Case difference heuristic adaptation method based on deep reinforcement learning

To address the bottleneck problems of case adaptation knowledge acquisition and learning and the difficulty of simultaneously applying the network structure to multi-attribute case representation, this paper proposes applying deep reinforcement learning (DRL) to the learning of case difference heuri...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 270; p. 126545
Main Authors Yan, Aijun, Cheng, Zijun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 25.04.2025
Subjects
Online AccessGet full text
ISSN0957-4174
DOI10.1016/j.eswa.2025.126545

Cover

Abstract To address the bottleneck problems of case adaptation knowledge acquisition and learning and the difficulty of simultaneously applying the network structure to multi-attribute case representation, this paper proposes applying deep reinforcement learning (DRL) to the learning of case difference heuristic (CDH) adaptation knowledge and implementing the generation process of a case adaptation solution based on the “learning-evaluation-revision” idea. The method first establishes the connection between DRL and the CDH adaptation method and then introduces the corresponding principles. Next, the CDH adaptation algorithms of deep Q networks (DQN) and deep deterministic policy gradient (DDPG) are given. The “evaluation-revision” process of adaptation is implemented according to the intelligent agent-environment mechanism of DRL. Finally, experimental verification is carried out on public datasets and actual solid waste data. The results show that the proposed method can effectively adjust case solutions to adapt to new problems, significantly improving the problem-solving quality of case reasoning and achieving good effects in actual applications.
AbstractList To address the bottleneck problems of case adaptation knowledge acquisition and learning and the difficulty of simultaneously applying the network structure to multi-attribute case representation, this paper proposes applying deep reinforcement learning (DRL) to the learning of case difference heuristic (CDH) adaptation knowledge and implementing the generation process of a case adaptation solution based on the “learning-evaluation-revision” idea. The method first establishes the connection between DRL and the CDH adaptation method and then introduces the corresponding principles. Next, the CDH adaptation algorithms of deep Q networks (DQN) and deep deterministic policy gradient (DDPG) are given. The “evaluation-revision” process of adaptation is implemented according to the intelligent agent-environment mechanism of DRL. Finally, experimental verification is carried out on public datasets and actual solid waste data. The results show that the proposed method can effectively adjust case solutions to adapt to new problems, significantly improving the problem-solving quality of case reasoning and achieving good effects in actual applications.
ArticleNumber 126545
Author Cheng, Zijun
Yan, Aijun
Author_xml – sequence: 1
  givenname: Aijun
  orcidid: 0000-0001-5726-7628
  surname: Yan
  fullname: Yan, Aijun
  email: yanaijun@bjut.edu.cn
  organization: School of Information Science and Technology, Beijing University of Technology, Beijing 100124, China
– sequence: 2
  givenname: Zijun
  orcidid: 0009-0000-7113-7248
  surname: Cheng
  fullname: Cheng, Zijun
  email: chengzijun@emails.bjut.edu.cn
  organization: School of Information Science and Technology, Beijing University of Technology, Beijing 100124, China
BookMark eNp9kMtKQzEQhrOoYFt9AVd5gR6TnEsacCPFS6GgC12HaWZiU9qckkTFt_cc6trNDAP_N8x8MzaJfSTGbqSopJDd7b6i_A2VEqqtpOrapp2wqTCtXjRSN5dslvNeCKmF0FP2uoJMHIP3lCg64jv6TCGX4DggnAqU0Ed-pLLrkW-HLPJhRqITTxSi75OjI8XCDwQphvhxxS48HDJd__U5e398eFs9LzYvT-vV_WbhlDZlqKhrp4R2QoE2Qrcd4LJu3VZpRKMFaCW9Q8BuqREaNF6hMtB09dKJztRzps57XepzTuTtKYUjpB8rhR092L0dPdjRgz17GKC7M0TDZV-Bks0ujG9jSOSKxT78h_8CS-BrmA
Cites_doi 10.1016/j.artint.2006.09.001
10.1007/s10846-017-0731-2
10.3233/AIC-1994-7104
10.1016/j.engappai.2017.07.015
10.1007/11805816_9
10.1007/s00170-023-11525-8
10.1016/j.cie.2023.109092
10.3233/AIC-170731
10.1016/j.eswa.2020.113420
10.1016/j.eswa.2022.117350
10.1016/j.compeleceng.2023.108739
10.1016/j.knosys.2014.03.009
10.1038/nature14236
10.1007/s00500-023-09299-y
10.1007/s10844-015-0377-0
10.1109/ACCESS.2021.3117585
10.3390/jmse11050890
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.126545
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_126545
S0957417425001678
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c279t-c2d73c207c02a790756ad835cb27dd970a721fcdad687da4d9f2d29a4638c0693
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Wed Oct 01 06:30:27 EDT 2025
Sat Apr 26 15:42:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep deterministic policy gradient
Deep reinforcement learning
Case adaptation
Deep Q-network
Case difference heuristic
Learning-evaluation-revision
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c279t-c2d73c207c02a790756ad835cb27dd970a721fcdad687da4d9f2d29a4638c0693
ORCID 0000-0001-5726-7628
0009-0000-7113-7248
ParticipantIDs crossref_primary_10_1016_j_eswa_2025_126545
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_126545
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-25
PublicationDateYYYYMMDD 2025-04-25
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-25
  day: 25
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ye, X., Zhao, Z., & Leake, D. (2021b) Applying the case difference heuristic to learn adaptations from deep network features.
Glatt, Da Silva, Costa, Costa (b0045) 2020; 156
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. Continuous control with deep reinforcement learning.
McDonnell, Cunningham (b0105) 2006; 4106
Leake, D., Ye, X., & Crandall, D. (2021). Supporting case-based reasoning with neural networks: an illustration for case adaptation.
Jalali, Leake (b0060) 2016; 46
Alizadeh, Gharehchopogh, Masdari, Jafarian (b0015) 2024; 28
Lin, He, Sun (b0095) 2021; 9
Ye, Leake, Crandall (b0135) 2022
Leake, Ye (b0075) 2021; 12877
Craw, Wiratunga, Rowe (b0035) 2006; 170
Fuchs, Lieber, Mille, Napoli (b0040) 2014; 68
Jalali, Leake (b0065) 2017; 30
Liao, Liu, Chao (b0085) 2018
Karamchandani, Srivastava, Abha, Srivastava (b0070) 2023; 177
Yan, Zhang, Yu, Wang (b0125) 2017; 65
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare (b0110) 2015; 518
Aamodt, Plaza (b0005) 1994; 7
vol 2486.
Chen, Qu, Fang (b0030) 2022; 202
Ye, Leake, Jalali, Crandall (b0130) 2021
.
Shi, Tian, Gu, Wang, Zhao, Ma (b0120) 2023; 127
Atheeswaran, Raghavender, Chaganti, Maram, Herencsar (b0020) 2023; 109
Alizadeh, Gharehchopogh, Masdari, Jafarian (b0010) 2024
Louvros, Stefanidis, Boulougouris, Komianos, Vassalos (b0100) 2023; 11
Hammond (b0050) 1989
Hanney, Keane (b0055) 1996
Sharifi, Naghibzadeh, Rouhani (b0115) 2013; 2013
2018.
Bianchi, Santos, da Silva, Celiberto, de Mantaras (b0025) 2018; 91
Shi (10.1016/j.eswa.2025.126545_b0120) 2023; 127
Louvros (10.1016/j.eswa.2025.126545_b0100) 2023; 11
Jalali (10.1016/j.eswa.2025.126545_b0065) 2017; 30
10.1016/j.eswa.2025.126545_b0090
Hanney (10.1016/j.eswa.2025.126545_b0055) 1996
Aamodt (10.1016/j.eswa.2025.126545_b0005) 1994; 7
Glatt (10.1016/j.eswa.2025.126545_b0045) 2020; 156
Fuchs (10.1016/j.eswa.2025.126545_b0040) 2014; 68
Mnih (10.1016/j.eswa.2025.126545_b0110) 2015; 518
Sharifi (10.1016/j.eswa.2025.126545_b0115) 2013; 2013
Chen (10.1016/j.eswa.2025.126545_b0030) 2022; 202
Leake (10.1016/j.eswa.2025.126545_b0075) 2021; 12877
Craw (10.1016/j.eswa.2025.126545_b0035) 2006; 170
Alizadeh (10.1016/j.eswa.2025.126545_b0010) 2024
Lin (10.1016/j.eswa.2025.126545_b0095) 2021; 9
Yan (10.1016/j.eswa.2025.126545_b0125) 2017; 65
Jalali (10.1016/j.eswa.2025.126545_b0060) 2016; 46
10.1016/j.eswa.2025.126545_b0080
Liao (10.1016/j.eswa.2025.126545_b0085) 2018
Bianchi (10.1016/j.eswa.2025.126545_b0025) 2018; 91
Ye (10.1016/j.eswa.2025.126545_b0135) 2022
10.1016/j.eswa.2025.126545_b0140
McDonnell (10.1016/j.eswa.2025.126545_b0105) 2006; 4106
Atheeswaran (10.1016/j.eswa.2025.126545_b0020) 2023; 109
Ye (10.1016/j.eswa.2025.126545_b0130) 2021
Karamchandani (10.1016/j.eswa.2025.126545_b0070) 2023; 177
Alizadeh (10.1016/j.eswa.2025.126545_b0015) 2024; 28
Hammond (10.1016/j.eswa.2025.126545_b0050) 1989
References_xml – reference: .2018.
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: b0110
  article-title: Human-level control through deep reinforcement learning
– volume: 2013
  start-page: 1006
  year: 2013
  end-page: 1010
  ident: b0115
  article-title: Adaptive case-based reasoning using support vector regression
– start-page: 1989
  year: 1989
  ident: b0050
  article-title: Case-based planning: Viewing planning as a memory task
– start-page: 106
  year: 2018
  end-page: 109
  ident: b0085
  article-title: A machine learning approach to case adaptation
– volume: 127
  start-page: 221
  year: 2023
  end-page: 236
  ident: b0120
  article-title: A hybrid approach of case- and rule-based reasoning to assembly sequence planning
– volume: 170
  start-page: 1175
  year: 2006
  end-page: 1192
  ident: b0035
  article-title: Learning adaptation knowledge to improve case-based reasoning
– start-page: 279
  year: 2021
  end-page: 293
  ident: b0130
  article-title: Learning adaptations for case-based classification: A neural network approach
– volume: 177
  year: 2023
  ident: b0070
  article-title: A lower approximation based integrated decision analysis framework for a blockchain-based supply chain
– reference: Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. Continuous control with deep reinforcement learning.
– year: 2024
  ident: b0010
  article-title: A hybrid multi-population optimization algorithm for global optimization and its application on stock market prediction
– start-page: 143
  year: 2022
  end-page: 158
  ident: b0135
  article-title: Case adaptation with neural networks: capabilities and limitations
  publication-title: International Conference on Case-Based Reasoning (ICCBR)
– year: 1996
  ident: b0055
  article-title: Learning adaptation rules from a case-base
– reference: Ye, X., Zhao, Z., & Leake, D. (2021b) Applying the case difference heuristic to learn adaptations from deep network features.
– volume: 4106
  start-page: 91
  year: 2006
  end-page: 105
  ident: b0105
  article-title: A knowledge-light approach to regression using case-based reasoning
– volume: 12877
  start-page: 125
  year: 2021
  end-page: 139
  ident: b0075
  article-title: Harmonizing case retrieval and adaptation with alternating optimization
– volume: 11
  start-page: 890
  year: 2023
  ident: b0100
  article-title: Machine learning and case-based reasoning for real-time onboard prediction of the survivability of ships
– volume: 65
  start-page: 212
  year: 2017
  end-page: 219
  ident: b0125
  article-title: An attribute difference revision method in case-based reasoning and its application
– volume: 28
  start-page: 5225
  year: 2024
  end-page: 5261
  ident: b0015
  article-title: An improved hybrid salp swarm optimization and African vulture optimization algorithm for global optimization problems and its applications in stock market prediction
– volume: 46
  start-page: 237
  year: 2016
  end-page: 258
  ident: b0060
  article-title: Enhancing case-based regression with automatically-generated ensembles of adaptations
– volume: 30
  start-page: 193
  year: 2017
  end-page: 205
  ident: b0065
  article-title: Forouzandehmehr N. Learning and applying adaptation rules for categorical features: An ensemble approach
– reference: , vol 2486.
– volume: 7
  start-page: 39
  year: 1994
  end-page: 59
  ident: b0005
  article-title: Case-based reasoning: Foundational issues, methodological variations, and system approaches
– reference: .
– volume: 202
  year: 2022
  ident: b0030
  article-title: Case-Based Reasoning System for Fault Diagnosis of Aero-Engines
– volume: 9
  start-page: 151960
  year: 2021
  end-page: 151971
  ident: b0095
  article-title: Multivariable case adaptation method of case-based reasoning based on multi-case clusters and multi-output support vector machine for equipment maintenance cost prediction
– volume: 109
  year: 2023
  ident: b0020
  article-title: Expert system for smart farming for diagnosis of sugarcane diseases using machine learning
– volume: 156
  year: 2020
  ident: b0045
  article-title: DECAF: Deep case-based policy inference for knowledge transfer in reinforcement learning
– volume: 68
  start-page: 103
  year: 2014
  end-page: 114
  ident: b0040
  article-title: Differential adaptation: An operational approach to adaptation for solving numerical problems with CBR
– volume: 91
  start-page: 301
  year: 2018
  end-page: 312
  ident: b0025
  article-title: Heuristically accelerated reinforcement learning by means of case-based reasoning and transfer learning
– reference: Leake, D., Ye, X., & Crandall, D. (2021). Supporting case-based reasoning with neural networks: an illustration for case adaptation.
– volume: 170
  start-page: 1175
  issue: 16–17
  year: 2006
  ident: 10.1016/j.eswa.2025.126545_b0035
  article-title: Learning adaptation knowledge to improve case-based reasoning
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2006.09.001
– volume: 2013
  start-page: 1006
  year: 2013
  ident: 10.1016/j.eswa.2025.126545_b0115
  article-title: Adaptive case-based reasoning using support vector regression
  publication-title: Advance Computing Conference IEEE
– volume: 12877
  start-page: 125
  year: 2021
  ident: 10.1016/j.eswa.2025.126545_b0075
  article-title: Harmonizing case retrieval and adaptation with alternating optimization
  publication-title: International Conference on Case-Based Reasoning (ICCBR)
– volume: 91
  start-page: 301
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2025.126545_b0025
  article-title: Heuristically accelerated reinforcement learning by means of case-based reasoning and transfer learning
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-017-0731-2
– volume: 7
  start-page: 39
  issue: 1
  year: 1994
  ident: 10.1016/j.eswa.2025.126545_b0005
  article-title: Case-based reasoning: Foundational issues, methodological variations, and system approaches
  publication-title: AI Communications
  doi: 10.3233/AIC-1994-7104
– volume: 65
  start-page: 212
  issue: 10
  year: 2017
  ident: 10.1016/j.eswa.2025.126545_b0125
  article-title: An attribute difference revision method in case-based reasoning and its application
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2017.07.015
– volume: 4106
  start-page: 91
  year: 2006
  ident: 10.1016/j.eswa.2025.126545_b0105
  article-title: A knowledge-light approach to regression using case-based reasoning
  publication-title: European Conference on Case-Based Reasoning (ECCBR)
  doi: 10.1007/11805816_9
– volume: 127
  start-page: 221
  year: 2023
  ident: 10.1016/j.eswa.2025.126545_b0120
  article-title: A hybrid approach of case- and rule-based reasoning to assembly sequence planning
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-023-11525-8
– start-page: 143
  year: 2022
  ident: 10.1016/j.eswa.2025.126545_b0135
  article-title: Case adaptation with neural networks: capabilities and limitations
– volume: 177
  year: 2023
  ident: 10.1016/j.eswa.2025.126545_b0070
  article-title: A lower approximation based integrated decision analysis framework for a blockchain-based supply chain
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2023.109092
– volume: 30
  start-page: 193
  issue: 3–4
  year: 2017
  ident: 10.1016/j.eswa.2025.126545_b0065
  article-title: Forouzandehmehr N. Learning and applying adaptation rules for categorical features: An ensemble approach
  publication-title: AI Communications
  doi: 10.3233/AIC-170731
– volume: 156
  year: 2020
  ident: 10.1016/j.eswa.2025.126545_b0045
  article-title: DECAF: Deep case-based policy inference for knowledge transfer in reinforcement learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113420
– volume: 202
  year: 2022
  ident: 10.1016/j.eswa.2025.126545_b0030
  article-title: Case-Based Reasoning System for Fault Diagnosis of Aero-Engines
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117350
– volume: 109
  year: 2023
  ident: 10.1016/j.eswa.2025.126545_b0020
  article-title: Expert system for smart farming for diagnosis of sugarcane diseases using machine learning
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2023.108739
– volume: 68
  start-page: 103
  year: 2014
  ident: 10.1016/j.eswa.2025.126545_b0040
  article-title: Differential adaptation: An operational approach to adaptation for solving numerical problems with CBR
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.03.009
– ident: 10.1016/j.eswa.2025.126545_b0090
– ident: 10.1016/j.eswa.2025.126545_b0140
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.eswa.2025.126545_b0110
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 28
  start-page: 5225
  issue: 6
  year: 2024
  ident: 10.1016/j.eswa.2025.126545_b0015
  article-title: An improved hybrid salp swarm optimization and African vulture optimization algorithm for global optimization problems and its applications in stock market prediction
  publication-title: Soft Computing
  doi: 10.1007/s00500-023-09299-y
– year: 1996
  ident: 10.1016/j.eswa.2025.126545_b0055
  article-title: Learning adaptation rules from a case-base
– start-page: 1989
  year: 1989
  ident: 10.1016/j.eswa.2025.126545_b0050
– volume: 46
  start-page: 237
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2025.126545_b0060
  article-title: Enhancing case-based regression with automatically-generated ensembles of adaptations
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1007/s10844-015-0377-0
– start-page: 279
  year: 2021
  ident: 10.1016/j.eswa.2025.126545_b0130
  article-title: Learning adaptations for case-based classification: A neural network approach
– ident: 10.1016/j.eswa.2025.126545_b0080
– volume: 9
  start-page: 151960
  year: 2021
  ident: 10.1016/j.eswa.2025.126545_b0095
  article-title: Multivariable case adaptation method of case-based reasoning based on multi-case clusters and multi-output support vector machine for equipment maintenance cost prediction
  publication-title: In IEEE Access
  doi: 10.1109/ACCESS.2021.3117585
– year: 2024
  ident: 10.1016/j.eswa.2025.126545_b0010
  article-title: A hybrid multi-population optimization algorithm for global optimization and its application on stock market prediction
  publication-title: Computational Economics
– volume: 11
  start-page: 890
  issue: 5
  year: 2023
  ident: 10.1016/j.eswa.2025.126545_b0100
  article-title: Machine learning and case-based reasoning for real-time onboard prediction of the survivability of ships
  publication-title: Journal of Marine Science and Engineering
  doi: 10.3390/jmse11050890
– start-page: 106
  year: 2018
  ident: 10.1016/j.eswa.2025.126545_b0085
  article-title: A machine learning approach to case adaptation
SSID ssj0017007
Score 2.4687705
Snippet To address the bottleneck problems of case adaptation knowledge acquisition and learning and the difficulty of simultaneously applying the network structure to...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 126545
SubjectTerms Case adaptation
Case difference heuristic
Deep deterministic policy gradient
Deep Q-network
Deep reinforcement learning
Learning-evaluation-revision
Title Case difference heuristic adaptation method based on deep reinforcement learning
URI https://dx.doi.org/10.1016/j.eswa.2025.126545
Volume 270
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvXhxF-tS5uBN0qbTWZpjKZaqUAQt9BZmedF6qKG2ePO3-yYzEQXx4CUwIQPhm7xlMt97HyGXGFM1LrNNigxYwgsNieagknSgTJF6lUlTsS2mcjLjt3Mxb5BRXQvjaZXR9wefXnnreKcb0eyWi0X3AZMDDIe4tRMVl94X_HKuvIpB5-OL5uHbz6nQb08l_ulYOBM4XvD27nsPMdHpMSl8SdNvwelbwBnvkZ2YKdJheJl90oDlAdmtVRhoNMpDcj_CQERroRML9Bk2of0y1U6X4aidBqVo6oOWozh2ACVdQdU31Va_CGkUkHg6IrPx9eNokkSdhMQyla3x6lTfslTZlCHwmARI7TCzsoYp5zKVatzmFdZpJwfKae6ygjmWaY62Z1OZ9Y9Jc_m6hBNCM8aUYKCgZzEx6ZmBkAbAcCWN0mjuLXJVA5SXoR1GXvPEXnIPZ-7hzAOcLSJqDPMfi5qjv_5j3uk_552RbT_yhz1MnJPmerWBC8wZ1qZdfRRtsjW8uZtMPwE7N8DE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2woberGcTOiClSgVEi0UjfLjwuUoUSlFRu_nXPsIJAQA0ukPCxFn3P3neO77wg5R05VOM0myjNgUZIriFQCIoq7Quex6zKpy2yLYdofJ7cTPqmRXlUL49Iqg-_3Pr301uFKK6DZKqbT1iMGB0iHuLTjZS59d4WsJpwJtwJrfnzleTj9OeEF90TkHg-VMz7JC97enfgQ4802S7mrafqNnb4xzvUW2QihIr30b7NNajDbIZtVGwYarHKXPPSQiWjV6cQAfYal11-myqrC77VT3yqaOtayFM8tQEHnUAqnmvIfIQ0dJJ72yPj6atTrR6FRQmSYyBZ4tKJjWCxMzBB5jAJSZTG0MpoJazMRK1zn5cYqm3aFVYnNcmZZphI0PhOnWWef1GevMzggNGNMcAYC2gYjk7bu8lQD6ESkWii09wa5qACShdfDkFWi2It0cEoHp_RwNgivMJQ_ZlWiw_5j3OE_x52Rtf7ofiAHN8O7I7Lu7ridH8aPSX0xX8IJBhALfVp-IJ_ylcJZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Case+difference+heuristic+adaptation+method+based+on+deep+reinforcement+learning&rft.jtitle=Expert+systems+with+applications&rft.au=Yan%2C+Aijun&rft.au=Cheng%2C+Zijun&rft.date=2025-04-25&rft.issn=0957-4174&rft.volume=270&rft.spage=126545&rft_id=info:doi/10.1016%2Fj.eswa.2025.126545&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_126545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon