Case difference heuristic adaptation method based on deep reinforcement learning
To address the bottleneck problems of case adaptation knowledge acquisition and learning and the difficulty of simultaneously applying the network structure to multi-attribute case representation, this paper proposes applying deep reinforcement learning (DRL) to the learning of case difference heuri...
Saved in:
| Published in | Expert systems with applications Vol. 270; p. 126545 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
25.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 |
| DOI | 10.1016/j.eswa.2025.126545 |
Cover
| Abstract | To address the bottleneck problems of case adaptation knowledge acquisition and learning and the difficulty of simultaneously applying the network structure to multi-attribute case representation, this paper proposes applying deep reinforcement learning (DRL) to the learning of case difference heuristic (CDH) adaptation knowledge and implementing the generation process of a case adaptation solution based on the “learning-evaluation-revision” idea. The method first establishes the connection between DRL and the CDH adaptation method and then introduces the corresponding principles. Next, the CDH adaptation algorithms of deep Q networks (DQN) and deep deterministic policy gradient (DDPG) are given. The “evaluation-revision” process of adaptation is implemented according to the intelligent agent-environment mechanism of DRL. Finally, experimental verification is carried out on public datasets and actual solid waste data. The results show that the proposed method can effectively adjust case solutions to adapt to new problems, significantly improving the problem-solving quality of case reasoning and achieving good effects in actual applications. |
|---|---|
| AbstractList | To address the bottleneck problems of case adaptation knowledge acquisition and learning and the difficulty of simultaneously applying the network structure to multi-attribute case representation, this paper proposes applying deep reinforcement learning (DRL) to the learning of case difference heuristic (CDH) adaptation knowledge and implementing the generation process of a case adaptation solution based on the “learning-evaluation-revision” idea. The method first establishes the connection between DRL and the CDH adaptation method and then introduces the corresponding principles. Next, the CDH adaptation algorithms of deep Q networks (DQN) and deep deterministic policy gradient (DDPG) are given. The “evaluation-revision” process of adaptation is implemented according to the intelligent agent-environment mechanism of DRL. Finally, experimental verification is carried out on public datasets and actual solid waste data. The results show that the proposed method can effectively adjust case solutions to adapt to new problems, significantly improving the problem-solving quality of case reasoning and achieving good effects in actual applications. |
| ArticleNumber | 126545 |
| Author | Cheng, Zijun Yan, Aijun |
| Author_xml | – sequence: 1 givenname: Aijun orcidid: 0000-0001-5726-7628 surname: Yan fullname: Yan, Aijun email: yanaijun@bjut.edu.cn organization: School of Information Science and Technology, Beijing University of Technology, Beijing 100124, China – sequence: 2 givenname: Zijun orcidid: 0009-0000-7113-7248 surname: Cheng fullname: Cheng, Zijun email: chengzijun@emails.bjut.edu.cn organization: School of Information Science and Technology, Beijing University of Technology, Beijing 100124, China |
| BookMark | eNp9kMtKQzEQhrOoYFt9AVd5gR6TnEsacCPFS6GgC12HaWZiU9qckkTFt_cc6trNDAP_N8x8MzaJfSTGbqSopJDd7b6i_A2VEqqtpOrapp2wqTCtXjRSN5dslvNeCKmF0FP2uoJMHIP3lCg64jv6TCGX4DggnAqU0Ed-pLLrkW-HLPJhRqITTxSi75OjI8XCDwQphvhxxS48HDJd__U5e398eFs9LzYvT-vV_WbhlDZlqKhrp4R2QoE2Qrcd4LJu3VZpRKMFaCW9Q8BuqREaNF6hMtB09dKJztRzps57XepzTuTtKYUjpB8rhR092L0dPdjRgz17GKC7M0TDZV-Bks0ujG9jSOSKxT78h_8CS-BrmA |
| Cites_doi | 10.1016/j.artint.2006.09.001 10.1007/s10846-017-0731-2 10.3233/AIC-1994-7104 10.1016/j.engappai.2017.07.015 10.1007/11805816_9 10.1007/s00170-023-11525-8 10.1016/j.cie.2023.109092 10.3233/AIC-170731 10.1016/j.eswa.2020.113420 10.1016/j.eswa.2022.117350 10.1016/j.compeleceng.2023.108739 10.1016/j.knosys.2014.03.009 10.1038/nature14236 10.1007/s00500-023-09299-y 10.1007/s10844-015-0377-0 10.1109/ACCESS.2021.3117585 10.3390/jmse11050890 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2025.126545 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2025_126545 S0957417425001678 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYWO AAYXX ABKBG ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c279t-c2d73c207c02a790756ad835cb27dd970a721fcdad687da4d9f2d29a4638c0693 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Wed Oct 01 06:30:27 EDT 2025 Sat Apr 26 15:42:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep deterministic policy gradient Deep reinforcement learning Case adaptation Deep Q-network Case difference heuristic Learning-evaluation-revision |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c279t-c2d73c207c02a790756ad835cb27dd970a721fcdad687da4d9f2d29a4638c0693 |
| ORCID | 0000-0001-5726-7628 0009-0000-7113-7248 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2025_126545 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_126545 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-25 |
| PublicationDateYYYYMMDD | 2025-04-25 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ye, X., Zhao, Z., & Leake, D. (2021b) Applying the case difference heuristic to learn adaptations from deep network features. Glatt, Da Silva, Costa, Costa (b0045) 2020; 156 Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. Continuous control with deep reinforcement learning. McDonnell, Cunningham (b0105) 2006; 4106 Leake, D., Ye, X., & Crandall, D. (2021). Supporting case-based reasoning with neural networks: an illustration for case adaptation. Jalali, Leake (b0060) 2016; 46 Alizadeh, Gharehchopogh, Masdari, Jafarian (b0015) 2024; 28 Lin, He, Sun (b0095) 2021; 9 Ye, Leake, Crandall (b0135) 2022 Leake, Ye (b0075) 2021; 12877 Craw, Wiratunga, Rowe (b0035) 2006; 170 Fuchs, Lieber, Mille, Napoli (b0040) 2014; 68 Jalali, Leake (b0065) 2017; 30 Liao, Liu, Chao (b0085) 2018 Karamchandani, Srivastava, Abha, Srivastava (b0070) 2023; 177 Yan, Zhang, Yu, Wang (b0125) 2017; 65 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare (b0110) 2015; 518 Aamodt, Plaza (b0005) 1994; 7 vol 2486. Chen, Qu, Fang (b0030) 2022; 202 Ye, Leake, Jalali, Crandall (b0130) 2021 . Shi, Tian, Gu, Wang, Zhao, Ma (b0120) 2023; 127 Atheeswaran, Raghavender, Chaganti, Maram, Herencsar (b0020) 2023; 109 Alizadeh, Gharehchopogh, Masdari, Jafarian (b0010) 2024 Louvros, Stefanidis, Boulougouris, Komianos, Vassalos (b0100) 2023; 11 Hammond (b0050) 1989 Hanney, Keane (b0055) 1996 Sharifi, Naghibzadeh, Rouhani (b0115) 2013; 2013 2018. Bianchi, Santos, da Silva, Celiberto, de Mantaras (b0025) 2018; 91 Shi (10.1016/j.eswa.2025.126545_b0120) 2023; 127 Louvros (10.1016/j.eswa.2025.126545_b0100) 2023; 11 Jalali (10.1016/j.eswa.2025.126545_b0065) 2017; 30 10.1016/j.eswa.2025.126545_b0090 Hanney (10.1016/j.eswa.2025.126545_b0055) 1996 Aamodt (10.1016/j.eswa.2025.126545_b0005) 1994; 7 Glatt (10.1016/j.eswa.2025.126545_b0045) 2020; 156 Fuchs (10.1016/j.eswa.2025.126545_b0040) 2014; 68 Mnih (10.1016/j.eswa.2025.126545_b0110) 2015; 518 Sharifi (10.1016/j.eswa.2025.126545_b0115) 2013; 2013 Chen (10.1016/j.eswa.2025.126545_b0030) 2022; 202 Leake (10.1016/j.eswa.2025.126545_b0075) 2021; 12877 Craw (10.1016/j.eswa.2025.126545_b0035) 2006; 170 Alizadeh (10.1016/j.eswa.2025.126545_b0010) 2024 Lin (10.1016/j.eswa.2025.126545_b0095) 2021; 9 Yan (10.1016/j.eswa.2025.126545_b0125) 2017; 65 Jalali (10.1016/j.eswa.2025.126545_b0060) 2016; 46 10.1016/j.eswa.2025.126545_b0080 Liao (10.1016/j.eswa.2025.126545_b0085) 2018 Bianchi (10.1016/j.eswa.2025.126545_b0025) 2018; 91 Ye (10.1016/j.eswa.2025.126545_b0135) 2022 10.1016/j.eswa.2025.126545_b0140 McDonnell (10.1016/j.eswa.2025.126545_b0105) 2006; 4106 Atheeswaran (10.1016/j.eswa.2025.126545_b0020) 2023; 109 Ye (10.1016/j.eswa.2025.126545_b0130) 2021 Karamchandani (10.1016/j.eswa.2025.126545_b0070) 2023; 177 Alizadeh (10.1016/j.eswa.2025.126545_b0015) 2024; 28 Hammond (10.1016/j.eswa.2025.126545_b0050) 1989 |
| References_xml | – reference: .2018. – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: b0110 article-title: Human-level control through deep reinforcement learning – volume: 2013 start-page: 1006 year: 2013 end-page: 1010 ident: b0115 article-title: Adaptive case-based reasoning using support vector regression – start-page: 1989 year: 1989 ident: b0050 article-title: Case-based planning: Viewing planning as a memory task – start-page: 106 year: 2018 end-page: 109 ident: b0085 article-title: A machine learning approach to case adaptation – volume: 127 start-page: 221 year: 2023 end-page: 236 ident: b0120 article-title: A hybrid approach of case- and rule-based reasoning to assembly sequence planning – volume: 170 start-page: 1175 year: 2006 end-page: 1192 ident: b0035 article-title: Learning adaptation knowledge to improve case-based reasoning – start-page: 279 year: 2021 end-page: 293 ident: b0130 article-title: Learning adaptations for case-based classification: A neural network approach – volume: 177 year: 2023 ident: b0070 article-title: A lower approximation based integrated decision analysis framework for a blockchain-based supply chain – reference: Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. Continuous control with deep reinforcement learning. – year: 2024 ident: b0010 article-title: A hybrid multi-population optimization algorithm for global optimization and its application on stock market prediction – start-page: 143 year: 2022 end-page: 158 ident: b0135 article-title: Case adaptation with neural networks: capabilities and limitations publication-title: International Conference on Case-Based Reasoning (ICCBR) – year: 1996 ident: b0055 article-title: Learning adaptation rules from a case-base – reference: Ye, X., Zhao, Z., & Leake, D. (2021b) Applying the case difference heuristic to learn adaptations from deep network features. – volume: 4106 start-page: 91 year: 2006 end-page: 105 ident: b0105 article-title: A knowledge-light approach to regression using case-based reasoning – volume: 12877 start-page: 125 year: 2021 end-page: 139 ident: b0075 article-title: Harmonizing case retrieval and adaptation with alternating optimization – volume: 11 start-page: 890 year: 2023 ident: b0100 article-title: Machine learning and case-based reasoning for real-time onboard prediction of the survivability of ships – volume: 65 start-page: 212 year: 2017 end-page: 219 ident: b0125 article-title: An attribute difference revision method in case-based reasoning and its application – volume: 28 start-page: 5225 year: 2024 end-page: 5261 ident: b0015 article-title: An improved hybrid salp swarm optimization and African vulture optimization algorithm for global optimization problems and its applications in stock market prediction – volume: 46 start-page: 237 year: 2016 end-page: 258 ident: b0060 article-title: Enhancing case-based regression with automatically-generated ensembles of adaptations – volume: 30 start-page: 193 year: 2017 end-page: 205 ident: b0065 article-title: Forouzandehmehr N. Learning and applying adaptation rules for categorical features: An ensemble approach – reference: , vol 2486. – volume: 7 start-page: 39 year: 1994 end-page: 59 ident: b0005 article-title: Case-based reasoning: Foundational issues, methodological variations, and system approaches – reference: . – volume: 202 year: 2022 ident: b0030 article-title: Case-Based Reasoning System for Fault Diagnosis of Aero-Engines – volume: 9 start-page: 151960 year: 2021 end-page: 151971 ident: b0095 article-title: Multivariable case adaptation method of case-based reasoning based on multi-case clusters and multi-output support vector machine for equipment maintenance cost prediction – volume: 109 year: 2023 ident: b0020 article-title: Expert system for smart farming for diagnosis of sugarcane diseases using machine learning – volume: 156 year: 2020 ident: b0045 article-title: DECAF: Deep case-based policy inference for knowledge transfer in reinforcement learning – volume: 68 start-page: 103 year: 2014 end-page: 114 ident: b0040 article-title: Differential adaptation: An operational approach to adaptation for solving numerical problems with CBR – volume: 91 start-page: 301 year: 2018 end-page: 312 ident: b0025 article-title: Heuristically accelerated reinforcement learning by means of case-based reasoning and transfer learning – reference: Leake, D., Ye, X., & Crandall, D. (2021). Supporting case-based reasoning with neural networks: an illustration for case adaptation. – volume: 170 start-page: 1175 issue: 16–17 year: 2006 ident: 10.1016/j.eswa.2025.126545_b0035 article-title: Learning adaptation knowledge to improve case-based reasoning publication-title: Artificial Intelligence doi: 10.1016/j.artint.2006.09.001 – volume: 2013 start-page: 1006 year: 2013 ident: 10.1016/j.eswa.2025.126545_b0115 article-title: Adaptive case-based reasoning using support vector regression publication-title: Advance Computing Conference IEEE – volume: 12877 start-page: 125 year: 2021 ident: 10.1016/j.eswa.2025.126545_b0075 article-title: Harmonizing case retrieval and adaptation with alternating optimization publication-title: International Conference on Case-Based Reasoning (ICCBR) – volume: 91 start-page: 301 issue: 2 year: 2018 ident: 10.1016/j.eswa.2025.126545_b0025 article-title: Heuristically accelerated reinforcement learning by means of case-based reasoning and transfer learning publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-017-0731-2 – volume: 7 start-page: 39 issue: 1 year: 1994 ident: 10.1016/j.eswa.2025.126545_b0005 article-title: Case-based reasoning: Foundational issues, methodological variations, and system approaches publication-title: AI Communications doi: 10.3233/AIC-1994-7104 – volume: 65 start-page: 212 issue: 10 year: 2017 ident: 10.1016/j.eswa.2025.126545_b0125 article-title: An attribute difference revision method in case-based reasoning and its application publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2017.07.015 – volume: 4106 start-page: 91 year: 2006 ident: 10.1016/j.eswa.2025.126545_b0105 article-title: A knowledge-light approach to regression using case-based reasoning publication-title: European Conference on Case-Based Reasoning (ECCBR) doi: 10.1007/11805816_9 – volume: 127 start-page: 221 year: 2023 ident: 10.1016/j.eswa.2025.126545_b0120 article-title: A hybrid approach of case- and rule-based reasoning to assembly sequence planning publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-023-11525-8 – start-page: 143 year: 2022 ident: 10.1016/j.eswa.2025.126545_b0135 article-title: Case adaptation with neural networks: capabilities and limitations – volume: 177 year: 2023 ident: 10.1016/j.eswa.2025.126545_b0070 article-title: A lower approximation based integrated decision analysis framework for a blockchain-based supply chain publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2023.109092 – volume: 30 start-page: 193 issue: 3–4 year: 2017 ident: 10.1016/j.eswa.2025.126545_b0065 article-title: Forouzandehmehr N. Learning and applying adaptation rules for categorical features: An ensemble approach publication-title: AI Communications doi: 10.3233/AIC-170731 – volume: 156 year: 2020 ident: 10.1016/j.eswa.2025.126545_b0045 article-title: DECAF: Deep case-based policy inference for knowledge transfer in reinforcement learning publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113420 – volume: 202 year: 2022 ident: 10.1016/j.eswa.2025.126545_b0030 article-title: Case-Based Reasoning System for Fault Diagnosis of Aero-Engines publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117350 – volume: 109 year: 2023 ident: 10.1016/j.eswa.2025.126545_b0020 article-title: Expert system for smart farming for diagnosis of sugarcane diseases using machine learning publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2023.108739 – volume: 68 start-page: 103 year: 2014 ident: 10.1016/j.eswa.2025.126545_b0040 article-title: Differential adaptation: An operational approach to adaptation for solving numerical problems with CBR publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2014.03.009 – ident: 10.1016/j.eswa.2025.126545_b0090 – ident: 10.1016/j.eswa.2025.126545_b0140 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.eswa.2025.126545_b0110 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 28 start-page: 5225 issue: 6 year: 2024 ident: 10.1016/j.eswa.2025.126545_b0015 article-title: An improved hybrid salp swarm optimization and African vulture optimization algorithm for global optimization problems and its applications in stock market prediction publication-title: Soft Computing doi: 10.1007/s00500-023-09299-y – year: 1996 ident: 10.1016/j.eswa.2025.126545_b0055 article-title: Learning adaptation rules from a case-base – start-page: 1989 year: 1989 ident: 10.1016/j.eswa.2025.126545_b0050 – volume: 46 start-page: 237 issue: 2 year: 2016 ident: 10.1016/j.eswa.2025.126545_b0060 article-title: Enhancing case-based regression with automatically-generated ensembles of adaptations publication-title: Journal of Intelligent Information Systems doi: 10.1007/s10844-015-0377-0 – start-page: 279 year: 2021 ident: 10.1016/j.eswa.2025.126545_b0130 article-title: Learning adaptations for case-based classification: A neural network approach – ident: 10.1016/j.eswa.2025.126545_b0080 – volume: 9 start-page: 151960 year: 2021 ident: 10.1016/j.eswa.2025.126545_b0095 article-title: Multivariable case adaptation method of case-based reasoning based on multi-case clusters and multi-output support vector machine for equipment maintenance cost prediction publication-title: In IEEE Access doi: 10.1109/ACCESS.2021.3117585 – year: 2024 ident: 10.1016/j.eswa.2025.126545_b0010 article-title: A hybrid multi-population optimization algorithm for global optimization and its application on stock market prediction publication-title: Computational Economics – volume: 11 start-page: 890 issue: 5 year: 2023 ident: 10.1016/j.eswa.2025.126545_b0100 article-title: Machine learning and case-based reasoning for real-time onboard prediction of the survivability of ships publication-title: Journal of Marine Science and Engineering doi: 10.3390/jmse11050890 – start-page: 106 year: 2018 ident: 10.1016/j.eswa.2025.126545_b0085 article-title: A machine learning approach to case adaptation |
| SSID | ssj0017007 |
| Score | 2.4687705 |
| Snippet | To address the bottleneck problems of case adaptation knowledge acquisition and learning and the difficulty of simultaneously applying the network structure to... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 126545 |
| SubjectTerms | Case adaptation Case difference heuristic Deep deterministic policy gradient Deep Q-network Deep reinforcement learning Learning-evaluation-revision |
| Title | Case difference heuristic adaptation method based on deep reinforcement learning |
| URI | https://dx.doi.org/10.1016/j.eswa.2025.126545 |
| Volume | 270 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvXhxF-tS5uBN0qbTWZpjKZaqUAQt9BZmedF6qKG2ePO3-yYzEQXx4CUwIQPhm7xlMt97HyGXGFM1LrNNigxYwgsNieagknSgTJF6lUlTsS2mcjLjt3Mxb5BRXQvjaZXR9wefXnnreKcb0eyWi0X3AZMDDIe4tRMVl94X_HKuvIpB5-OL5uHbz6nQb08l_ulYOBM4XvD27nsPMdHpMSl8SdNvwelbwBnvkZ2YKdJheJl90oDlAdmtVRhoNMpDcj_CQERroRML9Bk2of0y1U6X4aidBqVo6oOWozh2ACVdQdU31Va_CGkUkHg6IrPx9eNokkSdhMQyla3x6lTfslTZlCHwmARI7TCzsoYp5zKVatzmFdZpJwfKae6ygjmWaY62Z1OZ9Y9Jc_m6hBNCM8aUYKCgZzEx6ZmBkAbAcCWN0mjuLXJVA5SXoR1GXvPEXnIPZ-7hzAOcLSJqDPMfi5qjv_5j3uk_552RbT_yhz1MnJPmerWBC8wZ1qZdfRRtsjW8uZtMPwE7N8DE |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2woberGcTOiClSgVEi0UjfLjwuUoUSlFRu_nXPsIJAQA0ukPCxFn3P3neO77wg5R05VOM0myjNgUZIriFQCIoq7Quex6zKpy2yLYdofJ7cTPqmRXlUL49Iqg-_3Pr301uFKK6DZKqbT1iMGB0iHuLTjZS59d4WsJpwJtwJrfnzleTj9OeEF90TkHg-VMz7JC97enfgQ4802S7mrafqNnb4xzvUW2QihIr30b7NNajDbIZtVGwYarHKXPPSQiWjV6cQAfYal11-myqrC77VT3yqaOtayFM8tQEHnUAqnmvIfIQ0dJJ72yPj6atTrR6FRQmSYyBZ4tKJjWCxMzBB5jAJSZTG0MpoJazMRK1zn5cYqm3aFVYnNcmZZphI0PhOnWWef1GevMzggNGNMcAYC2gYjk7bu8lQD6ESkWii09wa5qACShdfDkFWi2It0cEoHp_RwNgivMJQ_ZlWiw_5j3OE_x52Rtf7ofiAHN8O7I7Lu7ridH8aPSX0xX8IJBhALfVp-IJ_ylcJZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Case+difference+heuristic+adaptation+method+based+on+deep+reinforcement+learning&rft.jtitle=Expert+systems+with+applications&rft.au=Yan%2C+Aijun&rft.au=Cheng%2C+Zijun&rft.date=2025-04-25&rft.issn=0957-4174&rft.volume=270&rft.spage=126545&rft_id=info:doi/10.1016%2Fj.eswa.2025.126545&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_126545 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |