Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense

Mathematical modeling of fractional resonant Schrödinger equations is an extremely significant topic in the classical of quantum mechanics, chromodynamics, astronomy, and anomalous diffusion systems. Based on conformable residual power series, a novel effective analytical approach is considered to s...

Full description

Saved in:
Bibliographic Details
Published inPhysica scripta Vol. 95; no. 7; pp. 75218 - 75238
Main Authors Al-Smadi, Mohammed, Abu Arqub, Omar, Momani, Shaher
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.07.2020
Subjects
Online AccessGet full text
ISSN0031-8949
1402-4896
DOI10.1088/1402-4896/ab96e0

Cover

Abstract Mathematical modeling of fractional resonant Schrödinger equations is an extremely significant topic in the classical of quantum mechanics, chromodynamics, astronomy, and anomalous diffusion systems. Based on conformable residual power series, a novel effective analytical approach is considered to solve classes of nonlinear time-fractional resonant Schrödinger equation and nonlinear coupled fractional Schrödinger equations under conformable fractional derivatives. The solution methodology lies in generating an infinite conformable series solution with reliable wave pattern by minimizing the residual error functions. The main motivation for using this approach is high accuracy convergence and low computational cost compared to other existing methods. In this orientation, the competency and capacity of the proposed method are examined by implementing several numerical applications. From a numerical viewpoint, the obtained results indicate that the method is intelligent and has several features in feasibility, stability, and suitability for dealing with many fractional models emerging in physics and optics using the new conformable derivative.
AbstractList Mathematical modeling of fractional resonant Schrödinger equations is an extremely significant topic in the classical of quantum mechanics, chromodynamics, astronomy, and anomalous diffusion systems. Based on conformable residual power series, a novel effective analytical approach is considered to solve classes of nonlinear time-fractional resonant Schrödinger equation and nonlinear coupled fractional Schrödinger equations under conformable fractional derivatives. The solution methodology lies in generating an infinite conformable series solution with reliable wave pattern by minimizing the residual error functions. The main motivation for using this approach is high accuracy convergence and low computational cost compared to other existing methods. In this orientation, the competency and capacity of the proposed method are examined by implementing several numerical applications. From a numerical viewpoint, the obtained results indicate that the method is intelligent and has several features in feasibility, stability, and suitability for dealing with many fractional models emerging in physics and optics using the new conformable derivative.
Author Abu Arqub, Omar
Al-Smadi, Mohammed
Momani, Shaher
Author_xml – sequence: 1
  givenname: Mohammed
  surname: Al-Smadi
  fullname: Al-Smadi, Mohammed
  organization: Al-Balqa Applied University Department of Applied Science, Ajloun College, Ajloun 26816, Jordan
– sequence: 2
  givenname: Omar
  orcidid: 0000-0001-9526-6095
  surname: Abu Arqub
  fullname: Abu Arqub, Omar
  email: o.abuarqub@bau.edu.jo
  organization: Al Balqa Applied University Department of Mathematics, Faculty of Science, Salt 19117, Jordan
– sequence: 3
  givenname: Shaher
  surname: Momani
  fullname: Momani, Shaher
  organization: The University of Jordan Department of Mathematics, Faculty of Science, Amman, 11942, Jordan
BookMark eNp9kM1KxDAUhYOM4Mzo3mUewDpJk6btUgb_YNCFui5peutkaJOatAM-iW_iC_hiplREBF1d7rnnHLjfAs2MNYDQKSXnlGTZinISRzzLxUqWuQBygObf0gzNCWE0ynKeH6GF9ztCYhGLfI7e7oYWnFaywcq23dDLXlvjsa3DPnQNVLh2Uo1isDjwYZoeP6it-3ivtHkGh-Fl-EpJp33QsDY4aKYfWtyC2kqjlceDqYJZWVNb18qygZ_N4aT3oWUP2IPxcIwOa9l4OPmaS_R0dfm4vok299e364tNpOKM9JFKU6nyhJE4qbJKqpKnnJSEJozxhFMe5LROBBNQ01yqRKQsg7yqKqhFxlnMlohMvcpZ7x3URed0K91rQUkxgi1GisVIsZjAhoj4FVF6wtY7qZv_gmdTUNuu2NnBhcf93_ZPmguTBw
CODEN PHSTBO
CitedBy_id crossref_primary_10_1016_j_padiff_2024_100629
crossref_primary_10_3934_math_2022739
crossref_primary_10_1007_s40314_022_01857_8
crossref_primary_10_1016_j_padiff_2024_100862
crossref_primary_10_37394_232013_2022_17_22
crossref_primary_10_1016_j_aej_2021_07_019
crossref_primary_10_1155_2021_6655450
crossref_primary_10_1016_j_aej_2022_01_070
crossref_primary_10_1007_s00521_022_07136_1
crossref_primary_10_1002_mma_6998
crossref_primary_10_1155_2020_1010382
crossref_primary_10_1016_j_aej_2023_02_025
crossref_primary_10_1016_j_rinp_2023_106312
crossref_primary_10_1016_j_chaos_2020_110506
crossref_primary_10_1007_s11082_022_03598_8
crossref_primary_10_1080_25765299_2022_2044595
crossref_primary_10_1016_j_chbr_2022_100181
crossref_primary_10_1007_s00500_022_06885_4
crossref_primary_10_32604_cmes_2022_017010
crossref_primary_10_1016_j_padiff_2021_100237
crossref_primary_10_1155_2022_3157217
crossref_primary_10_32604_cmes_2022_019154
crossref_primary_10_1088_1402_4896_abb420
crossref_primary_10_1142_S0218348X23400042
crossref_primary_10_1007_s11082_022_03722_8
crossref_primary_10_1007_s42484_025_00249_5
crossref_primary_10_3390_fractalfract6050252
crossref_primary_10_1016_j_apnum_2021_03_019
crossref_primary_10_3390_universe8110563
crossref_primary_10_1177_16878140211025424
crossref_primary_10_3390_fractalfract6040210
crossref_primary_10_3390_math11020404
crossref_primary_10_1016_j_apnum_2021_08_005
crossref_primary_10_1155_2021_3230272
crossref_primary_10_1016_j_rinp_2021_104839
crossref_primary_10_1016_j_rinp_2022_105400
crossref_primary_10_3390_math9222868
crossref_primary_10_1142_S0218348X23500561
crossref_primary_10_1016_j_aej_2021_07_040
crossref_primary_10_3934_math_2023418
crossref_primary_10_1016_j_rinp_2021_103975
crossref_primary_10_1515_phys_2021_0047
crossref_primary_10_1016_j_aej_2021_06_011
crossref_primary_10_1007_s40314_022_01790_w
crossref_primary_10_1515_phys_2021_0042
crossref_primary_10_1142_S0217984924503937
crossref_primary_10_1080_27690911_2023_2292175
crossref_primary_10_1016_j_rinp_2021_105116
crossref_primary_10_1007_s11082_023_04903_9
crossref_primary_10_1142_S021773232150228X
crossref_primary_10_3390_sym14040804
crossref_primary_10_1016_j_aej_2021_03_033
crossref_primary_10_1016_j_aej_2021_06_086
crossref_primary_10_1186_s13662_021_03428_3
crossref_primary_10_3390_e23121646
crossref_primary_10_1142_S0217984925501076
crossref_primary_10_1142_S0218348X21501280
crossref_primary_10_1155_2023_6229486
crossref_primary_10_1002_mma_8172
crossref_primary_10_1016_j_neucom_2022_08_030
crossref_primary_10_1063_5_0176042
crossref_primary_10_1016_j_padiff_2024_100890
crossref_primary_10_1016_j_rinp_2021_104724
crossref_primary_10_1186_s13662_021_03669_2
crossref_primary_10_1016_j_aej_2020_09_041
crossref_primary_10_3934_math_2022152
crossref_primary_10_1007_s40435_022_00961_1
crossref_primary_10_3934_math_2022151
crossref_primary_10_1186_s13662_021_03628_x
crossref_primary_10_3934_math_20231383
crossref_primary_10_1016_j_aej_2021_03_016
crossref_primary_10_3390_fractalfract7120867
crossref_primary_10_3934_math_2022876
crossref_primary_10_1016_j_rinp_2021_103825
crossref_primary_10_1515_dema_2022_0237
crossref_primary_10_1016_j_aej_2021_06_065
crossref_primary_10_3390_fractalfract7020108
crossref_primary_10_1016_j_asej_2022_101879
crossref_primary_10_1007_s40314_021_01695_0
crossref_primary_10_1051_mmnp_2021030
crossref_primary_10_1002_mma_7507
crossref_primary_10_3390_fractalfract6110650
crossref_primary_10_3390_math10121980
crossref_primary_10_1088_1402_4896_ad352f
crossref_primary_10_3390_fractalfract7020103
crossref_primary_10_1007_s11082_023_05683_y
crossref_primary_10_1016_j_chaos_2021_110891
crossref_primary_10_1016_j_aej_2021_09_007
crossref_primary_10_1016_j_aej_2021_12_044
crossref_primary_10_3390_quantum5030036
crossref_primary_10_1002_mma_8149
crossref_primary_10_37394_23206_2021_20_56
crossref_primary_10_1016_j_asej_2020_08_023
crossref_primary_10_1016_j_ijleo_2022_169650
crossref_primary_10_1016_j_aej_2021_06_057
crossref_primary_10_1155_2022_4422186
crossref_primary_10_1080_02286203_2022_2051160
Cites_doi 10.1108/HFF-07-2016-0278
10.1016/j.chaos.2006.10.009
10.1007/s40819-015-0049-3
10.1007/s11075-016-0160-5
10.5373/jaram.1447.051912
10.1002/mma.5530
10.1016/S0960-0779(00)00026-6
10.1155/2014/863015
10.1016/j.physa.2019.123257
10.1016/j.cam.2014.01.002
10.1016/j.chaos.2019.05.025
10.1007/s11071-018-4459-8
10.1140/epjp/i2019-12731-x
10.3233/FI-2019-1795
10.3233/FI-2019-1796
10.1016/j.camwa.2018.01.025
10.1142/p614
10.1007/s12346-020-00352-x
10.1002/num.22209
10.1007/s40819-020-00812-7
10.1007/s11071-016-3110-9
10.1063/1.1050284
10.1016/j.amc.2010.02.041
10.1016/j.jcp.2014.09.034
10.1016/j.amc.2014.12.121
10.1016/j.camwa.2016.11.032
10.1007/978-1-4614-0457-6
10.1109/JAS.2016.7510193
10.1016/j.cam.2014.10.016
10.1002/mma.3884
10.1016/j.physleta.2007.07.065
10.1016/j.cjph.2018.08.006
10.1016/j.amc.2018.09.020
10.1016/j.cjph.2018.06.009
10.1142/S0217732319501554
10.1016/j.chaos.2019.07.023
10.1016/j.chaos.2018.10.013
10.1088/1572-9494/ab7707
10.1002/cpa.20134
10.1007/s11071-019-04866-1
10.1016/S0375-9601(00)00201-2
10.1002/num.22236
10.1007/s10092-017-0213-8
10.1016/0960-0779(94)E0101-T
10.1007/s11071-016-3125-2
10.1016/j.chaos.2018.03.001
10.1016/j.jcp.2014.08.004
10.1142/S0218127420500042
10.1016/j.cjph.2019.01.001
10.1140/epjp/i2019-12442-4
10.1007/s00500-020-04687-0
10.1016/j.chaos.2018.10.007
10.1615/JPorMedia.2019028970
10.1142/S021812741950041X
ContentType Journal Article
Copyright 2020 IOP Publishing Ltd
Copyright_xml – notice: 2020 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1402-4896/ab96e0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense
EISSN 1402-4896
ExternalDocumentID 10_1088_1402_4896_ab96e0
psab96e0
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
KOT
LAP
M45
MV1
N5L
N9A
NS0
PJBAE
RIN
RNS
ROL
RPA
SJN
SY9
TN5
W28
WH7
XPP
~02
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c280t-c77ac953025d8dacb4740b015334541425d7f5636ef19ac56738e9dddef684323
IEDL.DBID IOP
ISSN 0031-8949
IngestDate Tue Jul 01 01:34:05 EDT 2025
Thu Apr 24 23:00:28 EDT 2025
Wed Aug 21 03:34:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-c77ac953025d8dacb4740b015334541425d7f5636ef19ac56738e9dddef684323
Notes PHYSSCR-110958.R1
ORCID 0000-0001-9526-6095
PageCount 21
ParticipantIDs iop_journals_10_1088_1402_4896_ab96e0
crossref_primary_10_1088_1402_4896_ab96e0
crossref_citationtrail_10_1088_1402_4896_ab96e0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica scripta
PublicationTitleAbbrev PS
PublicationTitleAlternate Phys. Scr
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 45
46
47
49
Al-Smadi M (44) 2020
Parthiban V (48) 2017; 9
50
51
Podlubny I (1) 1999
52
53
10
54
11
55
12
56
13
57
14
15
59
16
17
18
19
Senol M (58) 2020; 72
3
5
6
7
8
9
60
20
21
22
23
24
25
26
27
28
29
Zaslavsky G M (4) 2005
Kilbas A (2) 2006
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 11
  doi: 10.1108/HFF-07-2016-0278
– ident: 35
  doi: 10.1016/j.chaos.2006.10.009
– ident: 29
  doi: 10.1007/s40819-015-0049-3
– ident: 34
  doi: 10.1007/s11075-016-0160-5
– ident: 39
  doi: 10.5373/jaram.1447.051912
– ident: 19
  doi: 10.1002/mma.5530
– ident: 37
  doi: 10.1016/S0960-0779(00)00026-6
– ident: 32
  doi: 10.1155/2014/863015
– ident: 16
  doi: 10.1016/j.physa.2019.123257
– ident: 51
  doi: 10.1016/j.cam.2014.01.002
– year: 2005
  ident: 4
  publication-title: Hamiltonian Chaos and Fractional Dynamics
– ident: 9
  doi: 10.1016/j.chaos.2019.05.025
– ident: 14
  doi: 10.1007/s11071-018-4459-8
– ident: 45
  doi: 10.1140/epjp/i2019-12731-x
– ident: 27
  doi: 10.3233/FI-2019-1795
– ident: 15
  doi: 10.3233/FI-2019-1796
– ident: 55
  doi: 10.1016/j.camwa.2018.01.025
– ident: 3
  doi: 10.1142/p614
– ident: 43
  doi: 10.3233/FI-2019-1795
– ident: 25
  doi: 10.1007/s12346-020-00352-x
– ident: 18
  doi: 10.1002/num.22209
– ident: 57
  doi: 10.1007/s40819-020-00812-7
– ident: 23
  doi: 10.1007/s11071-016-3110-9
– ident: 49
  doi: 10.1063/1.1050284
– ident: 33
  doi: 10.1016/j.amc.2010.02.041
– ident: 40
  doi: 10.1016/j.jcp.2014.09.034
– ident: 41
  doi: 10.1016/j.amc.2014.12.121
– ident: 10
  doi: 10.1016/j.camwa.2016.11.032
– ident: 5
  doi: 10.1007/978-1-4614-0457-6
– ident: 30
  doi: 10.1109/JAS.2016.7510193
– ident: 52
  doi: 10.1016/j.cam.2014.10.016
– ident: 12
  doi: 10.1002/mma.3884
– ident: 36
  doi: 10.1016/j.physleta.2007.07.065
– ident: 54
  doi: 10.1016/j.cjph.2018.08.006
– ident: 20
  doi: 10.1016/j.amc.2018.09.020
– ident: 31
  doi: 10.1016/j.cjph.2018.06.009
– year: 2020
  ident: 44
  publication-title: Commun. Theor. Phys.
– year: 2006
  ident: 2
  publication-title: Theory and Applications of Fractional Differential Equations
– ident: 59
  doi: 10.1142/S0217732319501554
– volume: 9
  start-page: 595
  year: 2017
  ident: 48
  publication-title: Journal of Informatics and Mathematical Sciences
– ident: 8
  doi: 10.1016/j.chaos.2019.07.023
– ident: 6
  doi: 10.1016/j.chaos.2018.10.013
– volume: 72
  issn: 0253-6102
  year: 2020
  ident: 58
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/ab7707
– ident: 50
  doi: 10.1002/cpa.20134
– ident: 22
  doi: 10.1007/s11071-019-04866-1
– ident: 47
  doi: 10.1016/S0375-9601(00)00201-2
– ident: 13
  doi: 10.1002/num.22236
– ident: 60
  doi: 10.1007/s10092-017-0213-8
– ident: 38
  doi: 10.1016/0960-0779(94)E0101-T
– ident: 28
  doi: 10.1007/s11071-016-3125-2
– ident: 53
  doi: 10.1016/j.chaos.2018.03.001
– ident: 42
  doi: 10.1016/j.jcp.2014.08.004
– ident: 24
  doi: 10.1142/S0218127420500042
– ident: 46
  doi: 10.1016/j.cjph.2019.01.001
– ident: 21
  doi: 10.1140/epjp/i2019-12442-4
– ident: 56
  doi: 10.1007/s00500-020-04687-0
– ident: 7
  doi: 10.1016/j.chaos.2018.10.007
– ident: 17
  doi: 10.1615/JPorMedia.2019028970
– year: 1999
  ident: 1
  publication-title: Fractional Differential Equations
– ident: 26
  doi: 10.1142/S021812741950041X
SSID ssj0026269
Score 2.5567489
Snippet Mathematical modeling of fractional resonant Schrödinger equations is an extremely significant topic in the classical of quantum mechanics, chromodynamics,...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 75218
SubjectTerms conformable fractional derivative
conformable residual power series method
fractional partial differential equation
quantum mechanics
Schrödinger model
Title Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense
URI https://iopscience.iop.org/article/10.1088/1402-4896/ab96e0
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Journals
  customDbUrl:
  eissn: 1402-4896
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026269
  issn: 0031-8949
  databaseCode: IOP
  dateStart: 19700101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zIvjiXZw38qAPPnRbmzYXfBJxDMEp6GAPQmlzQXE3t9UH_4j_xD_gH_OkqWOKivjWpqdJOGmT8yXnnA-hA2mYEElAvURKDgClrryUMN_TdVXnifZDw2w08kWLNtvheSfqlNDxNBZmMCym_ipcukTBToWFQxyvASQIvJALWktSQTXg9XnCAVfY6L3LqynaAkvd2b7E97gIRXFG-V0Nn9akOWh3ZolpLKPbj845z5KHajZJq_L5S97Gf_Z-BS0Vpic-caKrqKT7a2ghdwGV43X00src6U0Xy5zqwe3l4YGB-2zY1QqbkQuDABFA6QPrQ4Ov5d3o7VXlu4NYP2bFW5bbEMrwfR9DGSxsPdzTNsoY2sI2cG0EtbpQqLSrZ2uGRznj2pPGY8DYegO1G2c3p02voG3wZMDrE08ylkhh2YgixVUi05CFdrvVBv1a0nEoZiaihGrji0RGlndUCwXzrKE8JAHZROX-oK-3ENZEUqZCATMhwB6jOKFgzklfqoBFgSEVVPsYuFgWOc0ttUY3zs_WOY-tumOr7tipu4KOpm8MXT6PX2QPYRTj4qce_yi3_Ue5HbQYWLSeO_vuovJklOk9MGkm6X7-6b4D83nyfg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZYUKteeLRU3fLygR44ZDeJEz-OFbBieWyRYKW9pYkfKmJf3U049I_0n_AH-scYxwYBohVSb4kzsZNxYs_Y882H0K40TIg8pkEuJQcHJVRBQVgU6FCFPNdRYphFI5_16FE_OR6kA89zWmNhJlM_9Lfg0CUKdir0AXG8DS5BHCRc0HZeCKrD9lSZBlpKScosd0P32_mDxwXWurN_SRRwkQi_T_lSLU_mpQa0_Wia6ayg7_cP6KJLrltVWbTkr2e5G__jDVbRsjdB8VcnvoYW9Pg9elOHgsr5B_S7V7ldnCGWNeWDW9PDEwPn1XSoFTYzB4cAEfDWJzaWBl_IH7M_t6peJcT6Z-XvshyHUIavxhjKYIIb4ZG2aGNoC1sA2wxqdZCoYqgf1wyXaua1G43n4GvrddTvHF7uHwWeviGQMQ_LQDKWS2FZiVLFVS6LhCV22dWCfy35OBQzk1JCtYlELlPLP6qFgvHWUJ6QmHxEi-PJWH9CWBNJmUoEjIjg_hjFCQWzTkZSxSyNDWmi9n3nZdLnNrcUG8Os3mPnPLMqz6zKM6fyJtp7uGPq8nr8Q_YL9GTmf-75X-U-v1JuB709P-hkp93eyQZ6F1sHvo7_3USL5azSW2DllMV2_SXfAU0y9-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+computations+of+coupled+fractional+resonant+Schr%C3%B6dinger+equations+arising+in+quantum+mechanics+under+conformable+fractional+derivative+sense&rft.jtitle=Physica+scripta&rft.au=Al-Smadi%2C+Mohammed&rft.au=Abu+Arqub%2C+Omar&rft.au=Momani%2C+Shaher&rft.date=2020-07-01&rft.issn=0031-8949&rft.eissn=1402-4896&rft.volume=95&rft.issue=7&rft.spage=75218&rft_id=info:doi/10.1088%2F1402-4896%2Fab96e0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1402_4896_ab96e0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8949&client=summon