Modeling Information Popularity Dynamics via Branching Process on Micro-Blog Network
Predicting and modeling of items popularity on web 2.0 have attracted great attention of many scholars. From the perspective of information competition, we propose a probabilistic model using the branching process to characterize the process in which micro-blogging gains its popularity. The model is...
Saved in:
Published in | Chinese physics letters Vol. 34; no. 6; pp. 131 - 134 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/34/6/068901 |
Cover
Abstract | Predicting and modeling of items popularity on web 2.0 have attracted great attention of many scholars. From the perspective of information competition, we propose a probabilistic model using the branching process to characterize the process in which micro-blogging gains its popularity. The model is analytically tractable and can reproduce several characteristics of empirical micro-blogging data on Sina micro-blog, the most popular micro- blogging system in China. We find that the information competition on micro-blog network leads to the decay of information popularity obeying power law distribution with exponent about 1.5, and the value is similar to the exponent of degree distribution of micro-blog network. Furthermore, the mean popularity is decided by the probability of innovating a new message. Our work presents evidence supporting the idea that two distinct factors affect information popularity: information competition and social network structure. |
---|---|
AbstractList | Predicting and modeling of items popularity on web 2.0 have attracted great attention of many scholars. From the perspective of information competition, we propose a probabilistic model using the branching process to characterize the process in which micro-blogging gains its popularity. The model is analytically tractable and can reproduce several characteristics of empirical micro-blogging data on Sina micro-blog, the most popular micro- blogging system in China. We find that the information competition on micro-blog network leads to the decay of information popularity obeying power law distribution with exponent about 1.5, and the value is similar to the exponent of degree distribution of micro-blog network. Furthermore, the mean popularity is decided by the probability of innovating a new message. Our work presents evidence supporting the idea that two distinct factors affect information popularity: information competition and social network structure. |
Author | 李瑾颉 吴联仁 齐佳音 孙启明 |
AuthorAffiliation | School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876 Interdisciplinary Center for Network Science and Applications, University of Notre Dame, IN 46556, USA School of Management, Shanghai University of International Business and Economics, Shanghai 201620 |
Author_xml | – sequence: 1 fullname: 李瑾颉 吴联仁 齐佳音 孙启明 |
BookMark | eNqFkEFPwjAYhhuDiYD-BJPF-1y7dlsXT4KoJKAcMPHWtF0L1dFiOzX8ezchHLx4-i7v8-Z73gHoWWcVAJcIXiNIaQLTLI8xLF4TTJI8gTktIToBfVQQFOOMwB7oHzNnYBDCG4QIUYT6YDl3laqNXUVTq53f8MY4Gy3c9rPm3jS76G5n-cbIEH0ZHo08t3LdpRfeSRVC1IbnRnoXj2q3ip5U8-38-zk41bwO6uJwh-DlfrIcP8az54fp-HYWy5TCJs60rqguKcdEC11JLEtSVEpoTKkkqaaCprnMqhILArWARCKheIWoxEKkkuIhuNn3tg-E4JVm0jS_Bo3npmYIsm4g1smzTp5hwnK2H6ilsz_01psN97t_uasDt3Z29dGucQTzIiVlkacU_wC2bHl1 |
CitedBy_id | crossref_primary_10_1016_j_physa_2021_126568 crossref_primary_10_7498_aps_68_20181948 crossref_primary_10_1186_s40537_019_0266_4 |
Cites_doi | 10.1371/journal.pone.0111506 10.1103/PhysRevE.90.032801 10.1016/j.physa.2011.08.038 10.1038/srep23484 10.1038/srep00335 10.1016/j.physa.2012.12.008 10.1371/journal.pone.0089192 10.1103/PhysRevX.6.021019 10.1371/journal.pone.0061823 10.1016/j.physrep.2016.07.002 10.1103/PhysRevE.84.046116 10.1088/0256-307X/27/6/065201 10.1126/science.1237825 10.1038/srep04938 %%{\bf 4} 10.1103/PhysRevLett.112.048701 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/0256-307X/34/6/068901 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Modeling Information Popularity Dynamics via Branching Process on Micro-Blog Network |
EISSN | 1741-3540 |
EndPage | 134 |
ExternalDocumentID | 10_1088_0256_307X_34_6_068901 672497628 |
GroupedDBID | 02O 042 1JI 1PV 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CJUJL CQIGP CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KNG KOT LAP M45 N5L N9A NS0 NT- NT. P2P PJBAE Q02 R4D RIN RNS RO9 ROL RPA RW3 S3P SY9 T37 UCJ W28 XPP ~02 ~WA -SA -S~ AAYXX ACARI ADEQX AEINN AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- TGP U1G U5K |
ID | FETCH-LOGICAL-c280t-5ffd8f98a34fbfdc3c947debf388c42f8b826c5d93b40fb04c1bead18c3bb2c83 |
ISSN | 0256-307X |
IngestDate | Wed Oct 01 02:18:50 EDT 2025 Thu Apr 24 22:59:05 EDT 2025 Wed Feb 14 09:59:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c280t-5ffd8f98a34fbfdc3c947debf388c42f8b826c5d93b40fb04c1bead18c3bb2c83 |
Notes | Jin-Jie Li1,2 Lian-Ren Wu3, Jia-Yin Qi3, Qi-Ming Sun1(1School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876 2 Interdisciplinary Center for Network Science and Applications, University of Notre Dame, IN 46556, USA 3School of Management, Shanghai University of International Business and Economics, Shanghai 201620) 11-1959/O4 Predicting and modeling of items popularity on web 2.0 have attracted great attention of many scholars. From the perspective of information competition, we propose a probabilistic model using the branching process to characterize the process in which micro-blogging gains its popularity. The model is analytically tractable and can reproduce several characteristics of empirical micro-blogging data on Sina micro-blog, the most popular micro- blogging system in China. We find that the information competition on micro-blog network leads to the decay of information popularity obeying power law distribution with exponent about 1.5, and the value is similar to the exponent of degree distribution of micro-blog network. Furthermore, the mean popularity is decided by the probability of innovating a new message. Our work presents evidence supporting the idea that two distinct factors affect information popularity: information competition and social network structure. |
PageCount | 4 |
ParticipantIDs | crossref_citationtrail_10_1088_0256_307X_34_6_068901 crossref_primary_10_1088_0256_307X_34_6_068901 chongqing_primary_672497628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics letters |
PublicationTitleAlternate | Chinese Physics Letters |
PublicationYear | 2017 |
References | 11 Hong W (22) 2009; 26 Wang J R (6) 2015; 24 12 13 24 15 18 19 Song B (5) 2015; 24 1 Xu Y (16) 2010; 27 2 Min L (7) 2015; 64 Li Y J (9) 2016; 65 3 4 Athreya K B (14) 2012 Wang J L (8) 2015; 64 Shang M S (23) 2010; 27 Zhu J F (17) 2010; 27 20 10 21 |
References_xml | – ident: 24 doi: 10.1371/journal.pone.0111506 – volume: 24 issn: 1674-1056 year: 2015 ident: 5 publication-title: Chin. Phys. – volume: 27 issn: 0256-307X year: 2010 ident: 16 publication-title: Chin. Phys. Lett. – ident: 10 doi: 10.1103/PhysRevE.90.032801 – ident: 20 doi: 10.1016/j.physa.2011.08.038 – ident: 4 doi: 10.1038/srep23484 – year: 2012 ident: 14 publication-title: Branching Processes – ident: 11 doi: 10.1038/srep00335 – volume: 26 issn: 0256-307X year: 2009 ident: 22 publication-title: Chin. Phys. Lett. – ident: 21 doi: 10.1016/j.physa.2012.12.008 – ident: 18 doi: 10.1371/journal.pone.0089192 – ident: 13 doi: 10.1103/PhysRevX.6.021019 – ident: 2 doi: 10.1371/journal.pone.0061823 – ident: 19 doi: 10.1016/j.physrep.2016.07.002 – volume: 64 issn: 0372-736X year: 2015 ident: 7 publication-title: Acta Phys. Sin. – volume: 24 issn: 1674-1056 year: 2015 ident: 6 publication-title: Chin. Phys. – ident: 15 doi: 10.1103/PhysRevE.84.046116 – volume: 64 issn: 0372-736X year: 2015 ident: 8 publication-title: Acta Phys. Sin. – volume: 27 issn: 0256-307X year: 2010 ident: 17 publication-title: Chin. Phys. Lett. – volume: 27 issn: 0256-307X year: 2010 ident: 23 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/27/6/065201 – ident: 1 doi: 10.1126/science.1237825 – ident: 3 doi: 10.1038/srep04938 %%{\bf 4} – ident: 12 doi: 10.1103/PhysRevLett.112.048701 – volume: 65 issn: 0372-736X year: 2016 ident: 9 publication-title: Acta Phys. Sin. |
SSID | ssj0011811 |
Score | 2.1396484 |
Snippet | Predicting and modeling of items popularity on web 2.0 have attracted great attention of many scholars. From the perspective of information competition, we... |
SourceID | crossref chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 131 |
SubjectTerms | Web 分支过程 动态建模 幂律分布 概率模型 模型分析 网络信息 网络结构 |
Title | Modeling Information Popularity Dynamics via Branching Process on Micro-Blog Network |
URI | http://lib.cqvip.com/qk/84212X/201706/672497628.html |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: AUTh Library subscriptions: IOP Publishing customDbUrl: eissn: 1741-3540 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011811 issn: 0256-307X databaseCode: IOP dateStart: 19840101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviE9RBigP3FOVtYmd5PyYrKkG0sYeOmlvUe0mMGnqgHU88O_xj3HnOGkQ0wS8RFd_nC3fr_bZvvMJ8U6v5Sq2mQ2VrutQmSQJTSZjwrJUjYzreIbsKHx8kh6dqQ_nyflo9HNgtXSzNQf2x61-Jf8jVUojubKX7D9ItmdKCUSTfOlLEqbvX8mYA5ldtlf-vRPi5NSF5OKYdJN5G27-evL9YkVSJAG78ybvHMD3BMdsjxcWHI7ypDUIH2qrUCooEPI5lAnoAgoiMkANuWZCzwBTzioWkBdQpoA55AmUCygOQedQIiDVijhLU27mq2NvP-ty5oCl4xdBQQSxj6nUxDU6g0I5PhFo5fpTED3hUtQbyuakORSSUzQ1LF096rLWnkG-cK0Qj3J4xhFlO1ssPxWSYsanZOftqtVO1aQLhXxqNZzL_cHoxR8Tc-TXmtr_UrcuHzTlupc2fGtES0Ufd8WVovZd-v197jSjHSwtKXhP3I-zNOUwGu8_nvZXWaRCubCNHdPOjQxx2qdNpZqm07YJfuTj89Xm01cCxEBZGmg9y8fikd-uBHmLvSdiVG-eigfObNhePxPLDoHBAIHBDoFBh8CAEBj0CAw8AgMqvENg4BH4XJwtyuXhUejjdIQ2xtk2TJpmjY3GFf29TbO20mqVrWvTSESr4gYN7WFtstbSqFljZspGhiawCK00JrYoX4i9zdWmfikCNjqOtKpXKqlJvSJVyepVgrxrTthIYCz2-8GpvrTvsVS9BMZCdcNVWf_EPUdauaycqQVixSNe8YhXUlVp1Y74WBz01Tqed1Z4dWcv9sXDHYZfi73tt5v6DWmuW_PWIeMXpc946w |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Information+Popularity+Dynamics+via+Branching+Process+on+Micro-Blog+Network&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E6%9D%8E%E7%91%BE%E9%A2%89+%E5%90%B4%E8%81%94%E4%BB%81+%E9%BD%90%E4%BD%B3%E9%9F%B3+%E5%AD%99%E5%90%AF%E6%98%8E&rft.date=2017-06-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=34&rft.issue=6&rft.spage=131&rft.epage=134&rft_id=info:doi/10.1088%2F0256-307X%2F34%2F6%2F068901&rft.externalDocID=672497628 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg |