Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice
Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetMs, and 3D node-line semimetals (NLSs). In particular, several compounds (e.g., certain 3D graphene networks, Cu3PdN, Ca3P2 ) were discove...
Saved in:
Published in | Chinese physics letters Vol. 34; no. 5; pp. 106 - 110 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/34/5/057302 |
Cover
Abstract | Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetMs, and 3D node-line semimetals (NLSs). In particular, several compounds (e.g., certain 3D graphene networks, Cu3PdN, Ca3P2 ) were discovered to be 3D NLSs, in which the conduction and valence bands cross at closed lines in the Brillouin zone. Except for the two-dimensional (2D) Dirac semimetal (e.g., graphene), 2D topological semimetals are much less investigated. Here we propose a new concept of a 2D NLS and suggest that this state could be realized in a new mixed lattice (named as HK lattice) composed by Kagome and honeycomb lattices. It is found that A3B2 (A is a group-liB cation and B is a group-VA anion) compounds (such as Hg3As2) with the HK lattice are 2D NLSs due to the band inversion between the cation Hg-s orbital and the anion As-pz orbital with respect to the mirror symmetry. Since the band inversion occurs between two bands with the same parity, this peculiar 2D NLS could be used as transparent conductors. In the presence of buckling or spin-orbit coupling, the 2D NLS state may turn into a 2D Dirac semimetal state or a 2D topological crystalline insulating state. Since the band gap opening due to buckling or spin-orbit coupling is small, Hg3As3 with the HK lattice can still be regarded as a 2D NLS at room temperature. Our work suggests a new route to design topological materials without involving states with opposite parities. |
---|---|
AbstractList | Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetMs, and 3D node-line semimetals (NLSs). In particular, several compounds (e.g., certain 3D graphene networks, Cu3PdN, Ca3P2 ) were discovered to be 3D NLSs, in which the conduction and valence bands cross at closed lines in the Brillouin zone. Except for the two-dimensional (2D) Dirac semimetal (e.g., graphene), 2D topological semimetals are much less investigated. Here we propose a new concept of a 2D NLS and suggest that this state could be realized in a new mixed lattice (named as HK lattice) composed by Kagome and honeycomb lattices. It is found that A3B2 (A is a group-liB cation and B is a group-VA anion) compounds (such as Hg3As2) with the HK lattice are 2D NLSs due to the band inversion between the cation Hg-s orbital and the anion As-pz orbital with respect to the mirror symmetry. Since the band inversion occurs between two bands with the same parity, this peculiar 2D NLS could be used as transparent conductors. In the presence of buckling or spin-orbit coupling, the 2D NLS state may turn into a 2D Dirac semimetal state or a 2D topological crystalline insulating state. Since the band gap opening due to buckling or spin-orbit coupling is small, Hg3As3 with the HK lattice can still be regarded as a 2D NLS at room temperature. Our work suggests a new route to design topological materials without involving states with opposite parities. |
Author | 卢金炼 罗伟 李雪阳 杨晟祺 曹觉先 龚新高 向红军 |
AuthorAffiliation | Department of Physics, Xiangtan University, Xiangtan 411105 Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433 ; Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 |
Author_xml | – sequence: 1 fullname: 卢金炼 罗伟 李雪阳 杨晟祺 曹觉先 龚新高 向红军 |
BookMark | eNqFkE9LAzEQxYNUsK1-BGHxHneyyexm8aT1T8VFD1bwFtJsUiPdRHcXpN_eLS09ePE0MLzfvHlvQkYhBkvIOYNLBlKmkGFOORTvKRcppoAFh-yIjFkhGOUoYETGB80JmXTdJwBjkrExuVn8RHrrGxs6H4NeJ8-xtrTywSavthn2vV53iQ-JTuaD68bEZkmf9Co2Nql033tjT8mxG0T2bD-n5O3-bjGb0-rl4XF2XVGTSehpXiAXrjbLAjQyx2ohy0I4AFGDlrlzwK1AU6OUiJi7koMAoWVWlmgMX_Ipwd1d08aua61TX61vdLtRDNS2CLUNqbYhFRcK1a6Igbv6wxnf636I27far_-lL_b0Rwyrbx9WB9u8yBCHL5H_AikWb6c |
CitedBy_id | crossref_primary_10_1103_PhysRevB_101_165403 crossref_primary_10_1103_PhysRevB_108_125433 crossref_primary_10_1073_pnas_2023029118 crossref_primary_10_1103_PhysRevB_100_245120 crossref_primary_10_1103_PhysRevLett_124_136405 crossref_primary_10_1039_D0CP04512H crossref_primary_10_1103_PhysRevB_106_L060407 crossref_primary_10_1039_C8TA02555J crossref_primary_10_1103_PhysRevB_103_245126 crossref_primary_10_1002_pssr_202100477 crossref_primary_10_1103_PhysRevLett_123_136802 crossref_primary_10_1103_PhysRevMaterials_5_074201 crossref_primary_10_1039_D0CP02446E crossref_primary_10_1103_PhysRevB_106_195429 crossref_primary_10_1063_5_0125664 crossref_primary_10_1021_acs_jpclett_1c01249 crossref_primary_10_1103_PhysRevB_104_165410 crossref_primary_10_1103_PhysRevB_102_214301 crossref_primary_10_1103_PhysRevB_96_235415 crossref_primary_10_1088_1674_1056_ac1f0c crossref_primary_10_1103_PhysRevB_104_064310 crossref_primary_10_1039_D1NR06033C crossref_primary_10_1103_PhysRevB_95_235138 crossref_primary_10_1103_PhysRevB_107_045146 crossref_primary_10_1103_PhysRevB_110_195409 crossref_primary_10_1039_C8TC02386G crossref_primary_10_1039_C7TC02700A crossref_primary_10_1007_s11467_018_0815_x crossref_primary_10_1021_acs_jpclett_7b01721 crossref_primary_10_1021_acs_jpclett_9b03320 crossref_primary_10_1103_PhysRevB_108_144407 crossref_primary_10_1103_PhysRevB_107_144308 crossref_primary_10_1038_s41598_022_18519_8 crossref_primary_10_1039_C7RA10950D crossref_primary_10_1103_PhysRevB_96_081114 crossref_primary_10_1002_aelm_202100927 crossref_primary_10_1002_adfm_202415606 crossref_primary_10_1039_C7NR00411G crossref_primary_10_1103_PhysRevB_101_165106 crossref_primary_10_1103_PhysRevMaterials_2_104203 crossref_primary_10_1039_C8NR08729F crossref_primary_10_1021_acs_jpclett_9b00906 crossref_primary_10_1103_PhysRevB_97_245151 crossref_primary_10_1039_C8CP01727A crossref_primary_10_1039_D2CP05494A crossref_primary_10_1103_PhysRevB_107_205411 crossref_primary_10_1038_s41598_017_07276_8 crossref_primary_10_1039_D3CP03762B crossref_primary_10_1039_C7TC02739G crossref_primary_10_1016_j_physb_2024_416083 crossref_primary_10_1103_PhysRevResearch_5_043028 crossref_primary_10_1103_PhysRevB_98_115413 crossref_primary_10_1016_j_carbon_2018_09_078 crossref_primary_10_1039_D0NR07485C crossref_primary_10_1103_PhysRevB_104_195123 crossref_primary_10_1021_acs_nanolett_1c03862 crossref_primary_10_1103_PhysRevB_98_155114 crossref_primary_10_1016_j_jmgm_2025_108957 crossref_primary_10_1038_s41467_017_01108_z crossref_primary_10_1039_D1CP02003J crossref_primary_10_1039_D2NR00888B crossref_primary_10_1103_PhysRevB_96_155150 crossref_primary_10_1007_s40042_022_00597_6 crossref_primary_10_1039_D3CP00006K crossref_primary_10_1088_0256_307X_42_3_037302 crossref_primary_10_3389_fchem_2020_585753 crossref_primary_10_1039_D2TC00305H crossref_primary_10_1103_PhysRevB_102_125139 crossref_primary_10_1088_0256_307X_41_6_067301 crossref_primary_10_1088_1742_6596_2617_1_012018 crossref_primary_10_1039_D0TC03600E crossref_primary_10_1088_2053_1583_ad471e crossref_primary_10_1103_PhysRevB_107_235154 crossref_primary_10_1002_adma_202309803 crossref_primary_10_1103_PhysRevB_96_041103 crossref_primary_10_1088_0256_307X_37_8_087102 crossref_primary_10_1103_PhysRevB_100_205116 crossref_primary_10_1007_s40042_020_00016_8 crossref_primary_10_1103_PhysRevMaterials_6_094406 crossref_primary_10_3390_sym12020261 crossref_primary_10_1103_PhysRevB_98_245422 crossref_primary_10_1016_j_mtphys_2024_101343 crossref_primary_10_1038_s41598_020_78451_7 crossref_primary_10_1103_PhysRevB_109_035161 crossref_primary_10_1088_1674_1056_ac4cba crossref_primary_10_1103_PhysRevB_111_085401 crossref_primary_10_1002_adfm_202110930 crossref_primary_10_1103_PhysRevB_104_235136 crossref_primary_10_1103_PhysRevB_109_045120 crossref_primary_10_1103_PhysRevB_97_125312 |
Cites_doi | 10.1103/PhysRevB.90.155316 10.1103/PhysRevLett.115.21760 10.1038/nmat3828 10.1126/science.1245085 10.1038/ncomms4786 10.1103/PhysRevLett.107.186806 10.1103/PhysRevB.83.205101 10.1103/PhysRevB.92.045108 10.1103/PhysRevB.88.125427 10.1103/PhysRevX.5.011029 10.1038/ncomms8373 10.1021/nl502481f 10.1103/PhysRevLett.107.076802 10.1038/ncomms9339 10.1126/sciadv.1501092 10.1088/0305-4608/15/4/009 10.1038/nmat3990 10.1103/PhysRevB.84.235126 10.1103/PhysRevB.85.195320 10.1038/nphoton.2010.186 10.1103/PhysRevB.80.113102 10.1103/PhysRevLett.106.106802 10.1021/acs.nanolett.5b02978 10.1103/RevModPhys.81.109 10.1103/PhysRevLett.115.036807 10.1103/PhysRevB.76.045302 10.1103/PhysRevLett.113.246402 10.1103/PhysRevLett.115.026403 10.1103/PhysRevLett.115.036806 10.1021/acs.nanolett.5b00308 10.1103/RevModPhys.82.3045 10.1126/science.1133734 10.1103/PhysRevB.91.155139 10.1103/PhysRevB.92.081201 10.1103/PhysRevB.93.121113 10.1103/PhysRevB.82.045122 10.1038/ncomms11006 10.1103/PhysRevB.92.235106 10.1016/0040-6090(83)90256-0 10.1103/PhysRevX.5.031013 10.1103/PhysRevLett.115.126803 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/0256-307X/34/5/057302 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice |
EISSN | 1741-3540 |
EndPage | 110 |
ExternalDocumentID | 10_1088_0256_307X_34_5_057302 672553045 |
GroupedDBID | 02O 042 1JI 1PV 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CJUJL CQIGP CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KNG KOT LAP M45 N5L N9A NS0 NT- NT. P2P PJBAE Q02 R4D RIN RNS RO9 ROL RPA RW3 S3P SY9 T37 UCJ W28 XPP ~02 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- TGP U1G U5K |
ID | FETCH-LOGICAL-c280t-67534fdcb70a51f1d48974f004d0a86ff03e45cd5885556f930404a82995cc3b3 |
ISSN | 0256-307X |
IngestDate | Tue Jul 01 01:35:31 EDT 2025 Thu Apr 24 22:56:52 EDT 2025 Wed Feb 14 09:59:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c280t-67534fdcb70a51f1d48974f004d0a86ff03e45cd5885556f930404a82995cc3b3 |
Notes | 11-1959/O4 Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetMs, and 3D node-line semimetals (NLSs). In particular, several compounds (e.g., certain 3D graphene networks, Cu3PdN, Ca3P2 ) were discovered to be 3D NLSs, in which the conduction and valence bands cross at closed lines in the Brillouin zone. Except for the two-dimensional (2D) Dirac semimetal (e.g., graphene), 2D topological semimetals are much less investigated. Here we propose a new concept of a 2D NLS and suggest that this state could be realized in a new mixed lattice (named as HK lattice) composed by Kagome and honeycomb lattices. It is found that A3B2 (A is a group-liB cation and B is a group-VA anion) compounds (such as Hg3As2) with the HK lattice are 2D NLSs due to the band inversion between the cation Hg-s orbital and the anion As-pz orbital with respect to the mirror symmetry. Since the band inversion occurs between two bands with the same parity, this peculiar 2D NLS could be used as transparent conductors. In the presence of buckling or spin-orbit coupling, the 2D NLS state may turn into a 2D Dirac semimetal state or a 2D topological crystalline insulating state. Since the band gap opening due to buckling or spin-orbit coupling is small, Hg3As3 with the HK lattice can still be regarded as a 2D NLS at room temperature. Our work suggests a new route to design topological materials without involving states with opposite parities. Jin-Lian Lu1, Wei Luo2,3, Xue-Yang Li2, Sheng-Qi Yang2, Jue-Xian Cao1, Xin-Gao Gong2,3, Hong-Jun Xiang2,3( 1 Department of Physics, Xiangtan University, Xiangtan 411105; 2Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433 ; 3 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093) |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1088_0256_307X_34_5_057302 crossref_citationtrail_10_1088_0256_307X_34_5_057302 chongqing_primary_672553045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics letters |
PublicationTitleAlternate | Chinese Physics Letters |
PublicationYear | 2017 |
References | 22 23 45 24 25 Bian G (29) 2015 26 Voon L C L Y (46) 2009 Heikkilä T T (36) 2015 30 31 10 32 11 33 12 34 13 35 14 15 37 16 38 17 39 18 19 1 2 3 4 5 Chan Y-H (28) 2015 6 7 8 9 López Sancho M P (44) 1985; 15 Xie L S (27) 2015 40 41 20 42 21 43 |
References_xml | – ident: 45 doi: 10.1103/PhysRevB.90.155316 – ident: 2 doi: 10.1103/PhysRevLett.115.21760 – ident: 41 doi: 10.1038/nmat3828 – ident: 13 doi: 10.1126/science.1245085 – ident: 17 doi: 10.1038/ncomms4786 – ident: 7 doi: 10.1103/PhysRevLett.107.186806 – ident: 6 doi: 10.1103/PhysRevB.83.205101 – ident: 21 doi: 10.1103/PhysRevB.92.045108 – ident: 19 doi: 10.1103/PhysRevB.88.125427 – ident: 8 doi: 10.1103/PhysRevX.5.011029 – ident: 12 doi: 10.1038/ncomms8373 – ident: 42 doi: 10.1021/nl502481f – ident: 3 doi: 10.1103/PhysRevLett.107.076802 – ident: 34 doi: 10.1038/ncomms9339 – ident: 11 doi: 10.1126/sciadv.1501092 – volume: 15 start-page: 851 issn: 0305-4608 year: 1985 ident: 44 publication-title: J. Phys. doi: 10.1088/0305-4608/15/4/009 – ident: 15 doi: 10.1038/nmat3990 – ident: 20 doi: 10.1103/PhysRevB.84.235126 – year: 2015 ident: 36 – ident: 14 doi: 10.1103/PhysRevB.85.195320 – ident: 38 doi: 10.1038/nphoton.2010.186 – ident: 35 doi: 10.1103/PhysRevB.80.113102 – ident: 39 doi: 10.1103/PhysRevLett.106.106802 – year: 2015 ident: 28 – year: 2015 ident: 29 – ident: 24 doi: 10.1021/acs.nanolett.5b02978 – ident: 31 doi: 10.1103/RevModPhys.81.109 – ident: 26 doi: 10.1103/PhysRevLett.115.036807 – ident: 4 doi: 10.1103/PhysRevB.76.045302 – ident: 16 doi: 10.1103/PhysRevLett.113.246402 – ident: 23 doi: 10.1103/PhysRevLett.115.026403 – ident: 25 doi: 10.1103/PhysRevLett.115.036806 – ident: 43 doi: 10.1021/acs.nanolett.5b00308 – ident: 1 doi: 10.1103/RevModPhys.82.3045 – ident: 5 doi: 10.1126/science.1133734 – ident: 18 doi: 10.1103/PhysRevB.91.155139 – ident: 22 doi: 10.1103/PhysRevB.92.081201 – ident: 30 doi: 10.1103/PhysRevB.93.121113 – ident: 40 doi: 10.1103/PhysRevB.82.045122 – year: 2015 ident: 27 – ident: 10 doi: 10.1038/ncomms11006 – ident: 33 doi: 10.1103/PhysRevB.92.235106 – year: 2009 ident: 46 publication-title: The kp Method: Electronic Properties of Semiconductors – ident: 37 doi: 10.1016/0040-6090(83)90256-0 – ident: 9 doi: 10.1103/PhysRevX.5.031013 – ident: 32 doi: 10.1103/PhysRevLett.115.126803 |
SSID | ssj0011811 |
Score | 2.5022695 |
Snippet | Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac... |
SourceID | crossref chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106 |
SubjectTerms | 二维 半金属 奇偶校验 晶格 绝缘状态 自旋轨道耦合 节点 蜂窝 |
Title | Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice |
URI | http://lib.cqvip.com/qk/84212X/201705/672553045.html |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1741-3540 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011811 issn: 0256-307X databaseCode: IOP dateStart: 19840101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0CpDSLwgPkUZoDzgpyhrPmzXfrTXVAOmgcQm7S1yEmdUYu2ATgh-Ow_cOR-LBpoAqYpOvvh8Pl_ts3O-I-RVXZVlDWZxVNd4dFOlNrJJkkW8hL1HKdLGlt7b4kgcnLA3p_x0Mvk58lq63JZ71Y8_3iv5n1GFMhhXvCX7DyM7EIUCgGF84QkjDM-_G-Nvm2iB4fnb0Brh0aZ20SHajR_cOZRvMTbyah3a8GCzdt-BhTJ6a8825y48tNve7a23TWnOqJFUL2jOqTLUADCnUlGtEFAxlQJRZkm1obmgUlPNab6kZp8qTXNJJdRKEKUAO--qy8FbFmvLBdUpzRXiVeJfSYFAiBC0qOaeDSC4DD2hBZU5vg4Mae0BSU3W47T0AJQukQCwY3SLA04UsqQ9D9gw_GSIFEzu2fVcmhhLoD8KcRx72XJltOeTY6eVGR-OwII7uCJ2cyhYdHi8dtoud-0cD0ZUhMdd40WgO1FdjT-zX7RJecXIOEhaH9zf1h2Yq32Ijq41gDMGDx-3g8Mkml4tt4MTpJinmLOJ8VvkdjoXAvNvvH73fvgGBraXz_fYE-3vn0k5G8pmGZvxWdsERgf5uFmffQabZ2Rljcyl4_vkXrfPCXSrtA_IxK0fkjve37j6-oiYa6obDKobXKlusFoHNriuukGnuo_JyTI_3j-IunQeUZXKeBvB1jRjDUwO89jypElqJmEz28D_uY6tFE0TZ47xquZScs5Fo0A2MbMSDCZeVVmZPSE7a2jyKQmYY5gKQVoRW2aFkM5VtrQuKblzWVlPye4giuKiDdtSDPKeEtYLp6i6SPiYkOVT4T0ypCxQvgXKt8hYwYtWvlOyN1Trad5Y4dmNXOySu1ca-5zsbL9cuhdg4G7Ll14PfgFK0nnB |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Dimensional+Node-Line+Semimetals+in+a+Honeycomb-Kagome+Lattice&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%8D%A2%E9%87%91%E7%82%BC+%E7%BD%97%E4%BC%9F+%E6%9D%8E%E9%9B%AA%E9%98%B3+%E6%9D%A8%E6%99%9F%E7%A5%BA+%E6%9B%B9%E8%A7%89%E5%85%88+%E9%BE%9A%E6%96%B0%E9%AB%98+%E5%90%91%E7%BA%A2%E5%86%9B&rft.date=2017-05-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=34&rft.issue=5&rft.spage=106&rft.epage=110&rft_id=info:doi/10.1088%2F0256-307X%2F34%2F5%2F057302&rft.externalDocID=672553045 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg |