Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice

Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetMs, and 3D node-line semimetals (NLSs). In particular, several compounds (e.g., certain 3D graphene networks, Cu3PdN, Ca3P2 ) were discove...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 34; no. 5; pp. 106 - 110
Main Author 卢金炼 罗伟 李雪阳 杨晟祺 曹觉先 龚新高 向红军
Format Journal Article
LanguageEnglish
Published 01.05.2017
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/34/5/057302

Cover

Abstract Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetMs, and 3D node-line semimetals (NLSs). In particular, several compounds (e.g., certain 3D graphene networks, Cu3PdN, Ca3P2 ) were discovered to be 3D NLSs, in which the conduction and valence bands cross at closed lines in the Brillouin zone. Except for the two-dimensional (2D) Dirac semimetal (e.g., graphene), 2D topological semimetals are much less investigated. Here we propose a new concept of a 2D NLS and suggest that this state could be realized in a new mixed lattice (named as HK lattice) composed by Kagome and honeycomb lattices. It is found that A3B2 (A is a group-liB cation and B is a group-VA anion) compounds (such as Hg3As2) with the HK lattice are 2D NLSs due to the band inversion between the cation Hg-s orbital and the anion As-pz orbital with respect to the mirror symmetry. Since the band inversion occurs between two bands with the same parity, this peculiar 2D NLS could be used as transparent conductors. In the presence of buckling or spin-orbit coupling, the 2D NLS state may turn into a 2D Dirac semimetal state or a 2D topological crystalline insulating state. Since the band gap opening due to buckling or spin-orbit coupling is small, Hg3As3 with the HK lattice can still be regarded as a 2D NLS at room temperature. Our work suggests a new route to design topological materials without involving states with opposite parities.
AbstractList Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetMs, and 3D node-line semimetals (NLSs). In particular, several compounds (e.g., certain 3D graphene networks, Cu3PdN, Ca3P2 ) were discovered to be 3D NLSs, in which the conduction and valence bands cross at closed lines in the Brillouin zone. Except for the two-dimensional (2D) Dirac semimetal (e.g., graphene), 2D topological semimetals are much less investigated. Here we propose a new concept of a 2D NLS and suggest that this state could be realized in a new mixed lattice (named as HK lattice) composed by Kagome and honeycomb lattices. It is found that A3B2 (A is a group-liB cation and B is a group-VA anion) compounds (such as Hg3As2) with the HK lattice are 2D NLSs due to the band inversion between the cation Hg-s orbital and the anion As-pz orbital with respect to the mirror symmetry. Since the band inversion occurs between two bands with the same parity, this peculiar 2D NLS could be used as transparent conductors. In the presence of buckling or spin-orbit coupling, the 2D NLS state may turn into a 2D Dirac semimetal state or a 2D topological crystalline insulating state. Since the band gap opening due to buckling or spin-orbit coupling is small, Hg3As3 with the HK lattice can still be regarded as a 2D NLS at room temperature. Our work suggests a new route to design topological materials without involving states with opposite parities.
Author 卢金炼 罗伟 李雪阳 杨晟祺 曹觉先 龚新高 向红军
AuthorAffiliation Department of Physics, Xiangtan University, Xiangtan 411105 Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433 ; Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
Author_xml – sequence: 1
  fullname: 卢金炼 罗伟 李雪阳 杨晟祺 曹觉先 龚新高 向红军
BookMark eNqFkE9LAzEQxYNUsK1-BGHxHneyyexm8aT1T8VFD1bwFtJsUiPdRHcXpN_eLS09ePE0MLzfvHlvQkYhBkvIOYNLBlKmkGFOORTvKRcppoAFh-yIjFkhGOUoYETGB80JmXTdJwBjkrExuVn8RHrrGxs6H4NeJ8-xtrTywSavthn2vV53iQ-JTuaD68bEZkmf9Co2Nql033tjT8mxG0T2bD-n5O3-bjGb0-rl4XF2XVGTSehpXiAXrjbLAjQyx2ohy0I4AFGDlrlzwK1AU6OUiJi7koMAoWVWlmgMX_Ipwd1d08aua61TX61vdLtRDNS2CLUNqbYhFRcK1a6Igbv6wxnf636I27far_-lL_b0Rwyrbx9WB9u8yBCHL5H_AikWb6c
CitedBy_id crossref_primary_10_1103_PhysRevB_101_165403
crossref_primary_10_1103_PhysRevB_108_125433
crossref_primary_10_1073_pnas_2023029118
crossref_primary_10_1103_PhysRevB_100_245120
crossref_primary_10_1103_PhysRevLett_124_136405
crossref_primary_10_1039_D0CP04512H
crossref_primary_10_1103_PhysRevB_106_L060407
crossref_primary_10_1039_C8TA02555J
crossref_primary_10_1103_PhysRevB_103_245126
crossref_primary_10_1002_pssr_202100477
crossref_primary_10_1103_PhysRevLett_123_136802
crossref_primary_10_1103_PhysRevMaterials_5_074201
crossref_primary_10_1039_D0CP02446E
crossref_primary_10_1103_PhysRevB_106_195429
crossref_primary_10_1063_5_0125664
crossref_primary_10_1021_acs_jpclett_1c01249
crossref_primary_10_1103_PhysRevB_104_165410
crossref_primary_10_1103_PhysRevB_102_214301
crossref_primary_10_1103_PhysRevB_96_235415
crossref_primary_10_1088_1674_1056_ac1f0c
crossref_primary_10_1103_PhysRevB_104_064310
crossref_primary_10_1039_D1NR06033C
crossref_primary_10_1103_PhysRevB_95_235138
crossref_primary_10_1103_PhysRevB_107_045146
crossref_primary_10_1103_PhysRevB_110_195409
crossref_primary_10_1039_C8TC02386G
crossref_primary_10_1039_C7TC02700A
crossref_primary_10_1007_s11467_018_0815_x
crossref_primary_10_1021_acs_jpclett_7b01721
crossref_primary_10_1021_acs_jpclett_9b03320
crossref_primary_10_1103_PhysRevB_108_144407
crossref_primary_10_1103_PhysRevB_107_144308
crossref_primary_10_1038_s41598_022_18519_8
crossref_primary_10_1039_C7RA10950D
crossref_primary_10_1103_PhysRevB_96_081114
crossref_primary_10_1002_aelm_202100927
crossref_primary_10_1002_adfm_202415606
crossref_primary_10_1039_C7NR00411G
crossref_primary_10_1103_PhysRevB_101_165106
crossref_primary_10_1103_PhysRevMaterials_2_104203
crossref_primary_10_1039_C8NR08729F
crossref_primary_10_1021_acs_jpclett_9b00906
crossref_primary_10_1103_PhysRevB_97_245151
crossref_primary_10_1039_C8CP01727A
crossref_primary_10_1039_D2CP05494A
crossref_primary_10_1103_PhysRevB_107_205411
crossref_primary_10_1038_s41598_017_07276_8
crossref_primary_10_1039_D3CP03762B
crossref_primary_10_1039_C7TC02739G
crossref_primary_10_1016_j_physb_2024_416083
crossref_primary_10_1103_PhysRevResearch_5_043028
crossref_primary_10_1103_PhysRevB_98_115413
crossref_primary_10_1016_j_carbon_2018_09_078
crossref_primary_10_1039_D0NR07485C
crossref_primary_10_1103_PhysRevB_104_195123
crossref_primary_10_1021_acs_nanolett_1c03862
crossref_primary_10_1103_PhysRevB_98_155114
crossref_primary_10_1016_j_jmgm_2025_108957
crossref_primary_10_1038_s41467_017_01108_z
crossref_primary_10_1039_D1CP02003J
crossref_primary_10_1039_D2NR00888B
crossref_primary_10_1103_PhysRevB_96_155150
crossref_primary_10_1007_s40042_022_00597_6
crossref_primary_10_1039_D3CP00006K
crossref_primary_10_1088_0256_307X_42_3_037302
crossref_primary_10_3389_fchem_2020_585753
crossref_primary_10_1039_D2TC00305H
crossref_primary_10_1103_PhysRevB_102_125139
crossref_primary_10_1088_0256_307X_41_6_067301
crossref_primary_10_1088_1742_6596_2617_1_012018
crossref_primary_10_1039_D0TC03600E
crossref_primary_10_1088_2053_1583_ad471e
crossref_primary_10_1103_PhysRevB_107_235154
crossref_primary_10_1002_adma_202309803
crossref_primary_10_1103_PhysRevB_96_041103
crossref_primary_10_1088_0256_307X_37_8_087102
crossref_primary_10_1103_PhysRevB_100_205116
crossref_primary_10_1007_s40042_020_00016_8
crossref_primary_10_1103_PhysRevMaterials_6_094406
crossref_primary_10_3390_sym12020261
crossref_primary_10_1103_PhysRevB_98_245422
crossref_primary_10_1016_j_mtphys_2024_101343
crossref_primary_10_1038_s41598_020_78451_7
crossref_primary_10_1103_PhysRevB_109_035161
crossref_primary_10_1088_1674_1056_ac4cba
crossref_primary_10_1103_PhysRevB_111_085401
crossref_primary_10_1002_adfm_202110930
crossref_primary_10_1103_PhysRevB_104_235136
crossref_primary_10_1103_PhysRevB_109_045120
crossref_primary_10_1103_PhysRevB_97_125312
Cites_doi 10.1103/PhysRevB.90.155316
10.1103/PhysRevLett.115.21760
10.1038/nmat3828
10.1126/science.1245085
10.1038/ncomms4786
10.1103/PhysRevLett.107.186806
10.1103/PhysRevB.83.205101
10.1103/PhysRevB.92.045108
10.1103/PhysRevB.88.125427
10.1103/PhysRevX.5.011029
10.1038/ncomms8373
10.1021/nl502481f
10.1103/PhysRevLett.107.076802
10.1038/ncomms9339
10.1126/sciadv.1501092
10.1088/0305-4608/15/4/009
10.1038/nmat3990
10.1103/PhysRevB.84.235126
10.1103/PhysRevB.85.195320
10.1038/nphoton.2010.186
10.1103/PhysRevB.80.113102
10.1103/PhysRevLett.106.106802
10.1021/acs.nanolett.5b02978
10.1103/RevModPhys.81.109
10.1103/PhysRevLett.115.036807
10.1103/PhysRevB.76.045302
10.1103/PhysRevLett.113.246402
10.1103/PhysRevLett.115.026403
10.1103/PhysRevLett.115.036806
10.1021/acs.nanolett.5b00308
10.1103/RevModPhys.82.3045
10.1126/science.1133734
10.1103/PhysRevB.91.155139
10.1103/PhysRevB.92.081201
10.1103/PhysRevB.93.121113
10.1103/PhysRevB.82.045122
10.1038/ncomms11006
10.1103/PhysRevB.92.235106
10.1016/0040-6090(83)90256-0
10.1103/PhysRevX.5.031013
10.1103/PhysRevLett.115.126803
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/0256-307X/34/5/057302
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice
EISSN 1741-3540
EndPage 110
ExternalDocumentID 10_1088_0256_307X_34_5_057302
672553045
GroupedDBID 02O
042
1JI
1PV
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CJUJL
CQIGP
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
LAP
M45
N5L
N9A
NS0
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
T37
UCJ
W28
XPP
~02
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
TGP
U1G
U5K
ID FETCH-LOGICAL-c280t-67534fdcb70a51f1d48974f004d0a86ff03e45cd5885556f930404a82995cc3b3
ISSN 0256-307X
IngestDate Tue Jul 01 01:35:31 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
Wed Feb 14 09:59:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c280t-67534fdcb70a51f1d48974f004d0a86ff03e45cd5885556f930404a82995cc3b3
Notes 11-1959/O4
Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetMs, and 3D node-line semimetals (NLSs). In particular, several compounds (e.g., certain 3D graphene networks, Cu3PdN, Ca3P2 ) were discovered to be 3D NLSs, in which the conduction and valence bands cross at closed lines in the Brillouin zone. Except for the two-dimensional (2D) Dirac semimetal (e.g., graphene), 2D topological semimetals are much less investigated. Here we propose a new concept of a 2D NLS and suggest that this state could be realized in a new mixed lattice (named as HK lattice) composed by Kagome and honeycomb lattices. It is found that A3B2 (A is a group-liB cation and B is a group-VA anion) compounds (such as Hg3As2) with the HK lattice are 2D NLSs due to the band inversion between the cation Hg-s orbital and the anion As-pz orbital with respect to the mirror symmetry. Since the band inversion occurs between two bands with the same parity, this peculiar 2D NLS could be used as transparent conductors. In the presence of buckling or spin-orbit coupling, the 2D NLS state may turn into a 2D Dirac semimetal state or a 2D topological crystalline insulating state. Since the band gap opening due to buckling or spin-orbit coupling is small, Hg3As3 with the HK lattice can still be regarded as a 2D NLS at room temperature. Our work suggests a new route to design topological materials without involving states with opposite parities.
Jin-Lian Lu1, Wei Luo2,3, Xue-Yang Li2, Sheng-Qi Yang2, Jue-Xian Cao1, Xin-Gao Gong2,3, Hong-Jun Xiang2,3( 1 Department of Physics, Xiangtan University, Xiangtan 411105; 2Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433 ; 3 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093)
PageCount 5
ParticipantIDs crossref_primary_10_1088_0256_307X_34_5_057302
crossref_citationtrail_10_1088_0256_307X_34_5_057302
chongqing_primary_672553045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics letters
PublicationTitleAlternate Chinese Physics Letters
PublicationYear 2017
References 22
23
45
24
25
Bian G (29) 2015
26
Voon L C L Y (46) 2009
Heikkilä T T (36) 2015
30
31
10
32
11
33
12
34
13
35
14
15
37
16
38
17
39
18
19
1
2
3
4
5
Chan Y-H (28) 2015
6
7
8
9
López Sancho M P (44) 1985; 15
Xie L S (27) 2015
40
41
20
42
21
43
References_xml – ident: 45
  doi: 10.1103/PhysRevB.90.155316
– ident: 2
  doi: 10.1103/PhysRevLett.115.21760
– ident: 41
  doi: 10.1038/nmat3828
– ident: 13
  doi: 10.1126/science.1245085
– ident: 17
  doi: 10.1038/ncomms4786
– ident: 7
  doi: 10.1103/PhysRevLett.107.186806
– ident: 6
  doi: 10.1103/PhysRevB.83.205101
– ident: 21
  doi: 10.1103/PhysRevB.92.045108
– ident: 19
  doi: 10.1103/PhysRevB.88.125427
– ident: 8
  doi: 10.1103/PhysRevX.5.011029
– ident: 12
  doi: 10.1038/ncomms8373
– ident: 42
  doi: 10.1021/nl502481f
– ident: 3
  doi: 10.1103/PhysRevLett.107.076802
– ident: 34
  doi: 10.1038/ncomms9339
– ident: 11
  doi: 10.1126/sciadv.1501092
– volume: 15
  start-page: 851
  issn: 0305-4608
  year: 1985
  ident: 44
  publication-title: J. Phys.
  doi: 10.1088/0305-4608/15/4/009
– ident: 15
  doi: 10.1038/nmat3990
– ident: 20
  doi: 10.1103/PhysRevB.84.235126
– year: 2015
  ident: 36
– ident: 14
  doi: 10.1103/PhysRevB.85.195320
– ident: 38
  doi: 10.1038/nphoton.2010.186
– ident: 35
  doi: 10.1103/PhysRevB.80.113102
– ident: 39
  doi: 10.1103/PhysRevLett.106.106802
– year: 2015
  ident: 28
– year: 2015
  ident: 29
– ident: 24
  doi: 10.1021/acs.nanolett.5b02978
– ident: 31
  doi: 10.1103/RevModPhys.81.109
– ident: 26
  doi: 10.1103/PhysRevLett.115.036807
– ident: 4
  doi: 10.1103/PhysRevB.76.045302
– ident: 16
  doi: 10.1103/PhysRevLett.113.246402
– ident: 23
  doi: 10.1103/PhysRevLett.115.026403
– ident: 25
  doi: 10.1103/PhysRevLett.115.036806
– ident: 43
  doi: 10.1021/acs.nanolett.5b00308
– ident: 1
  doi: 10.1103/RevModPhys.82.3045
– ident: 5
  doi: 10.1126/science.1133734
– ident: 18
  doi: 10.1103/PhysRevB.91.155139
– ident: 22
  doi: 10.1103/PhysRevB.92.081201
– ident: 30
  doi: 10.1103/PhysRevB.93.121113
– ident: 40
  doi: 10.1103/PhysRevB.82.045122
– year: 2015
  ident: 27
– ident: 10
  doi: 10.1038/ncomms11006
– ident: 33
  doi: 10.1103/PhysRevB.92.235106
– year: 2009
  ident: 46
  publication-title: The kp Method: Electronic Properties of Semiconductors
– ident: 37
  doi: 10.1016/0040-6090(83)90256-0
– ident: 9
  doi: 10.1103/PhysRevX.5.031013
– ident: 32
  doi: 10.1103/PhysRevLett.115.126803
SSID ssj0011811
Score 2.5022695
Snippet Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac...
SourceID crossref
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 106
SubjectTerms 二维
半金属
奇偶校验
晶格
绝缘状态
自旋轨道耦合
节点
蜂窝
Title Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice
URI http://lib.cqvip.com/qk/84212X/201705/672553045.html
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1741-3540
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011811
  issn: 0256-307X
  databaseCode: IOP
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0CpDSLwgPkUZoDzgpyhrPmzXfrTXVAOmgcQm7S1yEmdUYu2ATgh-Ow_cOR-LBpoAqYpOvvh8Pl_ts3O-I-RVXZVlDWZxVNd4dFOlNrJJkkW8hL1HKdLGlt7b4kgcnLA3p_x0Mvk58lq63JZ71Y8_3iv5n1GFMhhXvCX7DyM7EIUCgGF84QkjDM-_G-Nvm2iB4fnb0Brh0aZ20SHajR_cOZRvMTbyah3a8GCzdt-BhTJ6a8825y48tNve7a23TWnOqJFUL2jOqTLUADCnUlGtEFAxlQJRZkm1obmgUlPNab6kZp8qTXNJJdRKEKUAO--qy8FbFmvLBdUpzRXiVeJfSYFAiBC0qOaeDSC4DD2hBZU5vg4Mae0BSU3W47T0AJQukQCwY3SLA04UsqQ9D9gw_GSIFEzu2fVcmhhLoD8KcRx72XJltOeTY6eVGR-OwII7uCJ2cyhYdHi8dtoud-0cD0ZUhMdd40WgO1FdjT-zX7RJecXIOEhaH9zf1h2Yq32Ijq41gDMGDx-3g8Mkml4tt4MTpJinmLOJ8VvkdjoXAvNvvH73fvgGBraXz_fYE-3vn0k5G8pmGZvxWdsERgf5uFmffQabZ2Rljcyl4_vkXrfPCXSrtA_IxK0fkjve37j6-oiYa6obDKobXKlusFoHNriuukGnuo_JyTI_3j-IunQeUZXKeBvB1jRjDUwO89jypElqJmEz28D_uY6tFE0TZ47xquZScs5Fo0A2MbMSDCZeVVmZPSE7a2jyKQmYY5gKQVoRW2aFkM5VtrQuKblzWVlPye4giuKiDdtSDPKeEtYLp6i6SPiYkOVT4T0ypCxQvgXKt8hYwYtWvlOyN1Trad5Y4dmNXOySu1ca-5zsbL9cuhdg4G7Ll14PfgFK0nnB
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Dimensional+Node-Line+Semimetals+in+a+Honeycomb-Kagome+Lattice&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%8D%A2%E9%87%91%E7%82%BC+%E7%BD%97%E4%BC%9F+%E6%9D%8E%E9%9B%AA%E9%98%B3+%E6%9D%A8%E6%99%9F%E7%A5%BA+%E6%9B%B9%E8%A7%89%E5%85%88+%E9%BE%9A%E6%96%B0%E9%AB%98+%E5%90%91%E7%BA%A2%E5%86%9B&rft.date=2017-05-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=34&rft.issue=5&rft.spage=106&rft.epage=110&rft_id=info:doi/10.1088%2F0256-307X%2F34%2F5%2F057302&rft.externalDocID=672553045
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg