Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a powerful tool for the experimental implementation of quantum schemes in liquid and solid...
Saved in:
Published in | Chinese physics B Vol. 27; no. 2; pp. 154 - 165 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/27/2/020308 |
Cover
Abstract | Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a powerful tool for the experimental implementation of quantum schemes in liquid and solid nuclear magnetic resonance (NMR) system, especially in liquid-state NMR. Compared with other quantum information processing systems, the NMR platform has the advantages such as the long coherence time, the precise manipulation, and well-developed quantum control techniques, which make it possible to accurately control a quantum system with up to 12-qubits. Extensive applications of liquid-state NMR spectroscopy in quantum information processing such as quantum communication, quantum computing, and quantum simulation have been thoroughly studied over half a century. This article introduces the general principles of NMR quantum information processing, and reviews the new-developed techniques. The review will also include the recent achievements of the experimental realization of quantum algorithms for machine learning, quantum simulations for high energy physics, and topological order in NMR. We also discuss the limitation and prospect of liquid-state NMR spectroscopy and the solid-state NMR systems as quantum computing in the article. |
---|---|
AbstractList | Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a powerful tool for the experimental implementation of quantum schemes in liquid and solid nuclear magnetic resonance (NMR) system, especially in liquid-state NMR. Compared with other quantum information processing systems, the NMR platform has the advantages such as the long coherence time, the precise manipulation, and well-developed quantum control techniques, which make it possible to accurately control a quantum system with up to 12-qubits. Extensive applications of liquid-state NMR spectroscopy in quantum information processing such as quantum communication, quantum computing, and quantum simulation have been thoroughly studied over half a century. This article introduces the general principles of NMR quantum information processing, and reviews the new-developed techniques. The review will also include the recent achievements of the experimental realization of quantum algorithms for machine learning, quantum simulations for high energy physics, and topological order in NMR. We also discuss the limitation and prospect of liquid-state NMR spectroscopy and the solid-state NMR systems as quantum computing in the article. |
Author | 辛涛;王碧雪;李可仁;孔祥宇;魏世杰;王涛;阮东;龙桂鲁 |
AuthorAffiliation | State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;The hmovative Center of Quantum Matter, Beijing 100084, China;Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China |
Author_xml | – sequence: 1 fullname: 辛涛;王碧雪;李可仁;孔祥宇;魏世杰;王涛;阮东;龙桂鲁 |
BookMark | eNqFkE1OwzAQRi1UJNrCEZAs9iFjO6ldsUIVf1IFm8LWcuxJa9Q4rZMgcRXOwp24AqladcGG1cziezP63ogMQh2QkEsG1wyUStlEZgmDfJJymfIUOAhQJ2TIIVeJUCIbkOExc0ZGTfMOMGHAxZC8PXd2jSbSyiwDtt7SiE0dTLBIyzrSbWdC21XU1tWma31Y_nx_0QXaVfDbDhtqgusJi6Glxq48fmDV7805OS3NusGLwxyT1_u7xewxmb88PM1u54nlCtrESY6QISCDrABeMERueWaMlChsVuTWKcesKB1aNxXS5WWpCuGmCkRR8EyMSb6_a2PdNBFLvYm-MvFTM9A7OXpXXO-Kay4113s5PXfzh7O-Na2vQxuNX_9LXx3oVR2W297K8W2flxOe50z8Av-6ews |
CitedBy_id | crossref_primary_10_1007_s41745_022_00353_6 crossref_primary_10_1016_j_physa_2024_129515 crossref_primary_10_1109_TNANO_2019_2939910 crossref_primary_10_1038_s41534_019_0222_3 crossref_primary_10_1088_1674_1056_abd762 crossref_primary_10_1109_OJNANO_2022_3178545 crossref_primary_10_1088_1361_6404_ad06be crossref_primary_10_1142_S2010324723400210 crossref_primary_10_1002_que2_59 crossref_primary_10_1088_1367_2630_ad1c91 crossref_primary_10_1109_ACCESS_2023_3289005 crossref_primary_10_1038_s41598_020_72071_x crossref_primary_10_1103_PhysRevA_104_062615 crossref_primary_10_1007_s11433_018_9307_1 crossref_primary_10_1080_01468030_2019_1580802 crossref_primary_10_1007_s11433_019_9410_3 crossref_primary_10_1103_PhysRevLett_133_040401 crossref_primary_10_1051_epjap_2023230014 crossref_primary_10_1063_5_0027545 crossref_primary_10_1364_OE_534026 crossref_primary_10_1007_s10773_023_05349_1 crossref_primary_10_1117_1_AP_1_3_034001 crossref_primary_10_1364_OE_420891 crossref_primary_10_1142_S2010324723300013 crossref_primary_10_1103_PhysRevApplied_13_024013 crossref_primary_10_1021_acs_chemrev_2c00534 crossref_primary_10_1088_1674_1056_acd8a9 crossref_primary_10_1088_1572_9494_ad84bc crossref_primary_10_1209_0295_5075_acd954 crossref_primary_10_1016_j_physleta_2024_129668 crossref_primary_10_1103_PhysRevA_101_032307 crossref_primary_10_1002_qute_202200129 crossref_primary_10_1103_PhysRevLett_132_190801 crossref_primary_10_1021_acs_jpca_8b09425 crossref_primary_10_1364_OPTICA_527868 crossref_primary_10_1002_adma_202201064 crossref_primary_10_1103_PhysRevA_110_032412 crossref_primary_10_3390_magnetochemistry8050047 crossref_primary_10_3389_fphy_2022_981225 crossref_primary_10_1007_s43673_022_00058_z crossref_primary_10_1088_1674_1056_abe29a crossref_primary_10_1007_s00214_020_02706_9 crossref_primary_10_1016_j_cpc_2022_108598 crossref_primary_10_1088_1674_1056_ad7c2c crossref_primary_10_1016_j_optcom_2023_129287 crossref_primary_10_1088_1674_1056_ac9b2e crossref_primary_10_1002_que2_34 crossref_primary_10_1515_nanoph_2020_0186 crossref_primary_10_4018_IJEHMC_315730 crossref_primary_10_1103_PhysRevResearch_3_023246 crossref_primary_10_1007_s10773_022_05239_y crossref_primary_10_1016_j_ijleo_2019_02_009 crossref_primary_10_1007_s11128_021_03023_1 crossref_primary_10_1103_PhysRevA_102_012610 crossref_primary_10_1021_acs_jpca_0c01607 crossref_primary_10_1007_s10773_022_05116_8 crossref_primary_10_1088_1674_1056_abeef2 |
Cites_doi | 10.1103/PhysRevLett.114.140504 10.1137/S0036144598347011 10.1126/science.1081045 10.1007/s11434-014-0712-9 10.1103/PhysRevA.64.022307 10.1063/1.2838166 10.1088/1367-2630/10/3/033020 10.1126/science.1261160 10.1137/080734479 10.1038/nature08470 10.1103/PhysRevLett.20.180 10.1103/PhysRevLett.85.5452 10.1016/0022-2364(83)90207-X 10.1088/0953-2048/27/1/014001 10.1103/PhysRev.94.630 10.1103/PhysRevA.94.040302 10.1007/BF02650179 10.1038/30181 10.1103/PhysRevLett.74.4091 10.1103/PhysRevA.70.062322 10.1088/1674-1056/26/3/030302 10.1088/1367-2630/13/5/053023 10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V 10.1007/s11433-017-9058-7 10.1007/s11433-016-0208-7 10.1103/PhysRevA.71.012307 10.1038/30687 10.1063/1.1465412 10.1103/PhysRevLett.106.240501 10.1126/science.287.5452.463 10.1103/RevModPhys.76.1037 10.1103/PhysRevLett.116.230501 10.1103/PhysRevLett.83.4204 10.1103/RevModPhys.86.153 10.1007/s11433-016-0376-6 10.1103/RevModPhys.58.433 10.1038/srep04910 10.1098/rspa.1998.0170 10.1038/srep20956 10.1103/PhysRevA.57.120 10.1103/PhysRevLett.98.100504 10.1007/s11434-015-0990-x 10.1103/PhysRevA.92.022126 10.1103/PhysRevLett.118.020401 10.1126/science.aad9480 10.1103/PhysRevA.65.042315 10.1103/PhysRevLett.114.110504 10.1126/science.1116955 10.1103/PhysRevA.68.042317 10.1103/PhysRevLett.104.030502 10.1007/BF01011339 10.1126/science.1173731 10.26421/QIC15.3-4-7 10.1098/rspa.1985.0070 10.1103/PhysRevA.89.042329 10.1016/j.scib.2017.03.006 10.1021/jz4011477 10.1103/PhysRevLett.117.130501 10.1016/S0167-2789(98)00046-3 10.1103/PhysRevA.60.4285 10.1007/s11128-016-1263-6 10.1103/PhysRevLett.110.190501 10.1088/0953-4075/44/15/154002 10.1016/0375-9601(70)90464-0 10.1063/1.1716296 10.1103/PhysRevA.84.042329 10.1098/rsta.2012.0053 10.1007/JHEP08(2016)106 10.1103/PhysRevA.89.022313 10.1103/RevModPhys.80.1083 10.1103/PhysRevLett.99.250504 10.1038/414883a 10.1038/nature18318 10.1103/PhysRevA.68.032305 10.1103/PhysRevLett.95.180501 10.1103/PhysRevLett.82.2417 10.1103/PhysRevLett.108.130501 10.1038/35005001 10.1088/0253-6102/45/5/013 10.1103/PhysRev.80.580 10.1103/PhysRevLett.74.2921 10.1103/PhysRevA.94.032316 10.1103/RevModPhys.79.135 10.1038/463441a 10.1038/nature07951 10.1103/PhysRevA.69.052319 10.1126/science.275.5298.350 10.1038/nphoton.2012.259 10.1103/PhysRevLett.79.2371 10.1007/s11433-016-5779-7 10.1103/PhysRevA.65.012322 10.1038/35006012 10.1016/j.scib.2017.05.013 10.1103/PhysRevLett.104.230403 10.1103/PhysRevLett.96.181602 10.1038/ncomms3045 10.1103/PhysRevLett.113.130503 10.1007/s11433-016-0412-6 10.1103/PhysRevLett.108.010501 10.1103/PhysRevA.70.052318 10.1088/1674-1056/25/3/030302 10.1038/23891 10.1103/PhysRevLett.103.140501 10.1088/1367-2630/10/8/083024 10.1103/PhysRevX.7.031011 10.1080/00107514.2014.964942 10.1103/PhysRevLett.112.050502 10.1103/PhysRevLett.114.140505 10.1103/PhysRevA.79.062324 10.1016/j.jmr.2004.11.004 10.1103/PhysRevLett.104.130501 10.1103/PhysRevA.93.022304 10.1088/1674-1056/25/10/108506 10.1103/PhysRevA.84.060302 10.1103/PhysRevLett.100.100501 10.1103/PhysRevA.89.032110 10.1103/PhysRevLett.81.5672 10.1103/PhysRevLett.118.080502 10.1038/nature00784 10.1103/PhysRevLett.70.3339 10.1103/PhysRevLett.103.150502 10.1103/PhysRevA.78.012328 10.1103/PhysRevA.85.022109 10.1006/jmre.1999.1896 10.1007/JHEP02(2016)004 10.1016/S0003-4916(02)00018-0 10.1103/PhysRevA.61.022307 10.1088/1367-2630/18/4/043043 10.1103/PhysRevLett.105.230503 10.1103/PhysRevLett.99.250505 10.1103/PhysRevLett.107.020501 10.1103/RevModPhys.81.865 10.1103/PhysRevA.58.2733 10.1126/science.1142892 10.1103/PhysRevLett.75.3788 10.1038/nphys3115 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/1674-1056/27/2/020308 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Nuclear magnetic resonance for quantum computing: Techniques and recent achievements |
EISSN | 2058-3834 |
EndPage | 165 |
ExternalDocumentID | 10_1088_1674_1056_27_2_020308 674762551 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K |
ID | FETCH-LOGICAL-c280t-d72e04e0e104b02b1ee2c24aa77e3c4b5cd8d1c3fdecd937d5ff8b3d9803bb243 |
ISSN | 1674-1056 |
IngestDate | Thu Apr 24 23:09:58 EDT 2025 Tue Jul 01 02:55:24 EDT 2025 Wed Feb 14 09:56:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c280t-d72e04e0e104b02b1ee2c24aa77e3c4b5cd8d1c3fdecd937d5ff8b3d9803bb243 |
Notes | nuclear magnetic resonance, quantum control techniques, machine learning, topological quantumcomputing Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a powerful tool for the experimental implementation of quantum schemes in liquid and solid nuclear magnetic resonance (NMR) system, especially in liquid-state NMR. Compared with other quantum information processing systems, the NMR platform has the advantages such as the long coherence time, the precise manipulation, and well-developed quantum control techniques, which make it possible to accurately control a quantum system with up to 12-qubits. Extensive applications of liquid-state NMR spectroscopy in quantum information processing such as quantum communication, quantum computing, and quantum simulation have been thoroughly studied over half a century. This article introduces the general principles of NMR quantum information processing, and reviews the new-developed techniques. The review will also include the recent achievements of the experimental realization of quantum algorithms for machine learning, quantum simulations for high energy physics, and topological order in NMR. We also discuss the limitation and prospect of liquid-state NMR spectroscopy and the solid-state NMR systems as quantum computing in the article. 11-5639/O4 Tao Xin, Bi-Xue Wang, Ke-Ren Li, Xiang-Yu Kong, Shi-Jie Wei, Tao Wang, Dong Ruan, and Gui-Lu Long(1State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China 2 The hmovative Center of Quantum Matter, Beijing 100084, China 3 Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China) |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1088_1674_1056_27_2_020308 crossref_citationtrail_10_1088_1674_1056_27_2_020308 chongqing_primary_674762551 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2018 |
References | 88 89 Souza A M (87) 2011; 13 Nielsen M (99) 2000 DiVincenzo D P (18) 2000 Guo R (5) 2016; 25 110 Alvarez-Rodriguez U (144) 2014; 4 111 112 113 114 115 116 90 117 91 118 92 119 93 94 Zhao X L (13) 2017; 26 95 97 10 11 12 15 16 17 120 121 1 122 2 123 124 4 125 126 7 128 8 9 20 21 22 23 Li A X (28) 2016; 25 24 25 26 27 29 Martin-Lopez E (127) 2017 130 Biercuk M J (102) 2011; 44 Uhrig G S (108) 2008; 10 134 135 136 137 138 139 30 31 32 33 35 36 Liu Y (67) 2015; 58 37 Long G L (3) 2006; 45 38 39 Souza A M (86) 2008; 10 Lu D (58) 2017 140 141 Park A J (147) 2016; 18 142 143 145 Wiebe N (133) 2015; 15 146 Biamonte J (131) 2016 149 Jones J A (19) 1999 RFriedman J (6) 2000; 406 40 42 43 44 Alway W G (41) 2007; 189 45 46 47 48 49 Lloyd S (132) 2013 Rebentrost P (59) 2016 150 152 154 155 Li J (148) 2017; 7 156 157 Michalski R S (129) 2013 50 51 52 53 54 55 56 Luo Z (151) 2016 Egger D J (60) 2014; 27 Yan C (14) 2016; 24 Cory D G (34) 1997; 94 61 62 63 64 Feng G R (81) 2013; 3 65 Li J (57) 2016 66 68 69 Li K (153) 2017 70 71 72 73 74 75 76 77 78 79 Levitt M H (96) 2008 Wiseman H M (98) 2009 100 101 103 104 105 106 80 107 82 109 83 84 85 |
References_xml | – year: 1999 ident: 19 – ident: 137 doi: 10.1103/PhysRevLett.114.140504 – ident: 120 doi: 10.1137/S0036144598347011 – year: 2008 ident: 96 – ident: 21 doi: 10.1126/science.1081045 – ident: 139 doi: 10.1007/s11434-014-0712-9 – ident: 66 doi: 10.1103/PhysRevA.64.022307 – ident: 97 doi: 10.1063/1.2838166 – volume: 10 start-page: 033020 issn: 1367-2630 year: 2008 ident: 86 publication-title: New J. Phys. doi: 10.1088/1367-2630/10/3/033020 – ident: 78 doi: 10.1126/science.1261160 – ident: 50 doi: 10.1137/080734479 – ident: 109 doi: 10.1038/nature08470 – ident: 43 doi: 10.1103/PhysRevLett.20.180 – year: 2017 ident: 58 – ident: 70 doi: 10.1103/PhysRevLett.85.5452 – ident: 44 doi: 10.1016/0022-2364(83)90207-X – year: 2013 ident: 129 – volume: 27 start-page: 014001 issn: 0953-2048 year: 2014 ident: 60 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/27/1/014001 – ident: 105 doi: 10.1103/PhysRev.94.630 – ident: 149 doi: 10.1103/PhysRevA.94.040302 – ident: 10 doi: 10.1007/BF02650179 – ident: 69 doi: 10.1038/30181 – year: 2016 ident: 57 – ident: 22 doi: 10.1103/PhysRevLett.74.4091 – ident: 74 doi: 10.1103/PhysRevA.70.062322 – volume: 26 start-page: 030302 issn: 1674-1056 year: 2017 ident: 13 publication-title: Chin. Phys. doi: 10.1088/1674-1056/26/3/030302 – volume: 13 start-page: 053023 issn: 1367-2630 year: 2011 ident: 87 publication-title: New J. Phys. doi: 10.1088/1367-2630/13/5/053023 – year: 2000 ident: 18 – ident: 35 doi: 10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V – year: 2016 ident: 131 – volume: 406 start-page: 6791 year: 2000 ident: 6 publication-title: Nature – ident: 95 doi: 10.1007/s11433-017-9058-7 – ident: 38 doi: 10.1007/s11433-016-0208-7 – ident: 79 doi: 10.1103/PhysRevA.71.012307 – ident: 65 doi: 10.1038/30687 – ident: 54 doi: 10.1063/1.1465412 – ident: 46 doi: 10.1103/PhysRevLett.106.240501 – year: 2017 ident: 153 – ident: 17 doi: 10.1126/science.287.5452.463 – ident: 37 doi: 10.1103/RevModPhys.76.1037 – ident: 93 doi: 10.1103/PhysRevLett.116.230501 – ident: 24 doi: 10.1103/PhysRevLett.83.4204 – ident: 73 doi: 10.1103/RevModPhys.86.153 – ident: 140 doi: 10.1007/s11433-016-0376-6 – ident: 31 doi: 10.1103/RevModPhys.58.433 – volume: 4 year: 2014 ident: 144 publication-title: Sci. Rep. doi: 10.1038/srep04910 – ident: 32 doi: 10.1098/rspa.1998.0170 – ident: 143 doi: 10.1038/srep20956 – ident: 29 doi: 10.1103/PhysRevA.57.120 – ident: 107 doi: 10.1103/PhysRevLett.98.100504 – volume: 94 start-page: 1634 issn: 1364-5021 year: 1997 ident: 34 publication-title: Proc. R. Soc. – ident: 7 doi: 10.1007/s11434-015-0990-x – year: 2013 ident: 132 – ident: 88 doi: 10.1103/PhysRevA.92.022126 – ident: 64 doi: 10.1103/PhysRevLett.118.020401 – ident: 124 doi: 10.1126/science.aad9480 – year: 2016 ident: 59 – ident: 71 doi: 10.1103/PhysRevA.65.042315 – ident: 134 doi: 10.1103/PhysRevLett.114.110504 – ident: 30 doi: 10.1126/science.1116955 – ident: 11 doi: 10.1103/PhysRevA.68.042317 – ident: 75 doi: 10.1103/PhysRevLett.104.030502 – ident: 8 doi: 10.1007/BF01011339 – ident: 123 doi: 10.1126/science.1173731 – volume: 15 issn: 1533-7146 year: 2015 ident: 133 publication-title: Quantum Inf. Comput. doi: 10.26421/QIC15.3-4-7 – ident: 9 doi: 10.1098/rspa.1985.0070 – ident: 119 doi: 10.1103/PhysRevA.89.042329 – volume: 58 start-page: 1 year: 2015 ident: 67 publication-title: Sci. China-Phys., Mech. & Astron. – ident: 91 doi: 10.1016/j.scib.2017.03.006 – ident: 116 doi: 10.1021/jz4011477 – ident: 135 doi: 10.1103/PhysRevLett.117.130501 – ident: 36 doi: 10.1016/S0167-2789(98)00046-3 – ident: 2 doi: 10.1103/PhysRevA.60.4285 – ident: 89 doi: 10.1007/s11128-016-1263-6 – ident: 94 doi: 10.1103/PhysRevLett.110.190501 – volume: 44 start-page: 154002 issn: 0953-4075 year: 2011 ident: 102 publication-title: J. Phys. B: At. Mol. Opt. Phys. doi: 10.1088/0953-4075/44/15/154002 – ident: 100 doi: 10.1016/0375-9601(70)90464-0 – ident: 106 doi: 10.1063/1.1716296 – ident: 114 doi: 10.1103/PhysRevA.84.042329 – ident: 82 doi: 10.1098/rsta.2012.0053 – ident: 154 doi: 10.1007/JHEP08(2016)106 – ident: 72 doi: 10.1103/PhysRevA.89.022313 – ident: 145 doi: 10.1103/RevModPhys.80.1083 – ident: 121 doi: 10.1103/PhysRevLett.99.250504 – ident: 68 doi: 10.1038/414883a – ident: 152 doi: 10.1038/nature18318 – ident: 55 doi: 10.1103/PhysRevA.68.032305 – ident: 112 doi: 10.1103/PhysRevLett.95.180501 – ident: 45 doi: 10.1103/PhysRevLett.82.2417 – ident: 126 doi: 10.1103/PhysRevLett.108.130501 – ident: 1 doi: 10.1038/35005001 – volume: 45 start-page: 825 issn: 0253-6102 year: 2006 ident: 3 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/45/5/013 – ident: 103 doi: 10.1103/PhysRev.80.580 – ident: 53 doi: 10.1103/PhysRevLett.74.2921 – ident: 63 doi: 10.1103/PhysRevA.94.032316 – ident: 26 doi: 10.1103/RevModPhys.79.135 – ident: 16 doi: 10.1038/463441a – ident: 110 doi: 10.1038/nature07951 – ident: 12 doi: 10.1103/PhysRevA.69.052319 – ident: 138 doi: 10.1126/science.275.5298.350 – ident: 125 doi: 10.1038/nphoton.2012.259 – ident: 20 doi: 10.1103/PhysRevLett.79.2371 – ident: 141 doi: 10.1007/s11433-016-5779-7 – ident: 51 doi: 10.1103/PhysRevA.65.012322 – ident: 62 doi: 10.1038/35006012 – ident: 90 doi: 10.1016/j.scib.2017.05.013 – ident: 77 doi: 10.1103/PhysRevLett.104.230403 – ident: 157 doi: 10.1103/PhysRevLett.96.181602 – ident: 101 doi: 10.1038/ncomms3045 – volume: 3 year: 2013 ident: 81 publication-title: Sci. Rep. – year: 2009 ident: 98 – ident: 136 doi: 10.1103/PhysRevLett.113.130503 – ident: 39 doi: 10.1007/s11433-016-0412-6 – ident: 52 doi: 10.1103/PhysRevLett.108.010501 – ident: 40 doi: 10.1103/PhysRevA.70.052318 – volume: 25 start-page: 030302 issn: 1674-1056 year: 2016 ident: 5 publication-title: Chin. Phys. doi: 10.1088/1674-1056/25/3/030302 – ident: 83 doi: 10.1038/23891 – year: 2016 ident: 151 – ident: 76 doi: 10.1103/PhysRevLett.103.140501 – volume: 10 start-page: 083024 issn: 1367-2630 year: 2008 ident: 108 publication-title: New J. Phys. doi: 10.1088/1367-2630/10/8/083024 – volume: 7 start-page: 031011 year: 2017 ident: 148 publication-title: Phys. Rev. doi: 10.1103/PhysRevX.7.031011 – ident: 130 doi: 10.1080/00107514.2014.964942 – ident: 48 doi: 10.1103/PhysRevLett.112.050502 – ident: 92 doi: 10.1103/PhysRevLett.114.140505 – ident: 111 doi: 10.1103/PhysRevA.79.062324 – ident: 56 doi: 10.1016/j.jmr.2004.11.004 – ident: 113 doi: 10.1103/PhysRevLett.104.130501 – ident: 47 doi: 10.1103/PhysRevA.93.022304 – volume: 24 start-page: 050307 issn: 1674-1056 year: 2016 ident: 14 publication-title: Chin. Phys. – volume: 25 start-page: 108506 issn: 1674-1056 year: 2016 ident: 28 publication-title: Chin. Phys. doi: 10.1088/1674-1056/25/10/108506 – year: 2017 ident: 127 – ident: 115 doi: 10.1103/PhysRevA.84.060302 – ident: 80 doi: 10.1103/PhysRevLett.100.100501 – ident: 117 doi: 10.1103/PhysRevA.89.032110 – ident: 33 doi: 10.1103/PhysRevLett.81.5672 – ident: 150 doi: 10.1103/PhysRevLett.118.080502 – year: 2000 ident: 99 – ident: 23 doi: 10.1038/nature00784 – ident: 156 doi: 10.1103/PhysRevLett.70.3339 – ident: 128 doi: 10.1103/PhysRevLett.103.150502 – ident: 61 doi: 10.1103/PhysRevA.78.012328 – ident: 85 doi: 10.1103/PhysRevA.85.022109 – ident: 42 doi: 10.1006/jmre.1999.1896 – ident: 155 doi: 10.1007/JHEP02(2016)004 – ident: 146 doi: 10.1016/S0003-4916(02)00018-0 – ident: 84 doi: 10.1103/PhysRevA.61.022307 – volume: 18 start-page: 043043 issn: 1367-2630 year: 2016 ident: 147 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/4/043043 – ident: 49 doi: 10.1103/PhysRevLett.105.230503 – ident: 122 doi: 10.1103/PhysRevLett.99.250505 – ident: 142 doi: 10.1103/PhysRevLett.107.020501 – ident: 4 doi: 10.1103/RevModPhys.81.865 – volume: 189 start-page: 114 year: 2007 ident: 41 publication-title: Phys. Rev. – ident: 104 doi: 10.1103/PhysRevA.58.2733 – ident: 27 doi: 10.1126/science.1142892 – ident: 15 doi: 10.1137/S0036144598347011 – ident: 25 doi: 10.1103/PhysRevLett.75.3788 – ident: 118 doi: 10.1038/nphys3115 |
SSID | ssj0061023 |
Score | 2.3841105 |
SecondaryResourceType | review_article |
Snippet | Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and... |
SourceID | crossref chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 154 |
SubjectTerms | 控制技术;原子;计算;回声;磁性;信息处理系统;协调控制;机器学习 |
Title | Nuclear magnetic resonance for quantum computing: Techniques and recent achievements |
URI | http://lib.cqvip.com/qk/85823A/201802/674762551.html |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKERIXxK9YSlEO-ITSdRwnsY_JNqsKicKhRb1FseO0leiWlt0Lj8Kz8E68AjO2kwaBKkBaRdZ4PPba39oT7_gzIa8N63SmuzRWymaxaHUBqUTGrbIS3icYuLB4GvndYX5wLN6eZCdbd3YnUUubtd4zX_94ruR_RhVkMK54SvYfRnY0CgJIw_jCE0YYnn81xodIRtxev7loT1fWkzGjZ42_VYwevNpAt20uXNj4xp1srpe0WlAVdtSRutVTNMO052LNzdm5dQTint9p8FppLWglablP64yqilaQKKhUtFSYUIzKvBqN01pSCUoJrXOqciqLoC3HsFlUqWo0BSpVjom0clo1FoVEyWkJ5RRmlaXLBbV9VIA2yCUtl65VFbjCLjfD5inhymb4QUmNlWOuwly5DF8EGuWtVezXeqeNgaolWghFFkGIzVaoWSZUcifh1N8HM-yeAAjZGIniJ_y8ELAUZYGO28k4y2ScDpusYZXwDAbh18AnU37iSbCD95D4my9-W5hgMsc9kqE2PIeD_5VzR-yBnEE36_EYJQnKsFRlSBBwlxfgGuL51PcfBkcjR9YN3E8YjA4H1KScj7I5L-Z87qtA-pCzy9XpFQBu4oZN_Kmjh-RBeBGKSo_qR2TLrh6Tey4g2Xx5Qj4GbEcDtqMR2xFgOwrYjkZs__j-LbpBdQSojjyqoymqn5LjZX20OIjDHSCx4ZKt467glgnLbMKEZlwn1nLDRdsWhU2N0Mht0SUm7TtrOnC1u6zvpU47JVmqNRfpM7K9ulzZ5yTqs1zz3kLPKCG47ZWxsuBawiTVtXliZmRn7J7ms-d6acYxmBExdFhjAn0-3uLyqXFhHFI22OcN9nnDi4Y3vs9nZG8sNti8tcCLW1uxQ-7foPgl2V5fb-wueMVr_cph4ycg347a |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+magnetic+resonance+for+quantum+computing%EF%BC%9A+Techniques+and+recent+achievements&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E8%BE%9B%E6%B6%9B%3B%E7%8E%8B%E7%A2%A7%E9%9B%AA%3B%E6%9D%8E%E5%8F%AF%E4%BB%81%3B%E5%AD%94%E7%A5%A5%E5%AE%87%3B%E9%AD%8F%E4%B8%96%E6%9D%B0%3B%E7%8E%8B%E6%B6%9B%3B%E9%98%AE%E4%B8%9C%3B%E9%BE%99%E6%A1%82%E9%B2%81&rft.date=2018-02-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=27&rft.issue=2&rft.spage=154&rft.epage=165&rft_id=info:doi/10.1088%2F1674-1056%2F27%2F2%2F020308&rft.externalDocID=674762551 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |