Nuclear magnetic resonance for quantum computing: Techniques and recent achievements

Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a powerful tool for the experimental implementation of quantum schemes in liquid and solid...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 27; no. 2; pp. 154 - 165
Main Author 辛涛;王碧雪;李可仁;孔祥宇;魏世杰;王涛;阮东;龙桂鲁
Format Journal Article
LanguageEnglish
Published 01.02.2018
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/27/2/020308

Cover

Abstract Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a powerful tool for the experimental implementation of quantum schemes in liquid and solid nuclear magnetic resonance (NMR) system, especially in liquid-state NMR. Compared with other quantum information processing systems, the NMR platform has the advantages such as the long coherence time, the precise manipulation, and well-developed quantum control techniques, which make it possible to accurately control a quantum system with up to 12-qubits. Extensive applications of liquid-state NMR spectroscopy in quantum information processing such as quantum communication, quantum computing, and quantum simulation have been thoroughly studied over half a century. This article introduces the general principles of NMR quantum information processing, and reviews the new-developed techniques. The review will also include the recent achievements of the experimental realization of quantum algorithms for machine learning, quantum simulations for high energy physics, and topological order in NMR. We also discuss the limitation and prospect of liquid-state NMR spectroscopy and the solid-state NMR systems as quantum computing in the article.
AbstractList Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a powerful tool for the experimental implementation of quantum schemes in liquid and solid nuclear magnetic resonance (NMR) system, especially in liquid-state NMR. Compared with other quantum information processing systems, the NMR platform has the advantages such as the long coherence time, the precise manipulation, and well-developed quantum control techniques, which make it possible to accurately control a quantum system with up to 12-qubits. Extensive applications of liquid-state NMR spectroscopy in quantum information processing such as quantum communication, quantum computing, and quantum simulation have been thoroughly studied over half a century. This article introduces the general principles of NMR quantum information processing, and reviews the new-developed techniques. The review will also include the recent achievements of the experimental realization of quantum algorithms for machine learning, quantum simulations for high energy physics, and topological order in NMR. We also discuss the limitation and prospect of liquid-state NMR spectroscopy and the solid-state NMR systems as quantum computing in the article.
Author 辛涛;王碧雪;李可仁;孔祥宇;魏世杰;王涛;阮东;龙桂鲁
AuthorAffiliation State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;The hmovative Center of Quantum Matter, Beijing 100084, China;Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
Author_xml – sequence: 1
  fullname: 辛涛;王碧雪;李可仁;孔祥宇;魏世杰;王涛;阮东;龙桂鲁
BookMark eNqFkE1OwzAQRi1UJNrCEZAs9iFjO6ldsUIVf1IFm8LWcuxJa9Q4rZMgcRXOwp24AqladcGG1cziezP63ogMQh2QkEsG1wyUStlEZgmDfJJymfIUOAhQJ2TIIVeJUCIbkOExc0ZGTfMOMGHAxZC8PXd2jSbSyiwDtt7SiE0dTLBIyzrSbWdC21XU1tWma31Y_nx_0QXaVfDbDhtqgusJi6Glxq48fmDV7805OS3NusGLwxyT1_u7xewxmb88PM1u54nlCtrESY6QISCDrABeMERueWaMlChsVuTWKcesKB1aNxXS5WWpCuGmCkRR8EyMSb6_a2PdNBFLvYm-MvFTM9A7OXpXXO-Kay4113s5PXfzh7O-Na2vQxuNX_9LXx3oVR2W297K8W2flxOe50z8Av-6ews
CitedBy_id crossref_primary_10_1007_s41745_022_00353_6
crossref_primary_10_1016_j_physa_2024_129515
crossref_primary_10_1109_TNANO_2019_2939910
crossref_primary_10_1038_s41534_019_0222_3
crossref_primary_10_1088_1674_1056_abd762
crossref_primary_10_1109_OJNANO_2022_3178545
crossref_primary_10_1088_1361_6404_ad06be
crossref_primary_10_1142_S2010324723400210
crossref_primary_10_1002_que2_59
crossref_primary_10_1088_1367_2630_ad1c91
crossref_primary_10_1109_ACCESS_2023_3289005
crossref_primary_10_1038_s41598_020_72071_x
crossref_primary_10_1103_PhysRevA_104_062615
crossref_primary_10_1007_s11433_018_9307_1
crossref_primary_10_1080_01468030_2019_1580802
crossref_primary_10_1007_s11433_019_9410_3
crossref_primary_10_1103_PhysRevLett_133_040401
crossref_primary_10_1051_epjap_2023230014
crossref_primary_10_1063_5_0027545
crossref_primary_10_1364_OE_534026
crossref_primary_10_1007_s10773_023_05349_1
crossref_primary_10_1117_1_AP_1_3_034001
crossref_primary_10_1364_OE_420891
crossref_primary_10_1142_S2010324723300013
crossref_primary_10_1103_PhysRevApplied_13_024013
crossref_primary_10_1021_acs_chemrev_2c00534
crossref_primary_10_1088_1674_1056_acd8a9
crossref_primary_10_1088_1572_9494_ad84bc
crossref_primary_10_1209_0295_5075_acd954
crossref_primary_10_1016_j_physleta_2024_129668
crossref_primary_10_1103_PhysRevA_101_032307
crossref_primary_10_1002_qute_202200129
crossref_primary_10_1103_PhysRevLett_132_190801
crossref_primary_10_1021_acs_jpca_8b09425
crossref_primary_10_1364_OPTICA_527868
crossref_primary_10_1002_adma_202201064
crossref_primary_10_1103_PhysRevA_110_032412
crossref_primary_10_3390_magnetochemistry8050047
crossref_primary_10_3389_fphy_2022_981225
crossref_primary_10_1007_s43673_022_00058_z
crossref_primary_10_1088_1674_1056_abe29a
crossref_primary_10_1007_s00214_020_02706_9
crossref_primary_10_1016_j_cpc_2022_108598
crossref_primary_10_1088_1674_1056_ad7c2c
crossref_primary_10_1016_j_optcom_2023_129287
crossref_primary_10_1088_1674_1056_ac9b2e
crossref_primary_10_1002_que2_34
crossref_primary_10_1515_nanoph_2020_0186
crossref_primary_10_4018_IJEHMC_315730
crossref_primary_10_1103_PhysRevResearch_3_023246
crossref_primary_10_1007_s10773_022_05239_y
crossref_primary_10_1016_j_ijleo_2019_02_009
crossref_primary_10_1007_s11128_021_03023_1
crossref_primary_10_1103_PhysRevA_102_012610
crossref_primary_10_1021_acs_jpca_0c01607
crossref_primary_10_1007_s10773_022_05116_8
crossref_primary_10_1088_1674_1056_abeef2
Cites_doi 10.1103/PhysRevLett.114.140504
10.1137/S0036144598347011
10.1126/science.1081045
10.1007/s11434-014-0712-9
10.1103/PhysRevA.64.022307
10.1063/1.2838166
10.1088/1367-2630/10/3/033020
10.1126/science.1261160
10.1137/080734479
10.1038/nature08470
10.1103/PhysRevLett.20.180
10.1103/PhysRevLett.85.5452
10.1016/0022-2364(83)90207-X
10.1088/0953-2048/27/1/014001
10.1103/PhysRev.94.630
10.1103/PhysRevA.94.040302
10.1007/BF02650179
10.1038/30181
10.1103/PhysRevLett.74.4091
10.1103/PhysRevA.70.062322
10.1088/1674-1056/26/3/030302
10.1088/1367-2630/13/5/053023
10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
10.1007/s11433-017-9058-7
10.1007/s11433-016-0208-7
10.1103/PhysRevA.71.012307
10.1038/30687
10.1063/1.1465412
10.1103/PhysRevLett.106.240501
10.1126/science.287.5452.463
10.1103/RevModPhys.76.1037
10.1103/PhysRevLett.116.230501
10.1103/PhysRevLett.83.4204
10.1103/RevModPhys.86.153
10.1007/s11433-016-0376-6
10.1103/RevModPhys.58.433
10.1038/srep04910
10.1098/rspa.1998.0170
10.1038/srep20956
10.1103/PhysRevA.57.120
10.1103/PhysRevLett.98.100504
10.1007/s11434-015-0990-x
10.1103/PhysRevA.92.022126
10.1103/PhysRevLett.118.020401
10.1126/science.aad9480
10.1103/PhysRevA.65.042315
10.1103/PhysRevLett.114.110504
10.1126/science.1116955
10.1103/PhysRevA.68.042317
10.1103/PhysRevLett.104.030502
10.1007/BF01011339
10.1126/science.1173731
10.26421/QIC15.3-4-7
10.1098/rspa.1985.0070
10.1103/PhysRevA.89.042329
10.1016/j.scib.2017.03.006
10.1021/jz4011477
10.1103/PhysRevLett.117.130501
10.1016/S0167-2789(98)00046-3
10.1103/PhysRevA.60.4285
10.1007/s11128-016-1263-6
10.1103/PhysRevLett.110.190501
10.1088/0953-4075/44/15/154002
10.1016/0375-9601(70)90464-0
10.1063/1.1716296
10.1103/PhysRevA.84.042329
10.1098/rsta.2012.0053
10.1007/JHEP08(2016)106
10.1103/PhysRevA.89.022313
10.1103/RevModPhys.80.1083
10.1103/PhysRevLett.99.250504
10.1038/414883a
10.1038/nature18318
10.1103/PhysRevA.68.032305
10.1103/PhysRevLett.95.180501
10.1103/PhysRevLett.82.2417
10.1103/PhysRevLett.108.130501
10.1038/35005001
10.1088/0253-6102/45/5/013
10.1103/PhysRev.80.580
10.1103/PhysRevLett.74.2921
10.1103/PhysRevA.94.032316
10.1103/RevModPhys.79.135
10.1038/463441a
10.1038/nature07951
10.1103/PhysRevA.69.052319
10.1126/science.275.5298.350
10.1038/nphoton.2012.259
10.1103/PhysRevLett.79.2371
10.1007/s11433-016-5779-7
10.1103/PhysRevA.65.012322
10.1038/35006012
10.1016/j.scib.2017.05.013
10.1103/PhysRevLett.104.230403
10.1103/PhysRevLett.96.181602
10.1038/ncomms3045
10.1103/PhysRevLett.113.130503
10.1007/s11433-016-0412-6
10.1103/PhysRevLett.108.010501
10.1103/PhysRevA.70.052318
10.1088/1674-1056/25/3/030302
10.1038/23891
10.1103/PhysRevLett.103.140501
10.1088/1367-2630/10/8/083024
10.1103/PhysRevX.7.031011
10.1080/00107514.2014.964942
10.1103/PhysRevLett.112.050502
10.1103/PhysRevLett.114.140505
10.1103/PhysRevA.79.062324
10.1016/j.jmr.2004.11.004
10.1103/PhysRevLett.104.130501
10.1103/PhysRevA.93.022304
10.1088/1674-1056/25/10/108506
10.1103/PhysRevA.84.060302
10.1103/PhysRevLett.100.100501
10.1103/PhysRevA.89.032110
10.1103/PhysRevLett.81.5672
10.1103/PhysRevLett.118.080502
10.1038/nature00784
10.1103/PhysRevLett.70.3339
10.1103/PhysRevLett.103.150502
10.1103/PhysRevA.78.012328
10.1103/PhysRevA.85.022109
10.1006/jmre.1999.1896
10.1007/JHEP02(2016)004
10.1016/S0003-4916(02)00018-0
10.1103/PhysRevA.61.022307
10.1088/1367-2630/18/4/043043
10.1103/PhysRevLett.105.230503
10.1103/PhysRevLett.99.250505
10.1103/PhysRevLett.107.020501
10.1103/RevModPhys.81.865
10.1103/PhysRevA.58.2733
10.1126/science.1142892
10.1103/PhysRevLett.75.3788
10.1038/nphys3115
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/1674-1056/27/2/020308
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
EISSN 2058-3834
EndPage 165
ExternalDocumentID 10_1088_1674_1056_27_2_020308
674762551
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
ID FETCH-LOGICAL-c280t-d72e04e0e104b02b1ee2c24aa77e3c4b5cd8d1c3fdecd937d5ff8b3d9803bb243
ISSN 1674-1056
IngestDate Thu Apr 24 23:09:58 EDT 2025
Tue Jul 01 02:55:24 EDT 2025
Wed Feb 14 09:56:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c280t-d72e04e0e104b02b1ee2c24aa77e3c4b5cd8d1c3fdecd937d5ff8b3d9803bb243
Notes nuclear magnetic resonance, quantum control techniques, machine learning, topological quantumcomputing
Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a powerful tool for the experimental implementation of quantum schemes in liquid and solid nuclear magnetic resonance (NMR) system, especially in liquid-state NMR. Compared with other quantum information processing systems, the NMR platform has the advantages such as the long coherence time, the precise manipulation, and well-developed quantum control techniques, which make it possible to accurately control a quantum system with up to 12-qubits. Extensive applications of liquid-state NMR spectroscopy in quantum information processing such as quantum communication, quantum computing, and quantum simulation have been thoroughly studied over half a century. This article introduces the general principles of NMR quantum information processing, and reviews the new-developed techniques. The review will also include the recent achievements of the experimental realization of quantum algorithms for machine learning, quantum simulations for high energy physics, and topological order in NMR. We also discuss the limitation and prospect of liquid-state NMR spectroscopy and the solid-state NMR systems as quantum computing in the article.
11-5639/O4
Tao Xin, Bi-Xue Wang, Ke-Ren Li, Xiang-Yu Kong, Shi-Jie Wei, Tao Wang, Dong Ruan, and Gui-Lu Long(1State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China 2 The hmovative Center of Quantum Matter, Beijing 100084, China 3 Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China)
PageCount 12
ParticipantIDs crossref_primary_10_1088_1674_1056_27_2_020308
crossref_citationtrail_10_1088_1674_1056_27_2_020308
chongqing_primary_674762551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2018
References 88
89
Souza A M (87) 2011; 13
Nielsen M (99) 2000
DiVincenzo D P (18) 2000
Guo R (5) 2016; 25
110
Alvarez-Rodriguez U (144) 2014; 4
111
112
113
114
115
116
90
117
91
118
92
119
93
94
Zhao X L (13) 2017; 26
95
97
10
11
12
15
16
17
120
121
1
122
2
123
124
4
125
126
7
128
8
9
20
21
22
23
Li A X (28) 2016; 25
24
25
26
27
29
Martin-Lopez E (127) 2017
130
Biercuk M J (102) 2011; 44
Uhrig G S (108) 2008; 10
134
135
136
137
138
139
30
31
32
33
35
36
Liu Y (67) 2015; 58
37
Long G L (3) 2006; 45
38
39
Souza A M (86) 2008; 10
Lu D (58) 2017
140
141
Park A J (147) 2016; 18
142
143
145
Wiebe N (133) 2015; 15
146
Biamonte J (131) 2016
149
Jones J A (19) 1999
RFriedman J (6) 2000; 406
40
42
43
44
Alway W G (41) 2007; 189
45
46
47
48
49
Lloyd S (132) 2013
Rebentrost P (59) 2016
150
152
154
155
Li J (148) 2017; 7
156
157
Michalski R S (129) 2013
50
51
52
53
54
55
56
Luo Z (151) 2016
Egger D J (60) 2014; 27
Yan C (14) 2016; 24
Cory D G (34) 1997; 94
61
62
63
64
Feng G R (81) 2013; 3
65
Li J (57) 2016
66
68
69
Li K (153) 2017
70
71
72
73
74
75
76
77
78
79
Levitt M H (96) 2008
Wiseman H M (98) 2009
100
101
103
104
105
106
80
107
82
109
83
84
85
References_xml – year: 1999
  ident: 19
– ident: 137
  doi: 10.1103/PhysRevLett.114.140504
– ident: 120
  doi: 10.1137/S0036144598347011
– year: 2008
  ident: 96
– ident: 21
  doi: 10.1126/science.1081045
– ident: 139
  doi: 10.1007/s11434-014-0712-9
– ident: 66
  doi: 10.1103/PhysRevA.64.022307
– ident: 97
  doi: 10.1063/1.2838166
– volume: 10
  start-page: 033020
  issn: 1367-2630
  year: 2008
  ident: 86
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/3/033020
– ident: 78
  doi: 10.1126/science.1261160
– ident: 50
  doi: 10.1137/080734479
– ident: 109
  doi: 10.1038/nature08470
– ident: 43
  doi: 10.1103/PhysRevLett.20.180
– year: 2017
  ident: 58
– ident: 70
  doi: 10.1103/PhysRevLett.85.5452
– ident: 44
  doi: 10.1016/0022-2364(83)90207-X
– year: 2013
  ident: 129
– volume: 27
  start-page: 014001
  issn: 0953-2048
  year: 2014
  ident: 60
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/27/1/014001
– ident: 105
  doi: 10.1103/PhysRev.94.630
– ident: 149
  doi: 10.1103/PhysRevA.94.040302
– ident: 10
  doi: 10.1007/BF02650179
– ident: 69
  doi: 10.1038/30181
– year: 2016
  ident: 57
– ident: 22
  doi: 10.1103/PhysRevLett.74.4091
– ident: 74
  doi: 10.1103/PhysRevA.70.062322
– volume: 26
  start-page: 030302
  issn: 1674-1056
  year: 2017
  ident: 13
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/26/3/030302
– volume: 13
  start-page: 053023
  issn: 1367-2630
  year: 2011
  ident: 87
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/5/053023
– year: 2000
  ident: 18
– ident: 35
  doi: 10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
– year: 2016
  ident: 131
– volume: 406
  start-page: 6791
  year: 2000
  ident: 6
  publication-title: Nature
– ident: 95
  doi: 10.1007/s11433-017-9058-7
– ident: 38
  doi: 10.1007/s11433-016-0208-7
– ident: 79
  doi: 10.1103/PhysRevA.71.012307
– ident: 65
  doi: 10.1038/30687
– ident: 54
  doi: 10.1063/1.1465412
– ident: 46
  doi: 10.1103/PhysRevLett.106.240501
– year: 2017
  ident: 153
– ident: 17
  doi: 10.1126/science.287.5452.463
– ident: 37
  doi: 10.1103/RevModPhys.76.1037
– ident: 93
  doi: 10.1103/PhysRevLett.116.230501
– ident: 24
  doi: 10.1103/PhysRevLett.83.4204
– ident: 73
  doi: 10.1103/RevModPhys.86.153
– ident: 140
  doi: 10.1007/s11433-016-0376-6
– ident: 31
  doi: 10.1103/RevModPhys.58.433
– volume: 4
  year: 2014
  ident: 144
  publication-title: Sci. Rep.
  doi: 10.1038/srep04910
– ident: 32
  doi: 10.1098/rspa.1998.0170
– ident: 143
  doi: 10.1038/srep20956
– ident: 29
  doi: 10.1103/PhysRevA.57.120
– ident: 107
  doi: 10.1103/PhysRevLett.98.100504
– volume: 94
  start-page: 1634
  issn: 1364-5021
  year: 1997
  ident: 34
  publication-title: Proc. R. Soc.
– ident: 7
  doi: 10.1007/s11434-015-0990-x
– year: 2013
  ident: 132
– ident: 88
  doi: 10.1103/PhysRevA.92.022126
– ident: 64
  doi: 10.1103/PhysRevLett.118.020401
– ident: 124
  doi: 10.1126/science.aad9480
– year: 2016
  ident: 59
– ident: 71
  doi: 10.1103/PhysRevA.65.042315
– ident: 134
  doi: 10.1103/PhysRevLett.114.110504
– ident: 30
  doi: 10.1126/science.1116955
– ident: 11
  doi: 10.1103/PhysRevA.68.042317
– ident: 75
  doi: 10.1103/PhysRevLett.104.030502
– ident: 8
  doi: 10.1007/BF01011339
– ident: 123
  doi: 10.1126/science.1173731
– volume: 15
  issn: 1533-7146
  year: 2015
  ident: 133
  publication-title: Quantum Inf. Comput.
  doi: 10.26421/QIC15.3-4-7
– ident: 9
  doi: 10.1098/rspa.1985.0070
– ident: 119
  doi: 10.1103/PhysRevA.89.042329
– volume: 58
  start-page: 1
  year: 2015
  ident: 67
  publication-title: Sci. China-Phys., Mech. & Astron.
– ident: 91
  doi: 10.1016/j.scib.2017.03.006
– ident: 116
  doi: 10.1021/jz4011477
– ident: 135
  doi: 10.1103/PhysRevLett.117.130501
– ident: 36
  doi: 10.1016/S0167-2789(98)00046-3
– ident: 2
  doi: 10.1103/PhysRevA.60.4285
– ident: 89
  doi: 10.1007/s11128-016-1263-6
– ident: 94
  doi: 10.1103/PhysRevLett.110.190501
– volume: 44
  start-page: 154002
  issn: 0953-4075
  year: 2011
  ident: 102
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/44/15/154002
– ident: 100
  doi: 10.1016/0375-9601(70)90464-0
– ident: 106
  doi: 10.1063/1.1716296
– ident: 114
  doi: 10.1103/PhysRevA.84.042329
– ident: 82
  doi: 10.1098/rsta.2012.0053
– ident: 154
  doi: 10.1007/JHEP08(2016)106
– ident: 72
  doi: 10.1103/PhysRevA.89.022313
– ident: 145
  doi: 10.1103/RevModPhys.80.1083
– ident: 121
  doi: 10.1103/PhysRevLett.99.250504
– ident: 68
  doi: 10.1038/414883a
– ident: 152
  doi: 10.1038/nature18318
– ident: 55
  doi: 10.1103/PhysRevA.68.032305
– ident: 112
  doi: 10.1103/PhysRevLett.95.180501
– ident: 45
  doi: 10.1103/PhysRevLett.82.2417
– ident: 126
  doi: 10.1103/PhysRevLett.108.130501
– ident: 1
  doi: 10.1038/35005001
– volume: 45
  start-page: 825
  issn: 0253-6102
  year: 2006
  ident: 3
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/45/5/013
– ident: 103
  doi: 10.1103/PhysRev.80.580
– ident: 53
  doi: 10.1103/PhysRevLett.74.2921
– ident: 63
  doi: 10.1103/PhysRevA.94.032316
– ident: 26
  doi: 10.1103/RevModPhys.79.135
– ident: 16
  doi: 10.1038/463441a
– ident: 110
  doi: 10.1038/nature07951
– ident: 12
  doi: 10.1103/PhysRevA.69.052319
– ident: 138
  doi: 10.1126/science.275.5298.350
– ident: 125
  doi: 10.1038/nphoton.2012.259
– ident: 20
  doi: 10.1103/PhysRevLett.79.2371
– ident: 141
  doi: 10.1007/s11433-016-5779-7
– ident: 51
  doi: 10.1103/PhysRevA.65.012322
– ident: 62
  doi: 10.1038/35006012
– ident: 90
  doi: 10.1016/j.scib.2017.05.013
– ident: 77
  doi: 10.1103/PhysRevLett.104.230403
– ident: 157
  doi: 10.1103/PhysRevLett.96.181602
– ident: 101
  doi: 10.1038/ncomms3045
– volume: 3
  year: 2013
  ident: 81
  publication-title: Sci. Rep.
– year: 2009
  ident: 98
– ident: 136
  doi: 10.1103/PhysRevLett.113.130503
– ident: 39
  doi: 10.1007/s11433-016-0412-6
– ident: 52
  doi: 10.1103/PhysRevLett.108.010501
– ident: 40
  doi: 10.1103/PhysRevA.70.052318
– volume: 25
  start-page: 030302
  issn: 1674-1056
  year: 2016
  ident: 5
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/25/3/030302
– ident: 83
  doi: 10.1038/23891
– year: 2016
  ident: 151
– ident: 76
  doi: 10.1103/PhysRevLett.103.140501
– volume: 10
  start-page: 083024
  issn: 1367-2630
  year: 2008
  ident: 108
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/8/083024
– volume: 7
  start-page: 031011
  year: 2017
  ident: 148
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevX.7.031011
– ident: 130
  doi: 10.1080/00107514.2014.964942
– ident: 48
  doi: 10.1103/PhysRevLett.112.050502
– ident: 92
  doi: 10.1103/PhysRevLett.114.140505
– ident: 111
  doi: 10.1103/PhysRevA.79.062324
– ident: 56
  doi: 10.1016/j.jmr.2004.11.004
– ident: 113
  doi: 10.1103/PhysRevLett.104.130501
– ident: 47
  doi: 10.1103/PhysRevA.93.022304
– volume: 24
  start-page: 050307
  issn: 1674-1056
  year: 2016
  ident: 14
  publication-title: Chin. Phys.
– volume: 25
  start-page: 108506
  issn: 1674-1056
  year: 2016
  ident: 28
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/25/10/108506
– year: 2017
  ident: 127
– ident: 115
  doi: 10.1103/PhysRevA.84.060302
– ident: 80
  doi: 10.1103/PhysRevLett.100.100501
– ident: 117
  doi: 10.1103/PhysRevA.89.032110
– ident: 33
  doi: 10.1103/PhysRevLett.81.5672
– ident: 150
  doi: 10.1103/PhysRevLett.118.080502
– year: 2000
  ident: 99
– ident: 23
  doi: 10.1038/nature00784
– ident: 156
  doi: 10.1103/PhysRevLett.70.3339
– ident: 128
  doi: 10.1103/PhysRevLett.103.150502
– ident: 61
  doi: 10.1103/PhysRevA.78.012328
– ident: 85
  doi: 10.1103/PhysRevA.85.022109
– ident: 42
  doi: 10.1006/jmre.1999.1896
– ident: 155
  doi: 10.1007/JHEP02(2016)004
– ident: 146
  doi: 10.1016/S0003-4916(02)00018-0
– ident: 84
  doi: 10.1103/PhysRevA.61.022307
– volume: 18
  start-page: 043043
  issn: 1367-2630
  year: 2016
  ident: 147
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/4/043043
– ident: 49
  doi: 10.1103/PhysRevLett.105.230503
– ident: 122
  doi: 10.1103/PhysRevLett.99.250505
– ident: 142
  doi: 10.1103/PhysRevLett.107.020501
– ident: 4
  doi: 10.1103/RevModPhys.81.865
– volume: 189
  start-page: 114
  year: 2007
  ident: 41
  publication-title: Phys. Rev.
– ident: 104
  doi: 10.1103/PhysRevA.58.2733
– ident: 27
  doi: 10.1126/science.1142892
– ident: 15
  doi: 10.1137/S0036144598347011
– ident: 25
  doi: 10.1103/PhysRevLett.75.3788
– ident: 118
  doi: 10.1038/nphys3115
SSID ssj0061023
Score 2.3841105
SecondaryResourceType review_article
Snippet Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and...
SourceID crossref
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 154
SubjectTerms 控制技术;原子;计算;回声;磁性;信息处理系统;协调控制;机器学习
Title Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
URI http://lib.cqvip.com/qk/85823A/201802/674762551.html
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKERIXxK9YSlEO-ITSdRwnsY_JNqsKicKhRb1FseO0leiWlt0Lj8Kz8E68AjO2kwaBKkBaRdZ4PPba39oT7_gzIa8N63SmuzRWymaxaHUBqUTGrbIS3icYuLB4GvndYX5wLN6eZCdbd3YnUUubtd4zX_94ruR_RhVkMK54SvYfRnY0CgJIw_jCE0YYnn81xodIRtxev7loT1fWkzGjZ42_VYwevNpAt20uXNj4xp1srpe0WlAVdtSRutVTNMO052LNzdm5dQTint9p8FppLWglablP64yqilaQKKhUtFSYUIzKvBqN01pSCUoJrXOqciqLoC3HsFlUqWo0BSpVjom0clo1FoVEyWkJ5RRmlaXLBbV9VIA2yCUtl65VFbjCLjfD5inhymb4QUmNlWOuwly5DF8EGuWtVezXeqeNgaolWghFFkGIzVaoWSZUcifh1N8HM-yeAAjZGIniJ_y8ELAUZYGO28k4y2ScDpusYZXwDAbh18AnU37iSbCD95D4my9-W5hgMsc9kqE2PIeD_5VzR-yBnEE36_EYJQnKsFRlSBBwlxfgGuL51PcfBkcjR9YN3E8YjA4H1KScj7I5L-Z87qtA-pCzy9XpFQBu4oZN_Kmjh-RBeBGKSo_qR2TLrh6Tey4g2Xx5Qj4GbEcDtqMR2xFgOwrYjkZs__j-LbpBdQSojjyqoymqn5LjZX20OIjDHSCx4ZKt467glgnLbMKEZlwn1nLDRdsWhU2N0Mht0SUm7TtrOnC1u6zvpU47JVmqNRfpM7K9ulzZ5yTqs1zz3kLPKCG47ZWxsuBawiTVtXliZmRn7J7ms-d6acYxmBExdFhjAn0-3uLyqXFhHFI22OcN9nnDi4Y3vs9nZG8sNti8tcCLW1uxQ-7foPgl2V5fb-wueMVr_cph4ycg347a
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+magnetic+resonance+for+quantum+computing%EF%BC%9A+Techniques+and+recent+achievements&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E8%BE%9B%E6%B6%9B%3B%E7%8E%8B%E7%A2%A7%E9%9B%AA%3B%E6%9D%8E%E5%8F%AF%E4%BB%81%3B%E5%AD%94%E7%A5%A5%E5%AE%87%3B%E9%AD%8F%E4%B8%96%E6%9D%B0%3B%E7%8E%8B%E6%B6%9B%3B%E9%98%AE%E4%B8%9C%3B%E9%BE%99%E6%A1%82%E9%B2%81&rft.date=2018-02-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=27&rft.issue=2&rft.spage=154&rft.epage=165&rft_id=info:doi/10.1088%2F1674-1056%2F27%2F2%2F020308&rft.externalDocID=674762551
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg