Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution

The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distributi...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 25; no. 7; pp. 164 - 170
Main Author 张钰 逯鑫淼 王光义 胡永才 徐江涛
Format Journal Article
LanguageEnglish
Published 01.07.2016
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/25/7/070503

Cover

More Information
Summary:The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result,the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated,and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures.
Bibliography:11-5639/O4
random telegraph signal noise physical and statistical model binomial distribution CMOS image sensor
The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result,the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated,and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/25/7/070503