Research on the miniaturization method of the broadband linear-to-circular polarization conversion metasurface based on genetic algorithm

The size of the metasurface unit cell increases with the decrease of its center working frequency ( CF ). This is not conducive to the integrated design of the metasurface. To address the problem, a miniaturization design method based on genetic algorithm (GA) is proposed. Firstly, an element librar...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 32; no. 27; p. 49038
Main Authors Ma, Yaodong, Hu, Yanwen, Zhou, Wen-Ying, Zhang, Tingrong
Format Journal Article
LanguageEnglish
Published United States 30.12.2024
Online AccessGet full text
ISSN1094-4087
1094-4087
DOI10.1364/OE.543867

Cover

Abstract The size of the metasurface unit cell increases with the decrease of its center working frequency ( CF ). This is not conducive to the integrated design of the metasurface. To address the problem, a miniaturization design method based on genetic algorithm (GA) is proposed. Firstly, an element library is established. By randomly selecting and combining these elements, various structures are generated as the initial population of GA. Secondly, a Python-CST joint simulation program is constructed to automatically model the metasurface unit cells and extract their electromagnetic parameters. Finally, after multiple iterations of optimization, the optimized unit cell is obtained. This paper takes the transmissive-type linear-to-circular polarization conversion metasurface (LTCPCM) as a research object. The simulation results show that the size of the designed unit cell is only 0.18 λ of the CF (3.86 GHz). The LTCPCM exhibits broadband and wide-angle characteristics, with a fractional bandwidth ( FB ) of 71% (incident angle θ = 0°) and an angular stability (AS) of 45°. The experimental validation and the simulation result are consistent, proving the effectiveness of the proposed method. The research results can provide a reference for further miniaturization design of metasurface unit cells.
AbstractList The size of the metasurface unit cell increases with the decrease of its center working frequency ( ). This is not conducive to the integrated design of the metasurface. To address the problem, a miniaturization design method based on genetic algorithm (GA) is proposed. Firstly, an element library is established. By randomly selecting and combining these elements, various structures are generated as the initial population of GA. Secondly, a Python-CST joint simulation program is constructed to automatically model the metasurface unit cells and extract their electromagnetic parameters. Finally, after multiple iterations of optimization, the optimized unit cell is obtained. This paper takes the transmissive-type linear-to-circular polarization conversion metasurface (LTCPCM) as a research object. The simulation results show that the size of the designed unit cell is only 0.18 λ of the (3.86 GHz). The LTCPCM exhibits broadband and wide-angle characteristics, with a fractional bandwidth ( ) of 71% (incident angle = 0°) and an angular stability (AS) of 45°. The experimental validation and the simulation result are consistent, proving the effectiveness of the proposed method. The research results can provide a reference for further miniaturization design of metasurface unit cells.
The size of the metasurface unit cell increases with the decrease of its center working frequency ( CF ). This is not conducive to the integrated design of the metasurface. To address the problem, a miniaturization design method based on genetic algorithm (GA) is proposed. Firstly, an element library is established. By randomly selecting and combining these elements, various structures are generated as the initial population of GA. Secondly, a Python-CST joint simulation program is constructed to automatically model the metasurface unit cells and extract their electromagnetic parameters. Finally, after multiple iterations of optimization, the optimized unit cell is obtained. This paper takes the transmissive-type linear-to-circular polarization conversion metasurface (LTCPCM) as a research object. The simulation results show that the size of the designed unit cell is only 0.18 λ of the CF (3.86 GHz). The LTCPCM exhibits broadband and wide-angle characteristics, with a fractional bandwidth ( FB ) of 71% (incident angle θ = 0°) and an angular stability (AS) of 45°. The experimental validation and the simulation result are consistent, proving the effectiveness of the proposed method. The research results can provide a reference for further miniaturization design of metasurface unit cells.
The size of the metasurface unit cell increases with the decrease of its center working frequency (CF). This is not conducive to the integrated design of the metasurface. To address the problem, a miniaturization design method based on genetic algorithm (GA) is proposed. Firstly, an element library is established. By randomly selecting and combining these elements, various structures are generated as the initial population of GA. Secondly, a Python-CST joint simulation program is constructed to automatically model the metasurface unit cells and extract their electromagnetic parameters. Finally, after multiple iterations of optimization, the optimized unit cell is obtained. This paper takes the transmissive-type linear-to-circular polarization conversion metasurface (LTCPCM) as a research object. The simulation results show that the size of the designed unit cell is only 0.18 λ of the CF (3.86 GHz). The LTCPCM exhibits broadband and wide-angle characteristics, with a fractional bandwidth (FB) of 71% (incident angle θ = 0°) and an angular stability (AS) of 45°. The experimental validation and the simulation result are consistent, proving the effectiveness of the proposed method. The research results can provide a reference for further miniaturization design of metasurface unit cells.The size of the metasurface unit cell increases with the decrease of its center working frequency (CF). This is not conducive to the integrated design of the metasurface. To address the problem, a miniaturization design method based on genetic algorithm (GA) is proposed. Firstly, an element library is established. By randomly selecting and combining these elements, various structures are generated as the initial population of GA. Secondly, a Python-CST joint simulation program is constructed to automatically model the metasurface unit cells and extract their electromagnetic parameters. Finally, after multiple iterations of optimization, the optimized unit cell is obtained. This paper takes the transmissive-type linear-to-circular polarization conversion metasurface (LTCPCM) as a research object. The simulation results show that the size of the designed unit cell is only 0.18 λ of the CF (3.86 GHz). The LTCPCM exhibits broadband and wide-angle characteristics, with a fractional bandwidth (FB) of 71% (incident angle θ = 0°) and an angular stability (AS) of 45°. The experimental validation and the simulation result are consistent, proving the effectiveness of the proposed method. The research results can provide a reference for further miniaturization design of metasurface unit cells.
Author Hu, Yanwen
Ma, Yaodong
Zhang, Tingrong
Zhou, Wen-Ying
Author_xml – sequence: 1
  givenname: Yaodong
  surname: Ma
  fullname: Ma, Yaodong
– sequence: 2
  givenname: Yanwen
  surname: Hu
  fullname: Hu, Yanwen
– sequence: 3
  givenname: Wen-Ying
  orcidid: 0000-0003-1041-9502
  surname: Zhou
  fullname: Zhou, Wen-Ying
– sequence: 4
  givenname: Tingrong
  surname: Zhang
  fullname: Zhang, Tingrong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39876193$$D View this record in MEDLINE/PubMed
BookMark eNplkMFqGzEQhkVxqB23h75A2GNa2FSydqXVMQSnCRgMIT0vs9KsrbIrOZK2JX2DvHU2sR0CucwMM9_8P_ynZOK8Q0K-MXrBuCh-rpcXZcErIT-RGaOqyAtaycm7eUpOY_xDKSukkp_JlKtKCqb4jDzdYUQIept5l6UtZr11FtIQ7H9Idtz1mLbeZL59vTbBg2nAmayzbvzLk8-1DXroIGQ7P9bjn_buL4Z4kIA4hBb0KAARzYvXBh0mqzPoNj7YtO2_kJMWuohfD31Ofl8v769u8tX61-3V5SrXi4qmvJTCmEoyyYVuWqGBl5KXasF5JRcgGi2NLAxbSGx0qRUHVTBoC0qloEI0hs_Jj73u4Hbw-A-6rt4F20N4rBmtX_KsPdb7PEf4fA_vgn8YMKa6t1Fj14FDP8SaM0EVr5QUI3p2QIemR_Mmesx6BL7vAR18jAHbD77r5dH3GV2NkIw
Cites_doi 10.1364/OME.498026
10.1109/TAP.2018.2804618
10.1002/adom.202202081
10.1016/j.dcan.2022.10.001
10.1631/FITEE.2320000
10.1016/j.matdes.2024.113004
10.1109/TAP.2019.2905962
10.1109/TAP.2022.3161389
10.1109/TAP.2020.3004981
10.1103/PhysRevApplied.17.024008
10.1109/TAP.2023.3256581
10.1109/TAP.2020.3016504
10.1070/PU1968v010n04ABEH003699
10.1109/JPHOT.2024.3401550
10.1038/s41467-021-23087-y
10.1016/j.ijleo.2023.171553
10.1109/LAWP.2024.3367911
10.29026/oea.2023.220148
10.1103/PhysRevLett.84.4184
10.1109/TAP.2021.3060142
10.1109/TAP.2023.3240281
10.1088/1674-1056/27/5/054204
10.1088/1361-6463/acefdf
10.1109/LAWP.2022.3188063
10.1002/mop.31547
10.1002/aisy.202000068
10.1109/TCSII.2022.3196385
10.1002/adts.201800132
10.1109/TAP.2019.2938683
10.1155/2017/8067574
10.1002/adpr.202000154
10.1364/OE.460685
10.1109/LAWP.2014.2298393
10.1016/j.optlastec.2022.109038
10.1021/acsnano.1c08597
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1364/OE.543867
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 10.1364/oe.543867
39876193
10_1364_OE_543867
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
7X8
ADTOC
C1A
EJD
UNPAY
ID FETCH-LOGICAL-c280t-576dd871736cbf6ca357359233872a6bc7d74d127ebc5c93a941af40076066bd3
IEDL.DBID UNPAY
ISSN 1094-4087
IngestDate Tue Aug 19 22:42:33 EDT 2025
Fri Jul 11 16:32:58 EDT 2025
Thu Apr 03 07:02:20 EDT 2025
Tue Jul 01 04:02:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-576dd871736cbf6ca357359233872a6bc7d74d127ebc5c93a941af40076066bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1041-9502
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1364/oe.543867
PMID 39876193
PQID 3160938976
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1364_oe_543867
proquest_miscellaneous_3160938976
pubmed_primary_39876193
crossref_primary_10_1364_OE_543867
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-30
2024-Dec-30
20241230
PublicationDateYYYYMMDD 2024-12-30
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2024
References Shang (oe-32-27-49038-R21) 2023; 71
Veselago (oe-32-27-49038-R1) 1968; 10
Chen (oe-32-27-49038-R18) 2021; 2
Liao (oe-32-27-49038-R7) 2024; 16
Li (oe-32-27-49038-R9) 2022; 17
Naseri (oe-32-27-49038-R11) 2021; 69
Zhang (oe-32-27-49038-R16) 2019; 2
Gao (oe-32-27-49038-R34) 2022; 30
Wang (oe-32-27-49038-R20) 2020; 68
Zhang (oe-32-27-49038-R25) 2017; 2017
Hu (oe-32-27-49038-R13) 2023; 56
Wu (oe-32-27-49038-R22) 2024; 23
Wang (oe-32-27-49038-R14) 2020; 2
Liang (oe-32-27-49038-R3) 2024; 12
Zhu (oe-32-27-49038-R15) 2021; 12
Zhu (oe-32-27-49038-R10) 2023; 6
Blanco (oe-32-27-49038-R27) 2018; 66
Dhillon (oe-32-27-49038-R24) 2019; 61
Arnieri (oe-32-27-49038-R32) 2021; 69
Hu (oe-32-27-49038-R29) 2021; 69
Zheng (oe-32-27-49038-R4) 2023; 9
Cheng (oe-32-27-49038-R5) 2023; 24
Wang (oe-32-27-49038-R19) 2019; 67
Smith (oe-32-27-49038-R2) 2000; 84
Cheng (oe-32-27-49038-R12) 2023; 159
Li (oe-32-27-49038-R28) 2023; 13
Dicandia (oe-32-27-49038-R33) 2022; 21
Wang (oe-32-27-49038-R8) 2024; 242
Zhou (oe-32-27-49038-R26) 2023; 71
Yadav (oe-32-27-49038-R23) 2024; 296
Lin (oe-32-27-49038-R31) 2018; 27
Sofi (oe-32-27-49038-R30) 2022; 69
Lourdes (oe-32-27-49038-R35) 2014; 13
Deng (oe-32-27-49038-R17) 2021; 15
Zheng (oe-32-27-49038-R6) 2022; 70
References_xml – volume: 13
  start-page: 2572
  year: 2023
  ident: oe-32-27-49038-R28
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.498026
– volume: 66
  start-page: 1874
  year: 2018
  ident: oe-32-27-49038-R27
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2018.2804618
– volume: 12
  start-page: 2202081
  year: 2024
  ident: oe-32-27-49038-R3
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202202081
– volume: 9
  start-page: 603
  year: 2023
  ident: oe-32-27-49038-R4
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2022.10.001
– volume: 24
  start-page: 1665
  year: 2023
  ident: oe-32-27-49038-R5
  publication-title: Front. Inform. Tech. El.
  doi: 10.1631/FITEE.2320000
– volume: 242
  start-page: 113004
  year: 2024
  ident: oe-32-27-49038-R8
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2024.113004
– volume: 67
  start-page: 4296
  year: 2019
  ident: oe-32-27-49038-R19
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2019.2905962
– volume: 70
  start-page: 8584
  year: 2022
  ident: oe-32-27-49038-R6
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2022.3161389
– volume: 69
  start-page: 578
  year: 2021
  ident: oe-32-27-49038-R32
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2020.3004981
– volume: 17
  start-page: 024008
  year: 2022
  ident: oe-32-27-49038-R9
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.17.024008
– volume: 71
  start-page: 5246
  year: 2023
  ident: oe-32-27-49038-R26
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2023.3256581
– volume: 69
  start-page: 1433
  year: 2021
  ident: oe-32-27-49038-R29
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2020.3016504
– volume: 10
  start-page: 509
  year: 1968
  ident: oe-32-27-49038-R1
  publication-title: Sov. Phys. Usp.
  doi: 10.1070/PU1968v010n04ABEH003699
– volume: 16
  start-page: 1
  year: 2024
  ident: oe-32-27-49038-R7
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2024.3401550
– volume: 12
  start-page: 2974
  year: 2021
  ident: oe-32-27-49038-R15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23087-y
– volume: 296
  start-page: 171553
  year: 2024
  ident: oe-32-27-49038-R23
  publication-title: Optik
  doi: 10.1016/j.ijleo.2023.171553
– volume: 23
  start-page: 1734
  year: 2024
  ident: oe-32-27-49038-R22
  publication-title: Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2024.3367911
– volume: 6
  start-page: 220148
  year: 2023
  ident: oe-32-27-49038-R10
  publication-title: Opto-Electron. Adv.
  doi: 10.29026/oea.2023.220148
– volume: 84
  start-page: 4184
  year: 2000
  ident: oe-32-27-49038-R2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.4184
– volume: 69
  start-page: 5725
  year: 2021
  ident: oe-32-27-49038-R11
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2021.3060142
– volume: 71
  start-page: 2768
  year: 2023
  ident: oe-32-27-49038-R21
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2023.3240281
– volume: 27
  start-page: 054204
  year: 2018
  ident: oe-32-27-49038-R31
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/27/5/054204
– volume: 56
  start-page: 475001
  year: 2023
  ident: oe-32-27-49038-R13
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/acefdf
– volume: 21
  start-page: 2191
  year: 2022
  ident: oe-32-27-49038-R33
  publication-title: Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2022.3188063
– volume: 61
  start-page: 89
  year: 2019
  ident: oe-32-27-49038-R24
  publication-title: Microw. Opt. Techn. Lett.
  doi: 10.1002/mop.31547
– volume: 2
  start-page: 2000068
  year: 2020
  ident: oe-32-27-49038-R14
  publication-title: Advanced Intelligent Systems
  doi: 10.1002/aisy.202000068
– volume: 69
  start-page: 4779
  year: 2022
  ident: oe-32-27-49038-R30
  publication-title: IEEE Trans. Circuits Syst. II
  doi: 10.1109/TCSII.2022.3196385
– volume: 2
  start-page: 1800132
  year: 2019
  ident: oe-32-27-49038-R16
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.201800132
– volume: 68
  start-page: 1186
  year: 2020
  ident: oe-32-27-49038-R20
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2019.2938683
– volume: 2017
  start-page: 1
  year: 2017
  ident: oe-32-27-49038-R25
  publication-title: Int. J. Antenn. Propag.
  doi: 10.1155/2017/8067574
– volume: 2
  start-page: 2000154
  year: 2021
  ident: oe-32-27-49038-R18
  publication-title: Adv. Photon. Res.
  doi: 10.1002/adpr.202000154
– volume: 30
  start-page: 18392
  year: 2022
  ident: oe-32-27-49038-R34
  publication-title: Opt. Express
  doi: 10.1364/OE.460685
– volume: 13
  start-page: 153
  year: 2014
  ident: oe-32-27-49038-R35
  publication-title: Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2014.2298393
– volume: 159
  start-page: 109038
  year: 2023
  ident: oe-32-27-49038-R12
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2022.109038
– volume: 15
  start-page: 18532
  year: 2021
  ident: oe-32-27-49038-R17
  publication-title: Acs Nano
  doi: 10.1021/acsnano.1c08597
SSID ssj0014797
Score 2.4800236
Snippet The size of the metasurface unit cell increases with the decrease of its center working frequency ( CF ). This is not conducive to the integrated design of the...
The size of the metasurface unit cell increases with the decrease of its center working frequency ( ). This is not conducive to the integrated design of the...
The size of the metasurface unit cell increases with the decrease of its center working frequency (CF). This is not conducive to the integrated design of the...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 49038
Title Research on the miniaturization method of the broadband linear-to-circular polarization conversion metasurface based on genetic algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/39876193
https://www.proquest.com/docview/3160938976
https://doi.org/10.1364/oe.543867
UnpaywallVersion publishedVersion
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7RRVXFoW_KVoBM26u3u-tnjggtQpWgPXQleopsxymIbbwKWVXtoff-646dhPKQEJdc4sxEHifzzRvggxQT1Du2pNaNLeUms1QLyak0UytUnFLpYzXy8Yk8mvNPp-J0Dfb6Wpjr8Xsm-cfgR4IzLdUjWJcC4fYA1ucnX_a_pShmxtH-0arrGHRj_U09cwc8bsCTVbU0v36axeKaQjl89r8sp80juRitGjtyv291abz3XZ_D0w5Okv1W_i9gzVcv4XFK63SXr-Bvn1hHQkUQ6pHYSSS28uyqL0k7QJqEMt21dTCFNVVBIvg0NW0Cded1SlUly2gE98-lZPXkaYskopuxNA4JoE4sIi88lrE6kpjF91CfN2c_XsP8cPb14Ih2wxeom-pxQ9EOKQodY_TS2VI6w4RiAuEg02pqpHWqULyYTJW3TriMmYxPTMlTpE9KW7BNGFSh8ltAHEIWjcgGLRmP_2W0ELUtM8a9lhwBlB_Cu15U-bLtsZGnQJvk-edZ3u7pEPZ6Ieb4BcSwhql8WF3mbCLHGeIuJYfwppXuFRmW6einYUN4fyXuOzyC73i8fdCqbRg09crvIBhp7G4y4vF6_Ge22x3Nf35-4V4
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7Bogr1AKUt7SKoDO3V2931M0eEQKhSaQ-sBKfIdpyCWOJVyKqCf8C_ZpwHTwlxjjMTZZzMN_PNjAF-SDFCv2Nzat3QUm4SS7WQnEoztkLFUyp97Eb-fSQPJ_zXiThZgO2uF-Yxf88k_xn8QHCmpVqEJSkQbvdgaXL0d_e0ZjETjvGPVu3EoCfrn_qZF-DxPSzPi5m5_m-m00cO5WD1oS2nqSO5GMwrO3A3z6Y0vvqsH2ClhZNkt7H_Giz44iO8q8s63dUnuO0K60goCEI9EieJxFGebfclaQ6QJiGvr9oymMyaIiMRfJqSVoG687IuVSWzGAR399XF6nWmLYqIacbcOBSAPjGLunBbxu5IYqb_QnlenV1-hsnB_vHeIW0PX6BurIcVxTgky3Tk6KWzuXSGCcUEwkGm1dhI61SmeDYaK2-dcAkzCR-ZnNdMn5Q2Y-vQK0LhvwJxCFk0IhuMZDz-lzFC1DZPGPdacgRQvg87nanSWTNjI62JNsnTP_tp8077sN0ZMcUvINIapvBhfpWykRwmiLuU7MOXxrr3YliiY56G9eH7vblf6Ai-1bHxplWb0KvKud9CMFLZb-12vAP_ON84
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+miniaturization+method+of+the+broadband+linear-to-circular+polarization+conversion+metasurface+based+on+genetic+algorithm&rft.jtitle=Optics+express&rft.au=Ma%2C+Yaodong&rft.au=Hu%2C+Yanwen&rft.au=Zhou%2C+Wen-Ying&rft.au=Zhang%2C+Tingrong&rft.date=2024-12-30&rft.eissn=1094-4087&rft.volume=32&rft.issue=27&rft.spage=49038&rft_id=info:doi/10.1364%2FOE.543867&rft_id=info%3Apmid%2F39876193&rft.externalDocID=39876193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon