Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense
Mathematical modeling of fractional resonant Schrödinger equations is an extremely significant topic in the classical of quantum mechanics, chromodynamics, astronomy, and anomalous diffusion systems. Based on conformable residual power series, a novel effective analytical approach is considered to s...
Saved in:
Published in | Physica scripta Vol. 95; no. 7; pp. 75218 - 75238 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-8949 1402-4896 |
DOI | 10.1088/1402-4896/ab96e0 |
Cover
Abstract | Mathematical modeling of fractional resonant Schrödinger equations is an extremely significant topic in the classical of quantum mechanics, chromodynamics, astronomy, and anomalous diffusion systems. Based on conformable residual power series, a novel effective analytical approach is considered to solve classes of nonlinear time-fractional resonant Schrödinger equation and nonlinear coupled fractional Schrödinger equations under conformable fractional derivatives. The solution methodology lies in generating an infinite conformable series solution with reliable wave pattern by minimizing the residual error functions. The main motivation for using this approach is high accuracy convergence and low computational cost compared to other existing methods. In this orientation, the competency and capacity of the proposed method are examined by implementing several numerical applications. From a numerical viewpoint, the obtained results indicate that the method is intelligent and has several features in feasibility, stability, and suitability for dealing with many fractional models emerging in physics and optics using the new conformable derivative. |
---|---|
AbstractList | Mathematical modeling of fractional resonant Schrödinger equations is an extremely significant topic in the classical of quantum mechanics, chromodynamics, astronomy, and anomalous diffusion systems. Based on conformable residual power series, a novel effective analytical approach is considered to solve classes of nonlinear time-fractional resonant Schrödinger equation and nonlinear coupled fractional Schrödinger equations under conformable fractional derivatives. The solution methodology lies in generating an infinite conformable series solution with reliable wave pattern by minimizing the residual error functions. The main motivation for using this approach is high accuracy convergence and low computational cost compared to other existing methods. In this orientation, the competency and capacity of the proposed method are examined by implementing several numerical applications. From a numerical viewpoint, the obtained results indicate that the method is intelligent and has several features in feasibility, stability, and suitability for dealing with many fractional models emerging in physics and optics using the new conformable derivative. |
Author | Abu Arqub, Omar Al-Smadi, Mohammed Momani, Shaher |
Author_xml | – sequence: 1 givenname: Mohammed surname: Al-Smadi fullname: Al-Smadi, Mohammed organization: Al-Balqa Applied University Department of Applied Science, Ajloun College, Ajloun 26816, Jordan – sequence: 2 givenname: Omar orcidid: 0000-0001-9526-6095 surname: Abu Arqub fullname: Abu Arqub, Omar email: o.abuarqub@bau.edu.jo organization: Al Balqa Applied University Department of Mathematics, Faculty of Science, Salt 19117, Jordan – sequence: 3 givenname: Shaher surname: Momani fullname: Momani, Shaher organization: The University of Jordan Department of Mathematics, Faculty of Science, Amman, 11942, Jordan |
BookMark | eNp9kM1KxDAUhYOM4Mzo3mUewDpJk6btUgb_YNCFui5peutkaJOatAM-iW_iC_hiplREBF1d7rnnHLjfAs2MNYDQKSXnlGTZinISRzzLxUqWuQBygObf0gzNCWE0ynKeH6GF9ztCYhGLfI7e7oYWnFaywcq23dDLXlvjsa3DPnQNVLh2Uo1isDjwYZoeP6it-3ivtHkGh-Fl-EpJp33QsDY4aKYfWtyC2kqjlceDqYJZWVNb18qygZ_N4aT3oWUP2IPxcIwOa9l4OPmaS_R0dfm4vok299e364tNpOKM9JFKU6nyhJE4qbJKqpKnnJSEJozxhFMe5LROBBNQ01yqRKQsg7yqKqhFxlnMlohMvcpZ7x3URed0K91rQUkxgi1GisVIsZjAhoj4FVF6wtY7qZv_gmdTUNuu2NnBhcf93_ZPmguTBw |
CODEN | PHSTBO |
CitedBy_id | crossref_primary_10_1016_j_padiff_2024_100629 crossref_primary_10_3934_math_2022739 crossref_primary_10_1007_s40314_022_01857_8 crossref_primary_10_1016_j_padiff_2024_100862 crossref_primary_10_37394_232013_2022_17_22 crossref_primary_10_1016_j_aej_2021_07_019 crossref_primary_10_1155_2021_6655450 crossref_primary_10_1016_j_aej_2022_01_070 crossref_primary_10_1007_s00521_022_07136_1 crossref_primary_10_1002_mma_6998 crossref_primary_10_1155_2020_1010382 crossref_primary_10_1016_j_aej_2023_02_025 crossref_primary_10_1016_j_rinp_2023_106312 crossref_primary_10_1016_j_chaos_2020_110506 crossref_primary_10_1007_s11082_022_03598_8 crossref_primary_10_1080_25765299_2022_2044595 crossref_primary_10_1016_j_chbr_2022_100181 crossref_primary_10_1007_s00500_022_06885_4 crossref_primary_10_32604_cmes_2022_017010 crossref_primary_10_1016_j_padiff_2021_100237 crossref_primary_10_1155_2022_3157217 crossref_primary_10_32604_cmes_2022_019154 crossref_primary_10_1088_1402_4896_abb420 crossref_primary_10_1142_S0218348X23400042 crossref_primary_10_1007_s11082_022_03722_8 crossref_primary_10_1007_s42484_025_00249_5 crossref_primary_10_3390_fractalfract6050252 crossref_primary_10_1016_j_apnum_2021_03_019 crossref_primary_10_3390_universe8110563 crossref_primary_10_1177_16878140211025424 crossref_primary_10_3390_fractalfract6040210 crossref_primary_10_3390_math11020404 crossref_primary_10_1016_j_apnum_2021_08_005 crossref_primary_10_1155_2021_3230272 crossref_primary_10_1016_j_rinp_2021_104839 crossref_primary_10_1016_j_rinp_2022_105400 crossref_primary_10_3390_math9222868 crossref_primary_10_1142_S0218348X23500561 crossref_primary_10_1016_j_aej_2021_07_040 crossref_primary_10_3934_math_2023418 crossref_primary_10_1016_j_rinp_2021_103975 crossref_primary_10_1515_phys_2021_0047 crossref_primary_10_1016_j_aej_2021_06_011 crossref_primary_10_1007_s40314_022_01790_w crossref_primary_10_1515_phys_2021_0042 crossref_primary_10_1142_S0217984924503937 crossref_primary_10_1080_27690911_2023_2292175 crossref_primary_10_1016_j_rinp_2021_105116 crossref_primary_10_1007_s11082_023_04903_9 crossref_primary_10_1142_S021773232150228X crossref_primary_10_3390_sym14040804 crossref_primary_10_1016_j_aej_2021_03_033 crossref_primary_10_1016_j_aej_2021_06_086 crossref_primary_10_1186_s13662_021_03428_3 crossref_primary_10_3390_e23121646 crossref_primary_10_1142_S0217984925501076 crossref_primary_10_1142_S0218348X21501280 crossref_primary_10_1155_2023_6229486 crossref_primary_10_1002_mma_8172 crossref_primary_10_1016_j_neucom_2022_08_030 crossref_primary_10_1063_5_0176042 crossref_primary_10_1016_j_padiff_2024_100890 crossref_primary_10_1016_j_rinp_2021_104724 crossref_primary_10_1186_s13662_021_03669_2 crossref_primary_10_1016_j_aej_2020_09_041 crossref_primary_10_3934_math_2022152 crossref_primary_10_1007_s40435_022_00961_1 crossref_primary_10_3934_math_2022151 crossref_primary_10_1186_s13662_021_03628_x crossref_primary_10_3934_math_20231383 crossref_primary_10_1016_j_aej_2021_03_016 crossref_primary_10_3390_fractalfract7120867 crossref_primary_10_3934_math_2022876 crossref_primary_10_1016_j_rinp_2021_103825 crossref_primary_10_1515_dema_2022_0237 crossref_primary_10_1016_j_aej_2021_06_065 crossref_primary_10_3390_fractalfract7020108 crossref_primary_10_1016_j_asej_2022_101879 crossref_primary_10_1007_s40314_021_01695_0 crossref_primary_10_1051_mmnp_2021030 crossref_primary_10_1002_mma_7507 crossref_primary_10_3390_fractalfract6110650 crossref_primary_10_3390_math10121980 crossref_primary_10_1088_1402_4896_ad352f crossref_primary_10_3390_fractalfract7020103 crossref_primary_10_1007_s11082_023_05683_y crossref_primary_10_1016_j_chaos_2021_110891 crossref_primary_10_1016_j_aej_2021_09_007 crossref_primary_10_1016_j_aej_2021_12_044 crossref_primary_10_3390_quantum5030036 crossref_primary_10_1002_mma_8149 crossref_primary_10_37394_23206_2021_20_56 crossref_primary_10_1016_j_asej_2020_08_023 crossref_primary_10_1016_j_ijleo_2022_169650 crossref_primary_10_1016_j_aej_2021_06_057 crossref_primary_10_1155_2022_4422186 crossref_primary_10_1080_02286203_2022_2051160 |
Cites_doi | 10.1108/HFF-07-2016-0278 10.1016/j.chaos.2006.10.009 10.1007/s40819-015-0049-3 10.1007/s11075-016-0160-5 10.5373/jaram.1447.051912 10.1002/mma.5530 10.1016/S0960-0779(00)00026-6 10.1155/2014/863015 10.1016/j.physa.2019.123257 10.1016/j.cam.2014.01.002 10.1016/j.chaos.2019.05.025 10.1007/s11071-018-4459-8 10.1140/epjp/i2019-12731-x 10.3233/FI-2019-1795 10.3233/FI-2019-1796 10.1016/j.camwa.2018.01.025 10.1142/p614 10.1007/s12346-020-00352-x 10.1002/num.22209 10.1007/s40819-020-00812-7 10.1007/s11071-016-3110-9 10.1063/1.1050284 10.1016/j.amc.2010.02.041 10.1016/j.jcp.2014.09.034 10.1016/j.amc.2014.12.121 10.1016/j.camwa.2016.11.032 10.1007/978-1-4614-0457-6 10.1109/JAS.2016.7510193 10.1016/j.cam.2014.10.016 10.1002/mma.3884 10.1016/j.physleta.2007.07.065 10.1016/j.cjph.2018.08.006 10.1016/j.amc.2018.09.020 10.1016/j.cjph.2018.06.009 10.1142/S0217732319501554 10.1016/j.chaos.2019.07.023 10.1016/j.chaos.2018.10.013 10.1088/1572-9494/ab7707 10.1002/cpa.20134 10.1007/s11071-019-04866-1 10.1016/S0375-9601(00)00201-2 10.1002/num.22236 10.1007/s10092-017-0213-8 10.1016/0960-0779(94)E0101-T 10.1007/s11071-016-3125-2 10.1016/j.chaos.2018.03.001 10.1016/j.jcp.2014.08.004 10.1142/S0218127420500042 10.1016/j.cjph.2019.01.001 10.1140/epjp/i2019-12442-4 10.1007/s00500-020-04687-0 10.1016/j.chaos.2018.10.007 10.1615/JPorMedia.2019028970 10.1142/S021812741950041X |
ContentType | Journal Article |
Copyright | 2020 IOP Publishing Ltd |
Copyright_xml | – notice: 2020 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1402-4896/ab96e0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense |
EISSN | 1402-4896 |
ExternalDocumentID | 10_1088_1402_4896_ab96e0 psab96e0 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO KOT LAP M45 MV1 N5L N9A NS0 PJBAE RIN RNS ROL RPA SJN SY9 TN5 W28 WH7 XPP ~02 AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c280t-c77ac953025d8dacb4740b015334541425d7f5636ef19ac56738e9dddef684323 |
IEDL.DBID | IOP |
ISSN | 0031-8949 |
IngestDate | Tue Jul 01 01:34:05 EDT 2025 Thu Apr 24 23:00:28 EDT 2025 Wed Aug 21 03:34:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c280t-c77ac953025d8dacb4740b015334541425d7f5636ef19ac56738e9dddef684323 |
Notes | PHYSSCR-110958.R1 |
ORCID | 0000-0001-9526-6095 |
PageCount | 21 |
ParticipantIDs | iop_journals_10_1088_1402_4896_ab96e0 crossref_primary_10_1088_1402_4896_ab96e0 crossref_citationtrail_10_1088_1402_4896_ab96e0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physica scripta |
PublicationTitleAbbrev | PS |
PublicationTitleAlternate | Phys. Scr |
PublicationYear | 2020 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 45 46 47 49 Al-Smadi M (44) 2020 Parthiban V (48) 2017; 9 50 51 Podlubny I (1) 1999 52 53 10 54 11 55 12 56 13 57 14 15 59 16 17 18 19 Senol M (58) 2020; 72 3 5 6 7 8 9 60 20 21 22 23 24 25 26 27 28 29 Zaslavsky G M (4) 2005 Kilbas A (2) 2006 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – ident: 11 doi: 10.1108/HFF-07-2016-0278 – ident: 35 doi: 10.1016/j.chaos.2006.10.009 – ident: 29 doi: 10.1007/s40819-015-0049-3 – ident: 34 doi: 10.1007/s11075-016-0160-5 – ident: 39 doi: 10.5373/jaram.1447.051912 – ident: 19 doi: 10.1002/mma.5530 – ident: 37 doi: 10.1016/S0960-0779(00)00026-6 – ident: 32 doi: 10.1155/2014/863015 – ident: 16 doi: 10.1016/j.physa.2019.123257 – ident: 51 doi: 10.1016/j.cam.2014.01.002 – year: 2005 ident: 4 publication-title: Hamiltonian Chaos and Fractional Dynamics – ident: 9 doi: 10.1016/j.chaos.2019.05.025 – ident: 14 doi: 10.1007/s11071-018-4459-8 – ident: 45 doi: 10.1140/epjp/i2019-12731-x – ident: 27 doi: 10.3233/FI-2019-1795 – ident: 15 doi: 10.3233/FI-2019-1796 – ident: 55 doi: 10.1016/j.camwa.2018.01.025 – ident: 3 doi: 10.1142/p614 – ident: 43 doi: 10.3233/FI-2019-1795 – ident: 25 doi: 10.1007/s12346-020-00352-x – ident: 18 doi: 10.1002/num.22209 – ident: 57 doi: 10.1007/s40819-020-00812-7 – ident: 23 doi: 10.1007/s11071-016-3110-9 – ident: 49 doi: 10.1063/1.1050284 – ident: 33 doi: 10.1016/j.amc.2010.02.041 – ident: 40 doi: 10.1016/j.jcp.2014.09.034 – ident: 41 doi: 10.1016/j.amc.2014.12.121 – ident: 10 doi: 10.1016/j.camwa.2016.11.032 – ident: 5 doi: 10.1007/978-1-4614-0457-6 – ident: 30 doi: 10.1109/JAS.2016.7510193 – ident: 52 doi: 10.1016/j.cam.2014.10.016 – ident: 12 doi: 10.1002/mma.3884 – ident: 36 doi: 10.1016/j.physleta.2007.07.065 – ident: 54 doi: 10.1016/j.cjph.2018.08.006 – ident: 20 doi: 10.1016/j.amc.2018.09.020 – ident: 31 doi: 10.1016/j.cjph.2018.06.009 – year: 2020 ident: 44 publication-title: Commun. Theor. Phys. – year: 2006 ident: 2 publication-title: Theory and Applications of Fractional Differential Equations – ident: 59 doi: 10.1142/S0217732319501554 – volume: 9 start-page: 595 year: 2017 ident: 48 publication-title: Journal of Informatics and Mathematical Sciences – ident: 8 doi: 10.1016/j.chaos.2019.07.023 – ident: 6 doi: 10.1016/j.chaos.2018.10.013 – volume: 72 issn: 0253-6102 year: 2020 ident: 58 publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/ab7707 – ident: 50 doi: 10.1002/cpa.20134 – ident: 22 doi: 10.1007/s11071-019-04866-1 – ident: 47 doi: 10.1016/S0375-9601(00)00201-2 – ident: 13 doi: 10.1002/num.22236 – ident: 60 doi: 10.1007/s10092-017-0213-8 – ident: 38 doi: 10.1016/0960-0779(94)E0101-T – ident: 28 doi: 10.1007/s11071-016-3125-2 – ident: 53 doi: 10.1016/j.chaos.2018.03.001 – ident: 42 doi: 10.1016/j.jcp.2014.08.004 – ident: 24 doi: 10.1142/S0218127420500042 – ident: 46 doi: 10.1016/j.cjph.2019.01.001 – ident: 21 doi: 10.1140/epjp/i2019-12442-4 – ident: 56 doi: 10.1007/s00500-020-04687-0 – ident: 7 doi: 10.1016/j.chaos.2018.10.007 – ident: 17 doi: 10.1615/JPorMedia.2019028970 – year: 1999 ident: 1 publication-title: Fractional Differential Equations – ident: 26 doi: 10.1142/S021812741950041X |
SSID | ssj0026269 |
Score | 2.5567489 |
Snippet | Mathematical modeling of fractional resonant Schrödinger equations is an extremely significant topic in the classical of quantum mechanics, chromodynamics,... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 75218 |
SubjectTerms | conformable fractional derivative conformable residual power series method fractional partial differential equation quantum mechanics Schrödinger model |
Title | Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense |
URI | https://iopscience.iop.org/article/10.1088/1402-4896/ab96e0 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Journals customDbUrl: eissn: 1402-4896 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026269 issn: 0031-8949 databaseCode: IOP dateStart: 19700101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zIvjiXZw38qAPPnRbmzYXfBJxDMEp6GAPQmlzQXE3t9UH_4j_xD_gH_OkqWOKivjWpqdJOGmT8yXnnA-hA2mYEElAvURKDgClrryUMN_TdVXnifZDw2w08kWLNtvheSfqlNDxNBZmMCym_ipcukTBToWFQxyvASQIvJALWktSQTXg9XnCAVfY6L3LqynaAkvd2b7E97gIRXFG-V0Nn9akOWh3ZolpLKPbj845z5KHajZJq_L5S97Gf_Z-BS0Vpic-caKrqKT7a2ghdwGV43X00src6U0Xy5zqwe3l4YGB-2zY1QqbkQuDABFA6QPrQ4Ov5d3o7VXlu4NYP2bFW5bbEMrwfR9DGSxsPdzTNsoY2sI2cG0EtbpQqLSrZ2uGRznj2pPGY8DYegO1G2c3p02voG3wZMDrE08ylkhh2YgixVUi05CFdrvVBv1a0nEoZiaihGrji0RGlndUCwXzrKE8JAHZROX-oK-3ENZEUqZCATMhwB6jOKFgzklfqoBFgSEVVPsYuFgWOc0ttUY3zs_WOY-tumOr7tipu4KOpm8MXT6PX2QPYRTj4qce_yi3_Ue5HbQYWLSeO_vuovJklOk9MGkm6X7-6b4D83nyfg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZYUKteeLRU3fLygR44ZDeJEz-OFbBieWyRYKW9pYkfKmJf3U049I_0n_AH-scYxwYBohVSb4kzsZNxYs_Y882H0K40TIg8pkEuJQcHJVRBQVgU6FCFPNdRYphFI5_16FE_OR6kA89zWmNhJlM_9Lfg0CUKdir0AXG8DS5BHCRc0HZeCKrD9lSZBlpKScosd0P32_mDxwXWurN_SRRwkQi_T_lSLU_mpQa0_Wia6ayg7_cP6KJLrltVWbTkr2e5G__jDVbRsjdB8VcnvoYW9Pg9elOHgsr5B_S7V7ldnCGWNeWDW9PDEwPn1XSoFTYzB4cAEfDWJzaWBl_IH7M_t6peJcT6Z-XvshyHUIavxhjKYIIb4ZG2aGNoC1sA2wxqdZCoYqgf1wyXaua1G43n4GvrddTvHF7uHwWeviGQMQ_LQDKWS2FZiVLFVS6LhCV22dWCfy35OBQzk1JCtYlELlPLP6qFgvHWUJ6QmHxEi-PJWH9CWBNJmUoEjIjg_hjFCQWzTkZSxSyNDWmi9n3nZdLnNrcUG8Os3mPnPLMqz6zKM6fyJtp7uGPq8nr8Q_YL9GTmf-75X-U-v1JuB709P-hkp93eyQZ6F1sHvo7_3USL5azSW2DllMV2_SXfAU0y9-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+computations+of+coupled+fractional+resonant+Schr%C3%B6dinger+equations+arising+in+quantum+mechanics+under+conformable+fractional+derivative+sense&rft.jtitle=Physica+scripta&rft.au=Al-Smadi%2C+Mohammed&rft.au=Abu+Arqub%2C+Omar&rft.au=Momani%2C+Shaher&rft.date=2020-07-01&rft.issn=0031-8949&rft.eissn=1402-4896&rft.volume=95&rft.issue=7&rft.spage=75218&rft_id=info:doi/10.1088%2F1402-4896%2Fab96e0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1402_4896_ab96e0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8949&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8949&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8949&client=summon |