Automatic identification of atrial fibrillation based on the modified Elman neural network with exponential moving average algorithm
Atrial fibrillation is a most common arrhythmia. An early and accurate detection for the cure and even spread of this disease is considerably critical. The visual examination of electrocardiogram signals is the most extensively used diagnosis approach, but this method is cumbersome and low-efficient...
Saved in:
| Published in | Measurement : journal of the International Measurement Confederation Vol. 183; p. 109806 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Elsevier Ltd
01.10.2021
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0263-2241 1873-412X |
| DOI | 10.1016/j.measurement.2021.109806 |
Cover
| Abstract | Atrial fibrillation is a most common arrhythmia. An early and accurate detection for the cure and even spread of this disease is considerably critical. The visual examination of electrocardiogram signals is the most extensively used diagnosis approach, but this method is cumbersome and low-efficient. In this work, we propose an intelligent network model based on the modified Elman neural network for signals discrimination. Motivated from the exponential moving average strategy, the proposed model is capable of fully modeling the information feedback and also effectively and efficiently striking a balance between current information representation and historical information representation in original Elman neural network. To evaluate its practicability, the model is also plugged into a convolutional neural network framework and two control subjects are established for a fair comparison. Experiments on the MIT-BIH atrial fibrillation and arrhythmia databases show that the proposed model can enjoy a consistent improvement in classification performance with the accuracy of 98.2% and 97.2% respectively and exhibit lower convergence rate than existing Elman network. Thanks to its high model performance, we are planning to develop the model into a computer-aided diagnosis system to assist physicians.
•We design modified Elman network (MENN) for atrial fibrillation (AF) detection.•Patient-independent validation ensures the model robustness.•The feature extraction and classification are not required.•To our knowledge, this is the first time to redesign ENN for AF detection. |
|---|---|
| AbstractList | Atrial fibrillation is a most common arrhythmia. An early and accurate detection for the cure and even spread of this disease is considerably critical. The visual examination of electrocardiogram signals is the most extensively used diagnosis approach, but this method is cumbersome and low-efficient. In this work, we propose an intelligent network model based on the modified Elman neural network for signals discrimination. Motivated from the exponential moving average strategy, the proposed model is capable of fully modeling the information feedback and also effectively and efficiently striking a balance between current information representation and historical information representation in original Elman neural network. To evaluate its practicability, the model is also plugged into a convolutional neural network framework and two control subjects are established for a fair comparison. Experiments on the MIT-BIH atrial fibrillation and arrhythmia databases show that the proposed model can enjoy a consistent improvement in classification performance with the accuracy of 98.2% and 97.2% respectively and exhibit lower convergence rate than existing Elman network. Thanks to its high model performance, we are planning to develop the model into a computer-aided diagnosis system to assist physicians.
•We design modified Elman network (MENN) for atrial fibrillation (AF) detection.•Patient-independent validation ensures the model robustness.•The feature extraction and classification are not required.•To our knowledge, this is the first time to redesign ENN for AF detection. Atrial fibrillation is a most common arrhythmia. An early and accurate detection for the cure and even spread of this disease is considerably critical. The visual examination of electrocardiogram signals is the most extensively used diagnosis approach, but this method is cumbersome and low-efficient. In this work, we propose an intelligent network model based on the modified Elman neural network for signals discrimination. Motivated from the exponential moving average strategy, the proposed model is capable of fully modeling the information feedback and also effectively and efficiently striking a balance between current information representation and historical information representation in original Elman neural network. To evaluate its practicability, the model is also plugged into a convolutional neural network framework and two control subjects are established for a fair comparison. Experiments on the MIT-BIH atrial fibrillation and arrhythmia databases show that the proposed model can enjoy a consistent improvement in classification performance with the accuracy of 98.2% and 97.2% respectively and exhibit lower convergence rate than existing Elman network. Thanks to its high model performance, we are planning to develop the model into a computer-aided diagnosis system to assist physicians. |
| ArticleNumber | 109806 |
| Author | Song, Zhanjie Wang, Jibin |
| Author_xml | – sequence: 1 givenname: Zhanjie surname: Song fullname: Song, Zhanjie – sequence: 2 givenname: Jibin surname: Wang fullname: Wang, Jibin email: wangjibin0429@163.com |
| BookMark | eNqNkD1vHCEQhpHlSD47-Q9YqfcC7CdVZJ2cD8lSGhfp0Cw7e-a8Cxdgz3GfH55xNkWUyhXM8M4zvO8lO_fBI2PXUmylkM2Hw3ZGSEvEGX3eKqEk9XUnmjO2kV1bFpVU38_ZRqimLJSq5AW7TOkghGhK3WzYr5slhxmys9wNhHCjs1QFz8PIIUcHEx9dH900re0eEg6cLvkB-RwGGqD6dprBc49LJL3H_BTiI39y-YHjzyP9mMD0MIeT83sOJ4ywRw7TPkTSzG_ZmxGmhO_-nlfs_tPt_e5Lcfft89fdzV1hVatzYQHGulF9249QWVVi13RKa-hLZQVIUbVDh5XoqnIAjUD2bVXLeui1LslwecXer9hjDD8WTNkcwhI9bTSq7pRSolYtqT6uKhtDShFHY13-4z1HcJORwrwkbw7mn-TNS_JmTZ4I-j_CMboZ4vOrZnfrLFIOJ4fRJOvQWxxcRJvNENwrKL8Bjvireg |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123453 crossref_primary_10_1016_j_health_2022_100110 crossref_primary_10_1016_j_energy_2022_124249 crossref_primary_10_1080_07038992_2022_2081538 crossref_primary_10_1016_j_jappgeo_2022_104821 crossref_primary_10_1007_s11831_023_09935_8 |
| Cites_doi | 10.1016/j.bbe.2018.04.004 10.1016/j.asoc.2019.04.007 10.1016/j.measurement.2019.107048 10.1016/j.neucom.2016.12.038 10.1016/j.measurement.2019.05.013 10.1016/j.patrec.2011.08.019 10.1016/j.jiph.2017.09.011 10.1016/j.inffus.2019.06.024 10.1016/j.measurement.2019.02.040 10.1016/j.ins.2018.07.063 10.1016/j.measurement.2013.05.021 10.1016/j.cmpb.2020.105607 10.1016/j.bspc.2019.101662 10.1016/j.egyr.2019.09.039 10.1161/01.CIR.101.23.e215 10.1109/TBME.2012.2208112 10.1016/j.measurement.2018.05.033 10.1016/j.future.2019.09.012 10.1016/j.enconman.2017.05.063 10.1016/j.bspc.2020.101874 10.1016/j.cmpb.2019.05.028 10.1016/j.ins.2016.10.013 10.1016/j.ijcard.2020.04.046 10.1016/j.bspc.2019.101819 10.1016/j.compbiomed.2018.07.001 10.1109/51.932724 10.1016/j.ins.2017.04.012 10.1016/j.eswa.2016.12.034 10.1016/j.cmpb.2020.105401 10.1109/TNNLS.2017.2754294 10.1016/j.eswa.2017.09.059 10.1038/nature14539 10.1016/j.knosys.2020.106589 10.1016/j.compbiomed.2018.11.016 10.1016/j.eswa.2016.09.030 10.1016/j.cmpb.2019.105138 10.1207/s15516709cog1402_1 10.1016/j.ijepes.2013.10.020 10.1016/j.cmpb.2019.105219 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier Science Ltd. Oct 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Oct 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2021.109806 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-412X |
| ExternalDocumentID | 10_1016_j_measurement_2021_109806 S0263224121007570 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF |
| ID | FETCH-LOGICAL-c279t-caaf562b7bfa4c23e868299ab32c0a1047d8e40843da9ea187c4515db9930003 |
| IEDL.DBID | .~1 |
| ISSN | 0263-2241 |
| IngestDate | Wed Aug 13 06:12:22 EDT 2025 Thu Oct 09 00:32:15 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Fri Feb 23 02:42:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 68Uxx Deep learning Modified Elman neural network 62P10 Exponential moving average algorithm Atrial fibrillation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c279t-caaf562b7bfa4c23e868299ab32c0a1047d8e40843da9ea187c4515db9930003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2582220527 |
| PQPubID | 2047460 |
| ParticipantIDs | proquest_journals_2582220527 crossref_citationtrail_10_1016_j_measurement_2021_109806 crossref_primary_10_1016_j_measurement_2021_109806 elsevier_sciencedirect_doi_10_1016_j_measurement_2021_109806 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Appathurai, Carol, Raja (b1) 2019; 147 Kruger, Latchamsetty, Langhals (b8) 2019; 104 Lecun, Bengio, Hinton (b10) 2015; 521 Acharya, Fujita, Lih (b26) 2017; 405 Yao, Wang, Fan (b30) 2020; 53 Yang, Wang, Zhang (b15) 2019; 143 Rai, Trivedi, Shukla (b13) 2013; 46 Kumar, Pachori, Acharya (b19) 2018; 38 Shi, Wang, Qin (b32) 2020; 187 Li, Chen, Ling (b35) 2019; 80 Nakano, Takahashi, Takahashi (b41) 2017; 73 Lee, Reyes, Mcmanus (b6) 2012; 60 Wang, Wang, Wang (b3) 2020; 55 Wang, Shi, Lin (b12) 2020; 58 Elman (b36) 1990; 14 Sabut, Sahoo, Kanungo (b21) 2017; 108 Hammad, Maher, Wang (b22) 2018; 125 Liu, Wang, Liu (b11) 2017; 234 Yu, Li, Zhang (b16) 2017; 148 Atal, Singh (b29) 2020; 196 Kong, Zhu, Wu (b20) 2019; 177 Yuki, Hamido, Lih (b4) 2018; 467 Yang, Si, Wang (b24) 2019; 152 Gharehbaghi, Linden (b45) 2018; 29 Kolanowski, Swietlicka, Kapela (b38) 2018; 319 Mario, Paolo, Mario (b2) 2017; 67 Wang (b9) 2020; 102 Moody, Mark (b34) 2001; 20 Baalman, Schroevers, Oakley (b25) 2020; 316 Goldberger, Amaral, Glass (b33) 2000; 101 Ruiz, Rueda, Cuellar (b14) 2017; 92 Chen, Hua, Zhang (b28) 2020; 57 Kingma, Ba (b39) 2014 Yu, Wang, Liu (b17) 2019; 5 Buscema, Grossi, Massini (b23) 2020; 191 Ross, Adams, Tasoulis (b42) 2012; 33 Ramachandran, Thangapandian, Rajaguru (b5) 2020; 150 He, Zhang, Ren (b44) 2015 Acharya, Fujita, Adam (b18) 2017; 377 Li, Li, Xiong (b37) 2014; 55 Ioffe, Szegedy (b40) 2015 Oliver, Alex, Murtadha (b27) 2018; 102 Solgi, Karami, Poorolajal (b43) 2017; 11 Han, Shi (b7) 2020; 185 Gao, Wang, Liu (b31) 2021; 212 Liu (10.1016/j.measurement.2021.109806_b11) 2017; 234 Yu (10.1016/j.measurement.2021.109806_b16) 2017; 148 Yang (10.1016/j.measurement.2021.109806_b24) 2019; 152 Acharya (10.1016/j.measurement.2021.109806_b26) 2017; 405 Solgi (10.1016/j.measurement.2021.109806_b43) 2017; 11 Wang (10.1016/j.measurement.2021.109806_b12) 2020; 58 Yu (10.1016/j.measurement.2021.109806_b17) 2019; 5 Kong (10.1016/j.measurement.2021.109806_b20) 2019; 177 Li (10.1016/j.measurement.2021.109806_b37) 2014; 55 Ross (10.1016/j.measurement.2021.109806_b42) 2012; 33 Oliver (10.1016/j.measurement.2021.109806_b27) 2018; 102 Ramachandran (10.1016/j.measurement.2021.109806_b5) 2020; 150 Kumar (10.1016/j.measurement.2021.109806_b19) 2018; 38 Wang (10.1016/j.measurement.2021.109806_b3) 2020; 55 Yao (10.1016/j.measurement.2021.109806_b30) 2020; 53 Appathurai (10.1016/j.measurement.2021.109806_b1) 2019; 147 Nakano (10.1016/j.measurement.2021.109806_b41) 2017; 73 Li (10.1016/j.measurement.2021.109806_b35) 2019; 80 Baalman (10.1016/j.measurement.2021.109806_b25) 2020; 316 Gharehbaghi (10.1016/j.measurement.2021.109806_b45) 2018; 29 Kingma (10.1016/j.measurement.2021.109806_b39) 2014 Gao (10.1016/j.measurement.2021.109806_b31) 2021; 212 Acharya (10.1016/j.measurement.2021.109806_b18) 2017; 377 Lee (10.1016/j.measurement.2021.109806_b6) 2012; 60 Ruiz (10.1016/j.measurement.2021.109806_b14) 2017; 92 Yuki (10.1016/j.measurement.2021.109806_b4) 2018; 467 Atal (10.1016/j.measurement.2021.109806_b29) 2020; 196 Buscema (10.1016/j.measurement.2021.109806_b23) 2020; 191 Elman (10.1016/j.measurement.2021.109806_b36) 1990; 14 Hammad (10.1016/j.measurement.2021.109806_b22) 2018; 125 Kruger (10.1016/j.measurement.2021.109806_b8) 2019; 104 Goldberger (10.1016/j.measurement.2021.109806_b33) 2000; 101 Lecun (10.1016/j.measurement.2021.109806_b10) 2015; 521 Chen (10.1016/j.measurement.2021.109806_b28) 2020; 57 Rai (10.1016/j.measurement.2021.109806_b13) 2013; 46 Yang (10.1016/j.measurement.2021.109806_b15) 2019; 143 Wang (10.1016/j.measurement.2021.109806_b9) 2020; 102 Sabut (10.1016/j.measurement.2021.109806_b21) 2017; 108 Kolanowski (10.1016/j.measurement.2021.109806_b38) 2018; 319 Han (10.1016/j.measurement.2021.109806_b7) 2020; 185 Ioffe (10.1016/j.measurement.2021.109806_b40) 2015 Mario (10.1016/j.measurement.2021.109806_b2) 2017; 67 Shi (10.1016/j.measurement.2021.109806_b32) 2020; 187 Moody (10.1016/j.measurement.2021.109806_b34) 2001; 20 He (10.1016/j.measurement.2021.109806_b44) 2015 |
| References_xml | – volume: 125 start-page: 634 year: 2018 end-page: 644 ident: b22 article-title: Detection of abnormal heart conditions based on characteristics of ECG signals publication-title: Measurement – year: 2015 ident: b40 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift publication-title: International Conference on Machine Learning (ICML) – volume: 147 year: 2019 ident: b1 article-title: A study on ECG signal characterization and practical implementation of some ECG characterization techniques publication-title: Measurement – volume: 148 start-page: 895 year: 2017 end-page: 904 ident: b16 article-title: An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on Elman neural network publication-title: Energ. Convers. Manage. – volume: 58 year: 2020 ident: b12 article-title: A high-precision arrhythmia classification method based on dual fully connected neural network publication-title: Biomed. Signal Process. – year: 2015 ident: b44 article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification publication-title: International Conference on Computer Vision (CVPR) – volume: 319 start-page: 236 year: 2018 end-page: 244 ident: b38 article-title: Multisensor data fusion using Elman neural networks publication-title: Appl. Math. Comput. – year: 2014 ident: b39 article-title: Adam: a method for stochastic optimization publication-title: Comput. Sci. – volume: 92 start-page: 380 year: 2017 end-page: 389 ident: b14 article-title: Energy consumption forecasting based on Elman neural networks with evolutive optimization publication-title: Expert Syst. Appl. – volume: 150 year: 2020 ident: b5 article-title: Computerized approach for cardiovascular risk level detection using photoplethysmography signals publication-title: Measurement – volume: 377 start-page: 17 year: 2017 end-page: 29 ident: b18 article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study publication-title: Inform. Sci. – volume: 80 start-page: 400 year: 2019 end-page: 413 ident: b35 article-title: Automatic diagnosis of cardiac arrhythmia in electrocardiograms via multigranulation computing publication-title: Appl. Soft Comput. – volume: 405 start-page: 81 year: 2017 end-page: 90 ident: b26 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inform. Sci. – volume: 53 start-page: 174 year: 2020 end-page: 182 ident: b30 article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network publication-title: Inform. Fusion – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: b36 article-title: Finding structure in time publication-title: Cogn. Sci. – volume: 33 start-page: 191 year: 2012 end-page: 198 ident: b42 article-title: Exponentially weighted moving average charts for detecting cconcept drift publication-title: Pattern Recognit. Lett. – volume: 191 year: 2020 ident: b23 article-title: Computer aided diagnosis for atrial fibrillation based on new artificial adaptive systems publication-title: Comput. Methods Programs Biomed. – volume: 102 start-page: 327 year: 2018 end-page: 335 ident: b27 article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals publication-title: Comput. Biol. Med. – volume: 316 start-page: 130 year: 2020 end-page: 136 ident: b25 article-title: A morphology based deep learning model for atrial fibrillation detection using single cycle electrocardiographic samples publication-title: Int. J. Cardiol. – volume: 143 start-page: 27 year: 2019 end-page: 38 ident: b15 article-title: Remaining useful life prediction of ultrasonic motor based on Elman neural network with improved particle swarm optimization publication-title: Measurement – volume: 57 year: 2020 ident: b28 article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM publication-title: Biomed. Signal Process. – volume: 187 year: 2020 ident: b32 article-title: An incremental learning system for atrial fibrillation detection based on transfer learning and active learning publication-title: Comput. Methods Programs Biomed. – volume: 104 start-page: 310 year: 2019 end-page: 318 ident: b8 article-title: Bimodal classification algorithm for atrial fibrillation detection from m-health ECG recordings publication-title: Comput. Biol. Med. – volume: 102 start-page: 670 year: 2020 end-page: 679 ident: b9 article-title: A deep learning approach for atrial fibrillation signals classification based on convolutional and modified elman neural network publication-title: Future Gener. Comput. Syst. – volume: 46 start-page: 3238 year: 2013 end-page: 3246 ident: b13 article-title: ECG Signal processing for abnormalities detection using multi-resolution wavelet transform and artificial neural network classifier publication-title: Measurement – volume: 60 start-page: 203 year: 2012 end-page: 206 ident: b6 article-title: Atrial fibrillation detection using an iPhone 4S publication-title: IEEE Trans. Biomed. Eng. – volume: 196 year: 2020 ident: b29 article-title: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network publication-title: Comput. Methods Programs Biomed. – volume: 11 start-page: 389 year: 2017 end-page: 392 ident: b43 article-title: Timely detection of influenza outbreaks in Iran: Evaluating the performance of the exponentially weighted moving average publication-title: J. Infect. Public Health – volume: 67 start-page: 189 year: 2017 end-page: 202 ident: b2 article-title: ECG Databases for biometric systems: a systematic review publication-title: Expert Syst. Appl. – volume: 73 start-page: 187 year: 2017 end-page: 200 ident: b41 article-title: Generalized exponential moving average (EMA) model with particle filtering and anomaly detection publication-title: Expert Syst. Appl. – volume: 177 start-page: 183 year: 2019 end-page: 192 ident: b20 article-title: A novel IRBF-RVM model for diagnosis of atrial fibrillation publication-title: Comput. Methods Programs Biomed. – volume: 108 start-page: 55 year: 2017 end-page: 66 ident: b21 article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities publication-title: Measurement – volume: 101 start-page: 215 year: 2000 end-page: 220 ident: b33 article-title: PhysioBank, physioToolkit, and physionet components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 185 year: 2020 ident: b7 article-title: MLResNet: a novel network to detect and locate myocardial infarction using 12 leads ECG publication-title: Comput. Methods Programs Biomed. – volume: 38 start-page: 564 year: 2018 end-page: 573 ident: b19 article-title: Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform publication-title: Biocybern. Biomed. Eng. – volume: 5 start-page: 1365 year: 2019 end-page: 1374 ident: b17 article-title: System identification of PEM fuel cells using an improved Elman neural network and a new hybrid optimization algorithm publication-title: Energy Rep. – volume: 467 start-page: 99 year: 2018 end-page: 114 ident: b4 article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: a review publication-title: Inform. Sci. – volume: 212 year: 2021 ident: b31 article-title: An end-to-end atrial fibrillation detection by a novel residual-based temporal attention convolutional neural network with exponential nonlinearity loss publication-title: Knowl-Based. Syst. – volume: 55 start-page: 749 year: 2014 end-page: 759 ident: b37 article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting publication-title: Int. J. Electr. Power – volume: 152 year: 2019 ident: b24 article-title: A novel method for identifying electrocardiograms using an independent component analysis and principal component analysis network publication-title: Measurement – volume: 20 start-page: 45 year: 2001 end-page: 50 ident: b34 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. – volume: 29 start-page: 4102 year: 2018 end-page: 4115 ident: b45 article-title: A deep machine learning method for classifying cyclic time series of biological signals using time-growing neural network publication-title: IEEE Trans. Neur. Net. Lear. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b10 article-title: Deep learning publication-title: Nature – volume: 234 start-page: 11 year: 2017 end-page: 26 ident: b11 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing – volume: 55 year: 2020 ident: b3 article-title: Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process publication-title: Biomed. Signal Process. – volume: 38 start-page: 564 year: 2018 ident: 10.1016/j.measurement.2021.109806_b19 article-title: Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2018.04.004 – volume: 80 start-page: 400 year: 2019 ident: 10.1016/j.measurement.2021.109806_b35 article-title: Automatic diagnosis of cardiac arrhythmia in electrocardiograms via multigranulation computing publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.04.007 – volume: 150 year: 2020 ident: 10.1016/j.measurement.2021.109806_b5 article-title: Computerized approach for cardiovascular risk level detection using photoplethysmography signals publication-title: Measurement doi: 10.1016/j.measurement.2019.107048 – volume: 234 start-page: 11 year: 2017 ident: 10.1016/j.measurement.2021.109806_b11 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – year: 2015 ident: 10.1016/j.measurement.2021.109806_b44 article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification – volume: 143 start-page: 27 year: 2019 ident: 10.1016/j.measurement.2021.109806_b15 article-title: Remaining useful life prediction of ultrasonic motor based on Elman neural network with improved particle swarm optimization publication-title: Measurement doi: 10.1016/j.measurement.2019.05.013 – volume: 33 start-page: 191 issue: 2 year: 2012 ident: 10.1016/j.measurement.2021.109806_b42 article-title: Exponentially weighted moving average charts for detecting cconcept drift publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2011.08.019 – volume: 11 start-page: 389 issue: 3 year: 2017 ident: 10.1016/j.measurement.2021.109806_b43 article-title: Timely detection of influenza outbreaks in Iran: Evaluating the performance of the exponentially weighted moving average publication-title: J. Infect. Public Health doi: 10.1016/j.jiph.2017.09.011 – volume: 53 start-page: 174 year: 2020 ident: 10.1016/j.measurement.2021.109806_b30 article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network publication-title: Inform. Fusion doi: 10.1016/j.inffus.2019.06.024 – volume: 147 year: 2019 ident: 10.1016/j.measurement.2021.109806_b1 article-title: A study on ECG signal characterization and practical implementation of some ECG characterization techniques publication-title: Measurement doi: 10.1016/j.measurement.2019.02.040 – volume: 467 start-page: 99 year: 2018 ident: 10.1016/j.measurement.2021.109806_b4 article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: a review publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.07.063 – year: 2015 ident: 10.1016/j.measurement.2021.109806_b40 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – volume: 46 start-page: 3238 year: 2013 ident: 10.1016/j.measurement.2021.109806_b13 article-title: ECG Signal processing for abnormalities detection using multi-resolution wavelet transform and artificial neural network classifier publication-title: Measurement doi: 10.1016/j.measurement.2013.05.021 – volume: 196 year: 2020 ident: 10.1016/j.measurement.2021.109806_b29 article-title: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105607 – volume: 55 year: 2020 ident: 10.1016/j.measurement.2021.109806_b3 article-title: Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2019.101662 – volume: 5 start-page: 1365 year: 2019 ident: 10.1016/j.measurement.2021.109806_b17 article-title: System identification of PEM fuel cells using an improved Elman neural network and a new hybrid optimization algorithm publication-title: Energy Rep. doi: 10.1016/j.egyr.2019.09.039 – year: 2014 ident: 10.1016/j.measurement.2021.109806_b39 article-title: Adam: a method for stochastic optimization publication-title: Comput. Sci. – volume: 101 start-page: 215 issue: 23 year: 2000 ident: 10.1016/j.measurement.2021.109806_b33 article-title: PhysioBank, physioToolkit, and physionet components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 60 start-page: 203 year: 2012 ident: 10.1016/j.measurement.2021.109806_b6 article-title: Atrial fibrillation detection using an iPhone 4S publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2208112 – volume: 125 start-page: 634 year: 2018 ident: 10.1016/j.measurement.2021.109806_b22 article-title: Detection of abnormal heart conditions based on characteristics of ECG signals publication-title: Measurement doi: 10.1016/j.measurement.2018.05.033 – volume: 102 start-page: 670 year: 2020 ident: 10.1016/j.measurement.2021.109806_b9 article-title: A deep learning approach for atrial fibrillation signals classification based on convolutional and modified elman neural network publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.09.012 – volume: 148 start-page: 895 year: 2017 ident: 10.1016/j.measurement.2021.109806_b16 article-title: An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on Elman neural network publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2017.05.063 – volume: 58 year: 2020 ident: 10.1016/j.measurement.2021.109806_b12 article-title: A high-precision arrhythmia classification method based on dual fully connected neural network publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2020.101874 – volume: 177 start-page: 183 year: 2019 ident: 10.1016/j.measurement.2021.109806_b20 article-title: A novel IRBF-RVM model for diagnosis of atrial fibrillation publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.05.028 – volume: 377 start-page: 17 year: 2017 ident: 10.1016/j.measurement.2021.109806_b18 article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.10.013 – volume: 316 start-page: 130 year: 2020 ident: 10.1016/j.measurement.2021.109806_b25 article-title: A morphology based deep learning model for atrial fibrillation detection using single cycle electrocardiographic samples publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2020.04.046 – volume: 57 year: 2020 ident: 10.1016/j.measurement.2021.109806_b28 article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2019.101819 – volume: 108 start-page: 55 issue: 108 year: 2017 ident: 10.1016/j.measurement.2021.109806_b21 article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities publication-title: Measurement – volume: 152 year: 2019 ident: 10.1016/j.measurement.2021.109806_b24 article-title: A novel method for identifying electrocardiograms using an independent component analysis and principal component analysis network publication-title: Measurement – volume: 102 start-page: 327 year: 2018 ident: 10.1016/j.measurement.2021.109806_b27 article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.07.001 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 10.1016/j.measurement.2021.109806_b34 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – volume: 405 start-page: 81 year: 2017 ident: 10.1016/j.measurement.2021.109806_b26 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.04.012 – volume: 73 start-page: 187 year: 2017 ident: 10.1016/j.measurement.2021.109806_b41 article-title: Generalized exponential moving average (EMA) model with particle filtering and anomaly detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.12.034 – volume: 191 year: 2020 ident: 10.1016/j.measurement.2021.109806_b23 article-title: Computer aided diagnosis for atrial fibrillation based on new artificial adaptive systems publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105401 – volume: 29 start-page: 4102 issue: 9 year: 2018 ident: 10.1016/j.measurement.2021.109806_b45 article-title: A deep machine learning method for classifying cyclic time series of biological signals using time-growing neural network publication-title: IEEE Trans. Neur. Net. Lear. doi: 10.1109/TNNLS.2017.2754294 – volume: 92 start-page: 380 year: 2017 ident: 10.1016/j.measurement.2021.109806_b14 article-title: Energy consumption forecasting based on Elman neural networks with evolutive optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.059 – volume: 319 start-page: 236 year: 2018 ident: 10.1016/j.measurement.2021.109806_b38 article-title: Multisensor data fusion using Elman neural networks publication-title: Appl. Math. Comput. – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.measurement.2021.109806_b10 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 212 year: 2021 ident: 10.1016/j.measurement.2021.109806_b31 article-title: An end-to-end atrial fibrillation detection by a novel residual-based temporal attention convolutional neural network with exponential nonlinearity loss publication-title: Knowl-Based. Syst. doi: 10.1016/j.knosys.2020.106589 – volume: 104 start-page: 310 year: 2019 ident: 10.1016/j.measurement.2021.109806_b8 article-title: Bimodal classification algorithm for atrial fibrillation detection from m-health ECG recordings publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.11.016 – volume: 67 start-page: 189 year: 2017 ident: 10.1016/j.measurement.2021.109806_b2 article-title: ECG Databases for biometric systems: a systematic review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.09.030 – volume: 185 year: 2020 ident: 10.1016/j.measurement.2021.109806_b7 article-title: MLResNet: a novel network to detect and locate myocardial infarction using 12 leads ECG publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105138 – volume: 14 start-page: 179 issue: 2 year: 1990 ident: 10.1016/j.measurement.2021.109806_b36 article-title: Finding structure in time publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1402_1 – volume: 55 start-page: 749 year: 2014 ident: 10.1016/j.measurement.2021.109806_b37 article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting publication-title: Int. J. Electr. Power doi: 10.1016/j.ijepes.2013.10.020 – volume: 187 year: 2020 ident: 10.1016/j.measurement.2021.109806_b32 article-title: An incremental learning system for atrial fibrillation detection based on transfer learning and active learning publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105219 |
| SSID | ssj0006396 |
| Score | 2.3123543 |
| Snippet | Atrial fibrillation is a most common arrhythmia. An early and accurate detection for the cure and even spread of this disease is considerably critical. The... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 109806 |
| SubjectTerms | Algorithms Arrhythmia Artificial neural networks Atrial fibrillation Cardiac arrhythmia Deep learning Diagnosis Electrocardiography Exponential moving average algorithm Fibrillation Intelligent networks Modified Elman neural network Neural networks Physicians Representations Visual signals |
| Title | Automatic identification of atrial fibrillation based on the modified Elman neural network with exponential moving average algorithm |
| URI | https://dx.doi.org/10.1016/j.measurement.2021.109806 https://www.proquest.com/docview/2582220527 |
| Volume | 183 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AKRWK dateStart: 19830101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EUfQgPvFNBK91t0napOBlEWVV9KKCt5Cmraxs22VdwZMnf7gzfbgqHgRvTZukJZPMTCZfvwE4EqHweRb5XpxFwpMu4Z61KvBirrgO0D9wlk50r2_C_r28fAgeZuC0_ReGYJWN7q91eqWtmzudZjQ7o8Ggc9slqnE0QJwO-gNF-3YpFWUxOH6bwjzQAod1nEV4VHsBDqcYr3wah8OtIveJXElT8qPfbdQPbV2ZoPMVWG58R9arP28VZtJiDZa-MAquwXyF6HTP6_Dee5mUFR8rGyQNJKiSAiszZqtkHSwjvP-wRsMxsmcJwwt0CVleJtgAy2fD3BaMWC-xflFjxhkFb1n6OioL6hgf5FVcgllcF6ifmB0-lmOsk2_A3fnZ3Wnfa1IueI6raOI5azP0iGIVZ1Y6LlIdajRYNhbcdS3ROiQ6lV0tRWKj1PpaOYkeURKjm0Pbq02YLfDdW8AClYpIOhk6JymjSeSLTDkUgM4SbbXdBt2OsXENHTllxRiaFnf2ZL6Ix5B4TC2ebeCfTUc1J8dfGp20gjTfJphB2_GX5nut8E2zyp8ND8i96gZc7fyv911YpFINEtyD2cn4Jd1HZ2cSH1Sz-QDmehdX_ZsPnv8ChA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-qmGDbYeJjiG4MjMQ1tLGd2JF2QVWrspVeKBI3y3GSqVOTVNBKO3HiD997-VgZ2gFptyT2cyI_-335l_cAzkUofJ5FvhdnkfCkS7hnrQq8mCuuA7QPnKUT3etpOL6V3-6Cuw4M2n9hCFbZyP5aplfSunnSa2azt5zPezd9SjWOCojTQX-g0G9_IwOuyAO7eNzgPFAFh3WgRXjUfQfONiCvfBOIQ1-R-5RdSVP1o38rqRfiutJBo1340BiP7LL-vj3opMU-vH-WUnAftitIp3s4gKfL9aqsErKyedJggio2sDJjtqrWwTIC_C9qOBwjhZYwvECbkOVlggR4P1zktmCU9hL7FzVonFH0lqW_lmVBA2NDXgUmmMWNgQKK2cWP8h775B9hNhrOBmOvqbngOa6ileeszdAkilWcWem4SHWoUWPZWHDXt5TXIdGp7GspEhul1tfKSTSJkhjtHPKvDmGrwHcfAQtUKiLpZOicpJImkS8y5ZABOku01bYLup1j45p85FQWY2Fa4NlP84w9hthjavZ0gf8hXdZJOV5D9LVlpPlrhRlUHq8hP26Zb5pt_mB4QPZVH1fdp_8b_RTejmfXEzO5mn7_DO-opUYMHsPW6n6dfkHLZxWfVCv7N4aOBBk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+atrial+fibrillation+based+on+the+modified+Elman+neural+network+with+exponential+moving+average+algorithm&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Song%2C+Zhanjie&rft.au=Wang%2C+Jibin&rft.date=2021-10-01&rft.issn=0263-2241&rft.volume=183&rft.spage=109806&rft_id=info:doi/10.1016%2Fj.measurement.2021.109806&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2021_109806 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |