Automatic identification of atrial fibrillation based on the modified Elman neural network with exponential moving average algorithm

Atrial fibrillation is a most common arrhythmia. An early and accurate detection for the cure and even spread of this disease is considerably critical. The visual examination of electrocardiogram signals is the most extensively used diagnosis approach, but this method is cumbersome and low-efficient...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 183; p. 109806
Main Authors Song, Zhanjie, Wang, Jibin
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.10.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0263-2241
1873-412X
DOI10.1016/j.measurement.2021.109806

Cover

Abstract Atrial fibrillation is a most common arrhythmia. An early and accurate detection for the cure and even spread of this disease is considerably critical. The visual examination of electrocardiogram signals is the most extensively used diagnosis approach, but this method is cumbersome and low-efficient. In this work, we propose an intelligent network model based on the modified Elman neural network for signals discrimination. Motivated from the exponential moving average strategy, the proposed model is capable of fully modeling the information feedback and also effectively and efficiently striking a balance between current information representation and historical information representation in original Elman neural network. To evaluate its practicability, the model is also plugged into a convolutional neural network framework and two control subjects are established for a fair comparison. Experiments on the MIT-BIH atrial fibrillation and arrhythmia databases show that the proposed model can enjoy a consistent improvement in classification performance with the accuracy of 98.2% and 97.2% respectively and exhibit lower convergence rate than existing Elman network. Thanks to its high model performance, we are planning to develop the model into a computer-aided diagnosis system to assist physicians. •We design modified Elman network (MENN) for atrial fibrillation (AF) detection.•Patient-independent validation ensures the model robustness.•The feature extraction and classification are not required.•To our knowledge, this is the first time to redesign ENN for AF detection.
AbstractList Atrial fibrillation is a most common arrhythmia. An early and accurate detection for the cure and even spread of this disease is considerably critical. The visual examination of electrocardiogram signals is the most extensively used diagnosis approach, but this method is cumbersome and low-efficient. In this work, we propose an intelligent network model based on the modified Elman neural network for signals discrimination. Motivated from the exponential moving average strategy, the proposed model is capable of fully modeling the information feedback and also effectively and efficiently striking a balance between current information representation and historical information representation in original Elman neural network. To evaluate its practicability, the model is also plugged into a convolutional neural network framework and two control subjects are established for a fair comparison. Experiments on the MIT-BIH atrial fibrillation and arrhythmia databases show that the proposed model can enjoy a consistent improvement in classification performance with the accuracy of 98.2% and 97.2% respectively and exhibit lower convergence rate than existing Elman network. Thanks to its high model performance, we are planning to develop the model into a computer-aided diagnosis system to assist physicians. •We design modified Elman network (MENN) for atrial fibrillation (AF) detection.•Patient-independent validation ensures the model robustness.•The feature extraction and classification are not required.•To our knowledge, this is the first time to redesign ENN for AF detection.
Atrial fibrillation is a most common arrhythmia. An early and accurate detection for the cure and even spread of this disease is considerably critical. The visual examination of electrocardiogram signals is the most extensively used diagnosis approach, but this method is cumbersome and low-efficient. In this work, we propose an intelligent network model based on the modified Elman neural network for signals discrimination. Motivated from the exponential moving average strategy, the proposed model is capable of fully modeling the information feedback and also effectively and efficiently striking a balance between current information representation and historical information representation in original Elman neural network. To evaluate its practicability, the model is also plugged into a convolutional neural network framework and two control subjects are established for a fair comparison. Experiments on the MIT-BIH atrial fibrillation and arrhythmia databases show that the proposed model can enjoy a consistent improvement in classification performance with the accuracy of 98.2% and 97.2% respectively and exhibit lower convergence rate than existing Elman network. Thanks to its high model performance, we are planning to develop the model into a computer-aided diagnosis system to assist physicians.
ArticleNumber 109806
Author Song, Zhanjie
Wang, Jibin
Author_xml – sequence: 1
  givenname: Zhanjie
  surname: Song
  fullname: Song, Zhanjie
– sequence: 2
  givenname: Jibin
  surname: Wang
  fullname: Wang, Jibin
  email: wangjibin0429@163.com
BookMark eNqNkD1vHCEQhpHlSD47-Q9YqfcC7CdVZJ2cD8lSGhfp0Cw7e-a8Cxdgz3GfH55xNkWUyhXM8M4zvO8lO_fBI2PXUmylkM2Hw3ZGSEvEGX3eKqEk9XUnmjO2kV1bFpVU38_ZRqimLJSq5AW7TOkghGhK3WzYr5slhxmys9wNhHCjs1QFz8PIIUcHEx9dH900re0eEg6cLvkB-RwGGqD6dprBc49LJL3H_BTiI39y-YHjzyP9mMD0MIeT83sOJ4ywRw7TPkTSzG_ZmxGmhO_-nlfs_tPt_e5Lcfft89fdzV1hVatzYQHGulF9249QWVVi13RKa-hLZQVIUbVDh5XoqnIAjUD2bVXLeui1LslwecXer9hjDD8WTNkcwhI9bTSq7pRSolYtqT6uKhtDShFHY13-4z1HcJORwrwkbw7mn-TNS_JmTZ4I-j_CMboZ4vOrZnfrLFIOJ4fRJOvQWxxcRJvNENwrKL8Bjvireg
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123453
crossref_primary_10_1016_j_health_2022_100110
crossref_primary_10_1016_j_energy_2022_124249
crossref_primary_10_1080_07038992_2022_2081538
crossref_primary_10_1016_j_jappgeo_2022_104821
crossref_primary_10_1007_s11831_023_09935_8
Cites_doi 10.1016/j.bbe.2018.04.004
10.1016/j.asoc.2019.04.007
10.1016/j.measurement.2019.107048
10.1016/j.neucom.2016.12.038
10.1016/j.measurement.2019.05.013
10.1016/j.patrec.2011.08.019
10.1016/j.jiph.2017.09.011
10.1016/j.inffus.2019.06.024
10.1016/j.measurement.2019.02.040
10.1016/j.ins.2018.07.063
10.1016/j.measurement.2013.05.021
10.1016/j.cmpb.2020.105607
10.1016/j.bspc.2019.101662
10.1016/j.egyr.2019.09.039
10.1161/01.CIR.101.23.e215
10.1109/TBME.2012.2208112
10.1016/j.measurement.2018.05.033
10.1016/j.future.2019.09.012
10.1016/j.enconman.2017.05.063
10.1016/j.bspc.2020.101874
10.1016/j.cmpb.2019.05.028
10.1016/j.ins.2016.10.013
10.1016/j.ijcard.2020.04.046
10.1016/j.bspc.2019.101819
10.1016/j.compbiomed.2018.07.001
10.1109/51.932724
10.1016/j.ins.2017.04.012
10.1016/j.eswa.2016.12.034
10.1016/j.cmpb.2020.105401
10.1109/TNNLS.2017.2754294
10.1016/j.eswa.2017.09.059
10.1038/nature14539
10.1016/j.knosys.2020.106589
10.1016/j.compbiomed.2018.11.016
10.1016/j.eswa.2016.09.030
10.1016/j.cmpb.2019.105138
10.1207/s15516709cog1402_1
10.1016/j.ijepes.2013.10.020
10.1016/j.cmpb.2019.105219
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Science Ltd. Oct 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Oct 2021
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2021.109806
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2021_109806
S0263224121007570
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
ID FETCH-LOGICAL-c279t-caaf562b7bfa4c23e868299ab32c0a1047d8e40843da9ea187c4515db9930003
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Aug 13 06:12:22 EDT 2025
Thu Oct 09 00:32:15 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Fri Feb 23 02:42:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 68Uxx
Deep learning
Modified Elman neural network
62P10
Exponential moving average algorithm
Atrial fibrillation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c279t-caaf562b7bfa4c23e868299ab32c0a1047d8e40843da9ea187c4515db9930003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2582220527
PQPubID 2047460
ParticipantIDs proquest_journals_2582220527
crossref_citationtrail_10_1016_j_measurement_2021_109806
crossref_primary_10_1016_j_measurement_2021_109806
elsevier_sciencedirect_doi_10_1016_j_measurement_2021_109806
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Appathurai, Carol, Raja (b1) 2019; 147
Kruger, Latchamsetty, Langhals (b8) 2019; 104
Lecun, Bengio, Hinton (b10) 2015; 521
Acharya, Fujita, Lih (b26) 2017; 405
Yao, Wang, Fan (b30) 2020; 53
Yang, Wang, Zhang (b15) 2019; 143
Rai, Trivedi, Shukla (b13) 2013; 46
Kumar, Pachori, Acharya (b19) 2018; 38
Shi, Wang, Qin (b32) 2020; 187
Li, Chen, Ling (b35) 2019; 80
Nakano, Takahashi, Takahashi (b41) 2017; 73
Lee, Reyes, Mcmanus (b6) 2012; 60
Wang, Wang, Wang (b3) 2020; 55
Wang, Shi, Lin (b12) 2020; 58
Elman (b36) 1990; 14
Sabut, Sahoo, Kanungo (b21) 2017; 108
Hammad, Maher, Wang (b22) 2018; 125
Liu, Wang, Liu (b11) 2017; 234
Yu, Li, Zhang (b16) 2017; 148
Atal, Singh (b29) 2020; 196
Kong, Zhu, Wu (b20) 2019; 177
Yuki, Hamido, Lih (b4) 2018; 467
Yang, Si, Wang (b24) 2019; 152
Gharehbaghi, Linden (b45) 2018; 29
Kolanowski, Swietlicka, Kapela (b38) 2018; 319
Mario, Paolo, Mario (b2) 2017; 67
Wang (b9) 2020; 102
Moody, Mark (b34) 2001; 20
Baalman, Schroevers, Oakley (b25) 2020; 316
Goldberger, Amaral, Glass (b33) 2000; 101
Ruiz, Rueda, Cuellar (b14) 2017; 92
Chen, Hua, Zhang (b28) 2020; 57
Kingma, Ba (b39) 2014
Yu, Wang, Liu (b17) 2019; 5
Buscema, Grossi, Massini (b23) 2020; 191
Ross, Adams, Tasoulis (b42) 2012; 33
Ramachandran, Thangapandian, Rajaguru (b5) 2020; 150
He, Zhang, Ren (b44) 2015
Acharya, Fujita, Adam (b18) 2017; 377
Li, Li, Xiong (b37) 2014; 55
Ioffe, Szegedy (b40) 2015
Oliver, Alex, Murtadha (b27) 2018; 102
Solgi, Karami, Poorolajal (b43) 2017; 11
Han, Shi (b7) 2020; 185
Gao, Wang, Liu (b31) 2021; 212
Liu (10.1016/j.measurement.2021.109806_b11) 2017; 234
Yu (10.1016/j.measurement.2021.109806_b16) 2017; 148
Yang (10.1016/j.measurement.2021.109806_b24) 2019; 152
Acharya (10.1016/j.measurement.2021.109806_b26) 2017; 405
Solgi (10.1016/j.measurement.2021.109806_b43) 2017; 11
Wang (10.1016/j.measurement.2021.109806_b12) 2020; 58
Yu (10.1016/j.measurement.2021.109806_b17) 2019; 5
Kong (10.1016/j.measurement.2021.109806_b20) 2019; 177
Li (10.1016/j.measurement.2021.109806_b37) 2014; 55
Ross (10.1016/j.measurement.2021.109806_b42) 2012; 33
Oliver (10.1016/j.measurement.2021.109806_b27) 2018; 102
Ramachandran (10.1016/j.measurement.2021.109806_b5) 2020; 150
Kumar (10.1016/j.measurement.2021.109806_b19) 2018; 38
Wang (10.1016/j.measurement.2021.109806_b3) 2020; 55
Yao (10.1016/j.measurement.2021.109806_b30) 2020; 53
Appathurai (10.1016/j.measurement.2021.109806_b1) 2019; 147
Nakano (10.1016/j.measurement.2021.109806_b41) 2017; 73
Li (10.1016/j.measurement.2021.109806_b35) 2019; 80
Baalman (10.1016/j.measurement.2021.109806_b25) 2020; 316
Gharehbaghi (10.1016/j.measurement.2021.109806_b45) 2018; 29
Kingma (10.1016/j.measurement.2021.109806_b39) 2014
Gao (10.1016/j.measurement.2021.109806_b31) 2021; 212
Acharya (10.1016/j.measurement.2021.109806_b18) 2017; 377
Lee (10.1016/j.measurement.2021.109806_b6) 2012; 60
Ruiz (10.1016/j.measurement.2021.109806_b14) 2017; 92
Yuki (10.1016/j.measurement.2021.109806_b4) 2018; 467
Atal (10.1016/j.measurement.2021.109806_b29) 2020; 196
Buscema (10.1016/j.measurement.2021.109806_b23) 2020; 191
Elman (10.1016/j.measurement.2021.109806_b36) 1990; 14
Hammad (10.1016/j.measurement.2021.109806_b22) 2018; 125
Kruger (10.1016/j.measurement.2021.109806_b8) 2019; 104
Goldberger (10.1016/j.measurement.2021.109806_b33) 2000; 101
Lecun (10.1016/j.measurement.2021.109806_b10) 2015; 521
Chen (10.1016/j.measurement.2021.109806_b28) 2020; 57
Rai (10.1016/j.measurement.2021.109806_b13) 2013; 46
Yang (10.1016/j.measurement.2021.109806_b15) 2019; 143
Wang (10.1016/j.measurement.2021.109806_b9) 2020; 102
Sabut (10.1016/j.measurement.2021.109806_b21) 2017; 108
Kolanowski (10.1016/j.measurement.2021.109806_b38) 2018; 319
Han (10.1016/j.measurement.2021.109806_b7) 2020; 185
Ioffe (10.1016/j.measurement.2021.109806_b40) 2015
Mario (10.1016/j.measurement.2021.109806_b2) 2017; 67
Shi (10.1016/j.measurement.2021.109806_b32) 2020; 187
Moody (10.1016/j.measurement.2021.109806_b34) 2001; 20
He (10.1016/j.measurement.2021.109806_b44) 2015
References_xml – volume: 125
  start-page: 634
  year: 2018
  end-page: 644
  ident: b22
  article-title: Detection of abnormal heart conditions based on characteristics of ECG signals
  publication-title: Measurement
– year: 2015
  ident: b40
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning (ICML)
– volume: 147
  year: 2019
  ident: b1
  article-title: A study on ECG signal characterization and practical implementation of some ECG characterization techniques
  publication-title: Measurement
– volume: 148
  start-page: 895
  year: 2017
  end-page: 904
  ident: b16
  article-title: An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on Elman neural network
  publication-title: Energ. Convers. Manage.
– volume: 58
  year: 2020
  ident: b12
  article-title: A high-precision arrhythmia classification method based on dual fully connected neural network
  publication-title: Biomed. Signal Process.
– year: 2015
  ident: b44
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
  publication-title: International Conference on Computer Vision (CVPR)
– volume: 319
  start-page: 236
  year: 2018
  end-page: 244
  ident: b38
  article-title: Multisensor data fusion using Elman neural networks
  publication-title: Appl. Math. Comput.
– year: 2014
  ident: b39
  article-title: Adam: a method for stochastic optimization
  publication-title: Comput. Sci.
– volume: 92
  start-page: 380
  year: 2017
  end-page: 389
  ident: b14
  article-title: Energy consumption forecasting based on Elman neural networks with evolutive optimization
  publication-title: Expert Syst. Appl.
– volume: 150
  year: 2020
  ident: b5
  article-title: Computerized approach for cardiovascular risk level detection using photoplethysmography signals
  publication-title: Measurement
– volume: 377
  start-page: 17
  year: 2017
  end-page: 29
  ident: b18
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study
  publication-title: Inform. Sci.
– volume: 80
  start-page: 400
  year: 2019
  end-page: 413
  ident: b35
  article-title: Automatic diagnosis of cardiac arrhythmia in electrocardiograms via multigranulation computing
  publication-title: Appl. Soft Comput.
– volume: 405
  start-page: 81
  year: 2017
  end-page: 90
  ident: b26
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inform. Sci.
– volume: 53
  start-page: 174
  year: 2020
  end-page: 182
  ident: b30
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inform. Fusion
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: b36
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
– volume: 33
  start-page: 191
  year: 2012
  end-page: 198
  ident: b42
  article-title: Exponentially weighted moving average charts for detecting cconcept drift
  publication-title: Pattern Recognit. Lett.
– volume: 191
  year: 2020
  ident: b23
  article-title: Computer aided diagnosis for atrial fibrillation based on new artificial adaptive systems
  publication-title: Comput. Methods Programs Biomed.
– volume: 102
  start-page: 327
  year: 2018
  end-page: 335
  ident: b27
  article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals
  publication-title: Comput. Biol. Med.
– volume: 316
  start-page: 130
  year: 2020
  end-page: 136
  ident: b25
  article-title: A morphology based deep learning model for atrial fibrillation detection using single cycle electrocardiographic samples
  publication-title: Int. J. Cardiol.
– volume: 143
  start-page: 27
  year: 2019
  end-page: 38
  ident: b15
  article-title: Remaining useful life prediction of ultrasonic motor based on Elman neural network with improved particle swarm optimization
  publication-title: Measurement
– volume: 57
  year: 2020
  ident: b28
  article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM
  publication-title: Biomed. Signal Process.
– volume: 187
  year: 2020
  ident: b32
  article-title: An incremental learning system for atrial fibrillation detection based on transfer learning and active learning
  publication-title: Comput. Methods Programs Biomed.
– volume: 104
  start-page: 310
  year: 2019
  end-page: 318
  ident: b8
  article-title: Bimodal classification algorithm for atrial fibrillation detection from m-health ECG recordings
  publication-title: Comput. Biol. Med.
– volume: 102
  start-page: 670
  year: 2020
  end-page: 679
  ident: b9
  article-title: A deep learning approach for atrial fibrillation signals classification based on convolutional and modified elman neural network
  publication-title: Future Gener. Comput. Syst.
– volume: 46
  start-page: 3238
  year: 2013
  end-page: 3246
  ident: b13
  article-title: ECG Signal processing for abnormalities detection using multi-resolution wavelet transform and artificial neural network classifier
  publication-title: Measurement
– volume: 60
  start-page: 203
  year: 2012
  end-page: 206
  ident: b6
  article-title: Atrial fibrillation detection using an iPhone 4S
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 196
  year: 2020
  ident: b29
  article-title: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network
  publication-title: Comput. Methods Programs Biomed.
– volume: 11
  start-page: 389
  year: 2017
  end-page: 392
  ident: b43
  article-title: Timely detection of influenza outbreaks in Iran: Evaluating the performance of the exponentially weighted moving average
  publication-title: J. Infect. Public Health
– volume: 67
  start-page: 189
  year: 2017
  end-page: 202
  ident: b2
  article-title: ECG Databases for biometric systems: a systematic review
  publication-title: Expert Syst. Appl.
– volume: 73
  start-page: 187
  year: 2017
  end-page: 200
  ident: b41
  article-title: Generalized exponential moving average (EMA) model with particle filtering and anomaly detection
  publication-title: Expert Syst. Appl.
– volume: 177
  start-page: 183
  year: 2019
  end-page: 192
  ident: b20
  article-title: A novel IRBF-RVM model for diagnosis of atrial fibrillation
  publication-title: Comput. Methods Programs Biomed.
– volume: 108
  start-page: 55
  year: 2017
  end-page: 66
  ident: b21
  article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities
  publication-title: Measurement
– volume: 101
  start-page: 215
  year: 2000
  end-page: 220
  ident: b33
  article-title: PhysioBank, physioToolkit, and physionet components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 185
  year: 2020
  ident: b7
  article-title: MLResNet: a novel network to detect and locate myocardial infarction using 12 leads ECG
  publication-title: Comput. Methods Programs Biomed.
– volume: 38
  start-page: 564
  year: 2018
  end-page: 573
  ident: b19
  article-title: Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform
  publication-title: Biocybern. Biomed. Eng.
– volume: 5
  start-page: 1365
  year: 2019
  end-page: 1374
  ident: b17
  article-title: System identification of PEM fuel cells using an improved Elman neural network and a new hybrid optimization algorithm
  publication-title: Energy Rep.
– volume: 467
  start-page: 99
  year: 2018
  end-page: 114
  ident: b4
  article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: a review
  publication-title: Inform. Sci.
– volume: 212
  year: 2021
  ident: b31
  article-title: An end-to-end atrial fibrillation detection by a novel residual-based temporal attention convolutional neural network with exponential nonlinearity loss
  publication-title: Knowl-Based. Syst.
– volume: 55
  start-page: 749
  year: 2014
  end-page: 759
  ident: b37
  article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting
  publication-title: Int. J. Electr. Power
– volume: 152
  year: 2019
  ident: b24
  article-title: A novel method for identifying electrocardiograms using an independent component analysis and principal component analysis network
  publication-title: Measurement
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: b34
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 29
  start-page: 4102
  year: 2018
  end-page: 4115
  ident: b45
  article-title: A deep machine learning method for classifying cyclic time series of biological signals using time-growing neural network
  publication-title: IEEE Trans. Neur. Net. Lear.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b10
  article-title: Deep learning
  publication-title: Nature
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: b11
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– volume: 55
  year: 2020
  ident: b3
  article-title: Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process
  publication-title: Biomed. Signal Process.
– volume: 38
  start-page: 564
  year: 2018
  ident: 10.1016/j.measurement.2021.109806_b19
  article-title: Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.04.004
– volume: 80
  start-page: 400
  year: 2019
  ident: 10.1016/j.measurement.2021.109806_b35
  article-title: Automatic diagnosis of cardiac arrhythmia in electrocardiograms via multigranulation computing
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.04.007
– volume: 150
  year: 2020
  ident: 10.1016/j.measurement.2021.109806_b5
  article-title: Computerized approach for cardiovascular risk level detection using photoplethysmography signals
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107048
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.measurement.2021.109806_b11
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– year: 2015
  ident: 10.1016/j.measurement.2021.109806_b44
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
– volume: 143
  start-page: 27
  year: 2019
  ident: 10.1016/j.measurement.2021.109806_b15
  article-title: Remaining useful life prediction of ultrasonic motor based on Elman neural network with improved particle swarm optimization
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.05.013
– volume: 33
  start-page: 191
  issue: 2
  year: 2012
  ident: 10.1016/j.measurement.2021.109806_b42
  article-title: Exponentially weighted moving average charts for detecting cconcept drift
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.08.019
– volume: 11
  start-page: 389
  issue: 3
  year: 2017
  ident: 10.1016/j.measurement.2021.109806_b43
  article-title: Timely detection of influenza outbreaks in Iran: Evaluating the performance of the exponentially weighted moving average
  publication-title: J. Infect. Public Health
  doi: 10.1016/j.jiph.2017.09.011
– volume: 53
  start-page: 174
  year: 2020
  ident: 10.1016/j.measurement.2021.109806_b30
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2019.06.024
– volume: 147
  year: 2019
  ident: 10.1016/j.measurement.2021.109806_b1
  article-title: A study on ECG signal characterization and practical implementation of some ECG characterization techniques
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.02.040
– volume: 467
  start-page: 99
  year: 2018
  ident: 10.1016/j.measurement.2021.109806_b4
  article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: a review
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.07.063
– year: 2015
  ident: 10.1016/j.measurement.2021.109806_b40
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– volume: 46
  start-page: 3238
  year: 2013
  ident: 10.1016/j.measurement.2021.109806_b13
  article-title: ECG Signal processing for abnormalities detection using multi-resolution wavelet transform and artificial neural network classifier
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.05.021
– volume: 196
  year: 2020
  ident: 10.1016/j.measurement.2021.109806_b29
  article-title: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105607
– volume: 55
  year: 2020
  ident: 10.1016/j.measurement.2021.109806_b3
  article-title: Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process
  publication-title: Biomed. Signal Process.
  doi: 10.1016/j.bspc.2019.101662
– volume: 5
  start-page: 1365
  year: 2019
  ident: 10.1016/j.measurement.2021.109806_b17
  article-title: System identification of PEM fuel cells using an improved Elman neural network and a new hybrid optimization algorithm
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2019.09.039
– year: 2014
  ident: 10.1016/j.measurement.2021.109806_b39
  article-title: Adam: a method for stochastic optimization
  publication-title: Comput. Sci.
– volume: 101
  start-page: 215
  issue: 23
  year: 2000
  ident: 10.1016/j.measurement.2021.109806_b33
  article-title: PhysioBank, physioToolkit, and physionet components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 60
  start-page: 203
  year: 2012
  ident: 10.1016/j.measurement.2021.109806_b6
  article-title: Atrial fibrillation detection using an iPhone 4S
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2208112
– volume: 125
  start-page: 634
  year: 2018
  ident: 10.1016/j.measurement.2021.109806_b22
  article-title: Detection of abnormal heart conditions based on characteristics of ECG signals
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.05.033
– volume: 102
  start-page: 670
  year: 2020
  ident: 10.1016/j.measurement.2021.109806_b9
  article-title: A deep learning approach for atrial fibrillation signals classification based on convolutional and modified elman neural network
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.09.012
– volume: 148
  start-page: 895
  year: 2017
  ident: 10.1016/j.measurement.2021.109806_b16
  article-title: An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on Elman neural network
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2017.05.063
– volume: 58
  year: 2020
  ident: 10.1016/j.measurement.2021.109806_b12
  article-title: A high-precision arrhythmia classification method based on dual fully connected neural network
  publication-title: Biomed. Signal Process.
  doi: 10.1016/j.bspc.2020.101874
– volume: 177
  start-page: 183
  year: 2019
  ident: 10.1016/j.measurement.2021.109806_b20
  article-title: A novel IRBF-RVM model for diagnosis of atrial fibrillation
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.05.028
– volume: 377
  start-page: 17
  year: 2017
  ident: 10.1016/j.measurement.2021.109806_b18
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.10.013
– volume: 316
  start-page: 130
  year: 2020
  ident: 10.1016/j.measurement.2021.109806_b25
  article-title: A morphology based deep learning model for atrial fibrillation detection using single cycle electrocardiographic samples
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2020.04.046
– volume: 57
  year: 2020
  ident: 10.1016/j.measurement.2021.109806_b28
  article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM
  publication-title: Biomed. Signal Process.
  doi: 10.1016/j.bspc.2019.101819
– volume: 108
  start-page: 55
  issue: 108
  year: 2017
  ident: 10.1016/j.measurement.2021.109806_b21
  article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities
  publication-title: Measurement
– volume: 152
  year: 2019
  ident: 10.1016/j.measurement.2021.109806_b24
  article-title: A novel method for identifying electrocardiograms using an independent component analysis and principal component analysis network
  publication-title: Measurement
– volume: 102
  start-page: 327
  year: 2018
  ident: 10.1016/j.measurement.2021.109806_b27
  article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.07.001
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.measurement.2021.109806_b34
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– volume: 405
  start-page: 81
  year: 2017
  ident: 10.1016/j.measurement.2021.109806_b26
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.04.012
– volume: 73
  start-page: 187
  year: 2017
  ident: 10.1016/j.measurement.2021.109806_b41
  article-title: Generalized exponential moving average (EMA) model with particle filtering and anomaly detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.12.034
– volume: 191
  year: 2020
  ident: 10.1016/j.measurement.2021.109806_b23
  article-title: Computer aided diagnosis for atrial fibrillation based on new artificial adaptive systems
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105401
– volume: 29
  start-page: 4102
  issue: 9
  year: 2018
  ident: 10.1016/j.measurement.2021.109806_b45
  article-title: A deep machine learning method for classifying cyclic time series of biological signals using time-growing neural network
  publication-title: IEEE Trans. Neur. Net. Lear.
  doi: 10.1109/TNNLS.2017.2754294
– volume: 92
  start-page: 380
  year: 2017
  ident: 10.1016/j.measurement.2021.109806_b14
  article-title: Energy consumption forecasting based on Elman neural networks with evolutive optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.059
– volume: 319
  start-page: 236
  year: 2018
  ident: 10.1016/j.measurement.2021.109806_b38
  article-title: Multisensor data fusion using Elman neural networks
  publication-title: Appl. Math. Comput.
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.measurement.2021.109806_b10
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 212
  year: 2021
  ident: 10.1016/j.measurement.2021.109806_b31
  article-title: An end-to-end atrial fibrillation detection by a novel residual-based temporal attention convolutional neural network with exponential nonlinearity loss
  publication-title: Knowl-Based. Syst.
  doi: 10.1016/j.knosys.2020.106589
– volume: 104
  start-page: 310
  year: 2019
  ident: 10.1016/j.measurement.2021.109806_b8
  article-title: Bimodal classification algorithm for atrial fibrillation detection from m-health ECG recordings
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.11.016
– volume: 67
  start-page: 189
  year: 2017
  ident: 10.1016/j.measurement.2021.109806_b2
  article-title: ECG Databases for biometric systems: a systematic review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.030
– volume: 185
  year: 2020
  ident: 10.1016/j.measurement.2021.109806_b7
  article-title: MLResNet: a novel network to detect and locate myocardial infarction using 12 leads ECG
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105138
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  ident: 10.1016/j.measurement.2021.109806_b36
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1402_1
– volume: 55
  start-page: 749
  year: 2014
  ident: 10.1016/j.measurement.2021.109806_b37
  article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting
  publication-title: Int. J. Electr. Power
  doi: 10.1016/j.ijepes.2013.10.020
– volume: 187
  year: 2020
  ident: 10.1016/j.measurement.2021.109806_b32
  article-title: An incremental learning system for atrial fibrillation detection based on transfer learning and active learning
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105219
SSID ssj0006396
Score 2.3123543
Snippet Atrial fibrillation is a most common arrhythmia. An early and accurate detection for the cure and even spread of this disease is considerably critical. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109806
SubjectTerms Algorithms
Arrhythmia
Artificial neural networks
Atrial fibrillation
Cardiac arrhythmia
Deep learning
Diagnosis
Electrocardiography
Exponential moving average algorithm
Fibrillation
Intelligent networks
Modified Elman neural network
Neural networks
Physicians
Representations
Visual signals
Title Automatic identification of atrial fibrillation based on the modified Elman neural network with exponential moving average algorithm
URI https://dx.doi.org/10.1016/j.measurement.2021.109806
https://www.proquest.com/docview/2582220527
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AKRWK
  dateStart: 19830101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EUfQgPvFNBK91t0napOBlEWVV9KKCt5Cmraxs22VdwZMnf7gzfbgqHgRvTZukJZPMTCZfvwE4EqHweRb5XpxFwpMu4Z61KvBirrgO0D9wlk50r2_C_r28fAgeZuC0_ReGYJWN7q91eqWtmzudZjQ7o8Ggc9slqnE0QJwO-gNF-3YpFWUxOH6bwjzQAod1nEV4VHsBDqcYr3wah8OtIveJXElT8qPfbdQPbV2ZoPMVWG58R9arP28VZtJiDZa-MAquwXyF6HTP6_Dee5mUFR8rGyQNJKiSAiszZqtkHSwjvP-wRsMxsmcJwwt0CVleJtgAy2fD3BaMWC-xflFjxhkFb1n6OioL6hgf5FVcgllcF6ifmB0-lmOsk2_A3fnZ3Wnfa1IueI6raOI5azP0iGIVZ1Y6LlIdajRYNhbcdS3ROiQ6lV0tRWKj1PpaOYkeURKjm0Pbq02YLfDdW8AClYpIOhk6JymjSeSLTDkUgM4SbbXdBt2OsXENHTllxRiaFnf2ZL6Ix5B4TC2ebeCfTUc1J8dfGp20gjTfJphB2_GX5nut8E2zyp8ND8i96gZc7fyv911YpFINEtyD2cn4Jd1HZ2cSH1Sz-QDmehdX_ZsPnv8ChA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-qmGDbYeJjiG4MjMQ1tLGd2JF2QVWrspVeKBI3y3GSqVOTVNBKO3HiD997-VgZ2gFptyT2cyI_-335l_cAzkUofJ5FvhdnkfCkS7hnrQq8mCuuA7QPnKUT3etpOL6V3-6Cuw4M2n9hCFbZyP5aplfSunnSa2azt5zPezd9SjWOCojTQX-g0G9_IwOuyAO7eNzgPFAFh3WgRXjUfQfONiCvfBOIQ1-R-5RdSVP1o38rqRfiutJBo1340BiP7LL-vj3opMU-vH-WUnAftitIp3s4gKfL9aqsErKyedJggio2sDJjtqrWwTIC_C9qOBwjhZYwvECbkOVlggR4P1zktmCU9hL7FzVonFH0lqW_lmVBA2NDXgUmmMWNgQKK2cWP8h775B9hNhrOBmOvqbngOa6ileeszdAkilWcWem4SHWoUWPZWHDXt5TXIdGp7GspEhul1tfKSTSJkhjtHPKvDmGrwHcfAQtUKiLpZOicpJImkS8y5ZABOku01bYLup1j45p85FQWY2Fa4NlP84w9hthjavZ0gf8hXdZJOV5D9LVlpPlrhRlUHq8hP26Zb5pt_mB4QPZVH1fdp_8b_RTejmfXEzO5mn7_DO-opUYMHsPW6n6dfkHLZxWfVCv7N4aOBBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+atrial+fibrillation+based+on+the+modified+Elman+neural+network+with+exponential+moving+average+algorithm&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Song%2C+Zhanjie&rft.au=Wang%2C+Jibin&rft.date=2021-10-01&rft.issn=0263-2241&rft.volume=183&rft.spage=109806&rft_id=info:doi/10.1016%2Fj.measurement.2021.109806&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2021_109806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon