1_2_12_69_1
  doi: 10.1103/PhysRevLett.110.177403
– ident: e_1_2_12_129_1
  doi: 10.1186/s43593-022-00032-0
– volume: 13
  start-page: 1
  year: 2021
  ident: e_1_2_12_109_1
  publication-title: IEEE Photonics J.
– ident: e_1_2_12_110_1
  doi: 10.1021/acsphotonics.2c00453
– ident: e_1_2_12_2_1
  doi: 10.1039/b419223k
– volume: 95
  start-page: 225
  year: 2009
  ident: e_1_2_12_66_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_12_71_1
  doi: 10.1002/adom.201400494
– ident: e_1_2_12_75_1
  doi: 10.3390/app8112211
– ident: e_1_2_12_4_1
  doi: 10.1080/1358314X.2011.589162
– ident: e_1_2_12_126_1
  doi: 10.1021/acsanm.5c00499
– ident: e_1_2_12_45_1
  doi: 10.1016/j.rinp.2020.103600
– ident: e_1_2_12_101_1
  doi: 10.1038/lsa.2015.32
– ident: e_1_2_12_135_1
  doi: 10.1021/acsphotonics.7b00249
– ident: e_1_2_12_87_1
  doi: 10.1038/nature01935
– ident: e_1_2_12_70_1
  doi: 10.1063/1.2795345
– ident: e_1_2_12_26_1
  doi: 10.1039/C4SM00419A
– ident: e_1_2_12_52_1
  doi: 10.1073/pnas.1312670111
– ident: e_1_2_12_78_1
  doi: 10.34133/adi.0040
– ident: e_1_2_12_15_1
  doi: 10.3390/ma11010024
– ident: e_1_2_12_90_1
  doi: 10.1103/PhysRevA.78.061802
– ident: e_1_2_12_39_1
  doi: 10.1039/c3sm27579e
– ident: e_1_2_12_96_1
  doi: 10.1038/s41377-022-00832-6
– ident: e_1_2_12_122_1
  doi: 10.1002/adpr.202300334
– ident: e_1_2_12_17_1
  doi: 10.1126/science.275.5307.1770
– ident: e_1_2_12_108_1
  doi: 10.1021/acs.nanolett.1c00104
– ident: e_1_2_12_50_1
  doi: 10.1103/PhysRevE.86.021703
– ident: e_1_2_12_67_1
  doi: 10.1063/1.3695165
– ident: e_1_2_12_49_1
  doi: 10.1103/PhysRevLett.128.027801
– ident: e_1_2_12_130_1
  doi: 10.1016/j.jmat.2024.04.012
– ident: e_1_2_12_123_1
  doi: 10.1021/acsphotonics.9b00301
– ident: e_1_2_12_83_1
  doi: 10.1038/lsa.2014.94
– ident: e_1_2_12_28_1
  doi: 10.1038/s41377-022-00930-5
– ident: e_1_2_12_43_1
  doi: 10.1038/nmat2010
– ident: e_1_2_12_107_1
  doi: 10.1038/s41467-021-24071-2
– ident: e_1_2_12_121_1
  doi: 10.1126/sciadv.abe9943
– ident: e_1_2_12_24_1
  doi: 10.1038/ncomms2486
– ident: e_1_2_12_106_1
  doi: 10.1038/ncomms14992
– ident: e_1_2_12_124_1
  doi: 10.1038/s41598-017-17612-7
– ident: e_1_2_12_51_1
  doi: 10.1103/PhysRevE.91.040501
– ident: e_1_2_12_11_1
  doi: 10.1038/nmat3433
– ident: e_1_2_12_100_1
  doi: 10.1038/s41377-023-01202-6
– ident: e_1_2_12_7_1
  doi: 10.1103/PhysRevB.106.045416
– ident: e_1_2_12_88_1
  doi: 10.1038/nphoton.2011.81
– ident: e_1_2_12_93_1
  doi: 10.1364/OE.14.013089
– ident: e_1_2_12_117_1
  doi: 10.1038/s41467-020-17390-3
– ident: e_1_2_12_53_1
  doi: 10.1364/OL.528486
– ident: e_1_2_12_31_1
  doi: 10.1038/s41467-018-08210-w
– ident: e_1_2_12_105_1
  doi: 10.1002/adma.201805912
– ident: e_1_2_12_58_1
  doi: 10.1073/pnas.1615006114
– ident: e_1_2_12_113_1
  doi: 10.1038/s41377-022-00806-8
– ident: e_1_2_12_3_1
  doi: 10.1080/02678290903056095
– ident: e_1_2_12_80_1
  doi: 10.1038/s41377-022-01046-6
– ident: e_1_2_12_48_1
  doi: 10.1364/OE.20.016684
– ident: e_1_2_12_38_1
  doi: 10.1021/acs.chemrev.5b00047
– ident: e_1_2_12_97_1
  doi: 10.1364/OME.491603
– ident: e_1_2_12_114_1
  doi: 10.1002/advs.202102646
– ident: e_1_2_12_74_1
  doi: 10.1515/nanoph-2022-0656
SSID ssj0008071
Score 2.4654515
SecondaryResourceType review_article
Snippet Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e202500272
SubjectTerms Beam steering
Dielectric properties
Dynamic control
Lidar
Light irradiation
Liquid crystals
Metamaterials
Nematic crystals
Optical properties
Optoelectronic devices
Photonics
Self-assembly
Title Self‐Organization of 2D and 3D Metamaterials in Nematic Liquid Crystals
URI https://www.ncbi.nlm.nih.gov/pubmed/40720676
https://www.proquest.com/docview/3251987087
https://www.proquest.com/docview/3234308352
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgSLDLxO8VBjISEocqkNpO4hxRA0wDdoBN2i2yY1uL6JKuTZC2v57nOE5b6CTgEkVxEkfvc16-5_h9D6HX0YSHvIggUk15BAGK0oEkigQTrSdcES206Vb5HseHp-zoLDrztcr77JJGvi2ut-aV_A-qcAxwtVmy_4DscFM4APuAL2wBYdj-Fcbf9cwE69mUlvqRrPshQLPxV90IIKTuSezExnEv0PqlvGxLNZ4uroAbzpbrBNUKCNjZDsDyYjVbXZWilxpox5_rn-WsrodFvVldNUKeix9N25WHGh-JK7FclOvzCSSyix_6laXa-UDgKEESOz0q7yRdWrsfDMmay9P2Jja6JVs9slN4LebnVi9yy4lg0flFh4-VaoNv52_C2N2n1jfdRndIAhzJkt9vK5kwDjzJC3KG5N1mZ7vorr98k3vcEFB0xOLkPtrrIwL83sH7AN3S1UN0b-oL8T1Cn_6AGdcGkwwDzJhmeANmXFa4hxk7mLGH-TE6_fjhZHoY9PUvgoLwsAm0tNKROla2shMnaWSoDEUSKxmyIgnjVCU6ihWbEMMok0JqaVICMXwBMa4yBX2Cdqq60vsIRwU3iqVCGB4xzZSIBY2N4IwLoCOsGKE33jL53Mmc5E7QmuTWnPlgzhE68IbL-1dhmVOb_wyenycj9GpoBjPZv0-i0nVrz6GMdoR_hJ46gw9deYCe3djyHO2uBusB2mkWrX4BdLCRL7ux8AvlDlxe
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Organization+of+2D+and+3D+Metamaterials+in+Nematic+Liquid+Crystals&rft.jtitle=Chemphyschem&rft.au=Manian%2C+Anu+Koviloor&rft.au=Dontabhaktuni%2C+Jayasri&rft.date=2025-09-10&rft.eissn=1439-7641&rft.volume=26&rft.issue=17&rft.spage=e202500272&rft_id=info:doi/10.1002%2Fcphc.202500272&rft_id=info%3Apmid%2F40720676&rft.externalDocID=40720676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon