Modeling Information Popularity Dynamics via Branching Process on Micro-Blog Network

Predicting and modeling of items popularity on web 2.0 have attracted great attention of many scholars. From the perspective of information competition, we propose a probabilistic model using the branching process to characterize the process in which micro-blogging gains its popularity. The model is...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 34; no. 6; pp. 131 - 134
Main Author 李瑾颉 吴联仁 齐佳音 孙启明
Format Journal Article
LanguageEnglish
Published 01.06.2017
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/34/6/068901

Cover

Abstract Predicting and modeling of items popularity on web 2.0 have attracted great attention of many scholars. From the perspective of information competition, we propose a probabilistic model using the branching process to characterize the process in which micro-blogging gains its popularity. The model is analytically tractable and can reproduce several characteristics of empirical micro-blogging data on Sina micro-blog, the most popular micro- blogging system in China. We find that the information competition on micro-blog network leads to the decay of information popularity obeying power law distribution with exponent about 1.5, and the value is similar to the exponent of degree distribution of micro-blog network. Furthermore, the mean popularity is decided by the probability of innovating a new message. Our work presents evidence supporting the idea that two distinct factors affect information popularity: information competition and social network structure.
AbstractList Predicting and modeling of items popularity on web 2.0 have attracted great attention of many scholars. From the perspective of information competition, we propose a probabilistic model using the branching process to characterize the process in which micro-blogging gains its popularity. The model is analytically tractable and can reproduce several characteristics of empirical micro-blogging data on Sina micro-blog, the most popular micro- blogging system in China. We find that the information competition on micro-blog network leads to the decay of information popularity obeying power law distribution with exponent about 1.5, and the value is similar to the exponent of degree distribution of micro-blog network. Furthermore, the mean popularity is decided by the probability of innovating a new message. Our work presents evidence supporting the idea that two distinct factors affect information popularity: information competition and social network structure.
Author 李瑾颉 吴联仁 齐佳音 孙启明
AuthorAffiliation School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876 Interdisciplinary Center for Network Science and Applications, University of Notre Dame, IN 46556, USA School of Management, Shanghai University of International Business and Economics, Shanghai 201620
Author_xml – sequence: 1
  fullname: 李瑾颉 吴联仁 齐佳音 孙启明
BookMark eNqFkEFPwjAYhhuDiYD-BJPF-1y7dlsXT4KoJKAcMPHWtF0L1dFiOzX8ezchHLx4-i7v8-Z73gHoWWcVAJcIXiNIaQLTLI8xLF4TTJI8gTktIToBfVQQFOOMwB7oHzNnYBDCG4QIUYT6YDl3laqNXUVTq53f8MY4Gy3c9rPm3jS76G5n-cbIEH0ZHo08t3LdpRfeSRVC1IbnRnoXj2q3ip5U8-38-zk41bwO6uJwh-DlfrIcP8az54fp-HYWy5TCJs60rqguKcdEC11JLEtSVEpoTKkkqaaCprnMqhILArWARCKheIWoxEKkkuIhuNn3tg-E4JVm0jS_Bo3npmYIsm4g1smzTp5hwnK2H6ilsz_01psN97t_uasDt3Z29dGucQTzIiVlkacU_wC2bHl1
CitedBy_id crossref_primary_10_1016_j_physa_2021_126568
crossref_primary_10_7498_aps_68_20181948
crossref_primary_10_1186_s40537_019_0266_4
Cites_doi 10.1371/journal.pone.0111506
10.1103/PhysRevE.90.032801
10.1016/j.physa.2011.08.038
10.1038/srep23484
10.1038/srep00335
10.1016/j.physa.2012.12.008
10.1371/journal.pone.0089192
10.1103/PhysRevX.6.021019
10.1371/journal.pone.0061823
10.1016/j.physrep.2016.07.002
10.1103/PhysRevE.84.046116
10.1088/0256-307X/27/6/065201
10.1126/science.1237825
10.1038/srep04938 %%{\bf 4}
10.1103/PhysRevLett.112.048701
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/0256-307X/34/6/068901
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Modeling Information Popularity Dynamics via Branching Process on Micro-Blog Network
EISSN 1741-3540
EndPage 134
ExternalDocumentID 10_1088_0256_307X_34_6_068901
672497628
GroupedDBID 02O
042
1JI
1PV
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CJUJL
CQIGP
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
LAP
M45
N5L
N9A
NS0
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
T37
UCJ
W28
XPP
~02
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AEINN
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
TGP
U1G
U5K
ID FETCH-LOGICAL-c280t-5ffd8f98a34fbfdc3c947debf388c42f8b826c5d93b40fb04c1bead18c3bb2c83
ISSN 0256-307X
IngestDate Wed Oct 01 02:18:50 EDT 2025
Thu Apr 24 22:59:05 EDT 2025
Wed Feb 14 09:59:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c280t-5ffd8f98a34fbfdc3c947debf388c42f8b826c5d93b40fb04c1bead18c3bb2c83
Notes Jin-Jie Li1,2 Lian-Ren Wu3, Jia-Yin Qi3, Qi-Ming Sun1(1School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876 2 Interdisciplinary Center for Network Science and Applications, University of Notre Dame, IN 46556, USA 3School of Management, Shanghai University of International Business and Economics, Shanghai 201620)
11-1959/O4
Predicting and modeling of items popularity on web 2.0 have attracted great attention of many scholars. From the perspective of information competition, we propose a probabilistic model using the branching process to characterize the process in which micro-blogging gains its popularity. The model is analytically tractable and can reproduce several characteristics of empirical micro-blogging data on Sina micro-blog, the most popular micro- blogging system in China. We find that the information competition on micro-blog network leads to the decay of information popularity obeying power law distribution with exponent about 1.5, and the value is similar to the exponent of degree distribution of micro-blog network. Furthermore, the mean popularity is decided by the probability of innovating a new message. Our work presents evidence supporting the idea that two distinct factors affect information popularity: information competition and social network structure.
PageCount 4
ParticipantIDs crossref_citationtrail_10_1088_0256_307X_34_6_068901
crossref_primary_10_1088_0256_307X_34_6_068901
chongqing_primary_672497628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics letters
PublicationTitleAlternate Chinese Physics Letters
PublicationYear 2017
References 11
Hong W (22) 2009; 26
Wang J R (6) 2015; 24
12
13
24
15
18
19
Song B (5) 2015; 24
1
Xu Y (16) 2010; 27
2
Min L (7) 2015; 64
Li Y J (9) 2016; 65
3
4
Athreya K B (14) 2012
Wang J L (8) 2015; 64
Shang M S (23) 2010; 27
Zhu J F (17) 2010; 27
20
10
21
References_xml – ident: 24
  doi: 10.1371/journal.pone.0111506
– volume: 24
  issn: 1674-1056
  year: 2015
  ident: 5
  publication-title: Chin. Phys.
– volume: 27
  issn: 0256-307X
  year: 2010
  ident: 16
  publication-title: Chin. Phys. Lett.
– ident: 10
  doi: 10.1103/PhysRevE.90.032801
– ident: 20
  doi: 10.1016/j.physa.2011.08.038
– ident: 4
  doi: 10.1038/srep23484
– year: 2012
  ident: 14
  publication-title: Branching Processes
– ident: 11
  doi: 10.1038/srep00335
– volume: 26
  issn: 0256-307X
  year: 2009
  ident: 22
  publication-title: Chin. Phys. Lett.
– ident: 21
  doi: 10.1016/j.physa.2012.12.008
– ident: 18
  doi: 10.1371/journal.pone.0089192
– ident: 13
  doi: 10.1103/PhysRevX.6.021019
– ident: 2
  doi: 10.1371/journal.pone.0061823
– ident: 19
  doi: 10.1016/j.physrep.2016.07.002
– volume: 64
  issn: 0372-736X
  year: 2015
  ident: 7
  publication-title: Acta Phys. Sin.
– volume: 24
  issn: 1674-1056
  year: 2015
  ident: 6
  publication-title: Chin. Phys.
– ident: 15
  doi: 10.1103/PhysRevE.84.046116
– volume: 64
  issn: 0372-736X
  year: 2015
  ident: 8
  publication-title: Acta Phys. Sin.
– volume: 27
  issn: 0256-307X
  year: 2010
  ident: 17
  publication-title: Chin. Phys. Lett.
– volume: 27
  issn: 0256-307X
  year: 2010
  ident: 23
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/27/6/065201
– ident: 1
  doi: 10.1126/science.1237825
– ident: 3
  doi: 10.1038/srep04938 %%{\bf 4}
– ident: 12
  doi: 10.1103/PhysRevLett.112.048701
– volume: 65
  issn: 0372-736X
  year: 2016
  ident: 9
  publication-title: Acta Phys. Sin.
SSID ssj0011811
Score 2.1396484
Snippet Predicting and modeling of items popularity on web 2.0 have attracted great attention of many scholars. From the perspective of information competition, we...
SourceID crossref
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms Web
分支过程
动态建模
幂律分布
概率模型
模型分析
网络信息
网络结构
Title Modeling Information Popularity Dynamics via Branching Process on Micro-Blog Network
URI http://lib.cqvip.com/qk/84212X/201706/672497628.html
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: AUTh Library subscriptions: IOP Publishing
  customDbUrl:
  eissn: 1741-3540
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011811
  issn: 0256-307X
  databaseCode: IOP
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviE9RBigP3FOVtYmd5PyYrKkG0sYeOmlvUe0mMGnqgHU88O_xj3HnOGkQ0wS8RFd_nC3fr_bZvvMJ8U6v5Sq2mQ2VrutQmSQJTSZjwrJUjYzreIbsKHx8kh6dqQ_nyflo9HNgtXSzNQf2x61-Jf8jVUojubKX7D9ItmdKCUSTfOlLEqbvX8mYA5ldtlf-vRPi5NSF5OKYdJN5G27-evL9YkVSJAG78ybvHMD3BMdsjxcWHI7ypDUIH2qrUCooEPI5lAnoAgoiMkANuWZCzwBTzioWkBdQpoA55AmUCygOQedQIiDVijhLU27mq2NvP-ty5oCl4xdBQQSxj6nUxDU6g0I5PhFo5fpTED3hUtQbyuakORSSUzQ1LF096rLWnkG-cK0Qj3J4xhFlO1ssPxWSYsanZOftqtVO1aQLhXxqNZzL_cHoxR8Tc-TXmtr_UrcuHzTlupc2fGtES0Ufd8WVovZd-v197jSjHSwtKXhP3I-zNOUwGu8_nvZXWaRCubCNHdPOjQxx2qdNpZqm07YJfuTj89Xm01cCxEBZGmg9y8fikd-uBHmLvSdiVG-eigfObNhePxPLDoHBAIHBDoFBh8CAEBj0CAw8AgMqvENg4BH4XJwtyuXhUejjdIQ2xtk2TJpmjY3GFf29TbO20mqVrWvTSESr4gYN7WFtstbSqFljZspGhiawCK00JrYoX4i9zdWmfikCNjqOtKpXKqlJvSJVyepVgrxrTthIYCz2-8GpvrTvsVS9BMZCdcNVWf_EPUdauaycqQVixSNe8YhXUlVp1Y74WBz01Tqed1Z4dWcv9sXDHYZfi73tt5v6DWmuW_PWIeMXpc946w
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Information+Popularity+Dynamics+via+Branching+Process+on+Micro-Blog+Network&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E6%9D%8E%E7%91%BE%E9%A2%89+%E5%90%B4%E8%81%94%E4%BB%81+%E9%BD%90%E4%BD%B3%E9%9F%B3+%E5%AD%99%E5%90%AF%E6%98%8E&rft.date=2017-06-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=34&rft.issue=6&rft.spage=131&rft.epage=134&rft_id=info:doi/10.1088%2F0256-307X%2F34%2F6%2F068901&rft.externalDocID=672497628
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg