Review of the Research Status of Practical Superconducting Materials and Their Current Carrying Performance
Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials. At present, practical superconducting materials include low-temperature superconductors such as NbTi and Nb 3 Sn, high-temperature superconductors such as Bi-2212, Bi-2223...
Saved in:
| Published in | Chinese physics letters Vol. 41; no. 11; pp. 117402 - 142 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Chinese Physical Society and IOP Publishing Ltd
01.12.2024
|
| Online Access | Get full text |
| ISSN | 0256-307X 1741-3540 |
| DOI | 10.1088/0256-307X/41/11/117402 |
Cover
| Abstract | Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials. At present, practical superconducting materials include low-temperature superconductors such as NbTi and Nb
3
Sn, high-temperature superconductors such as Bi-2212, Bi-2223, YBCO, iron-based superconductors and MgB
2
. The development of low-temperature superconducting wires started earlier and has now entered the stage of industrialized production, showing obvious advantages in mechanical properties and cost under low temperature and middle-low magnetic field. However, due to the insufficient intrinsic superconducting performance, low-temperature superconductors are unable to exhibit excellent performance at high temperature or high fields. Further improvement of supercurrent carrying performance mainly depends on the enhancement of pinning ability. High-temperature superconductors have greater advantages in high temperature and high field, but many of them are still in the stage of further performance improvement. Many high-temperature superconductors are limited by the deficiency in their polycrystalline structure, and further optimization of intergranular connectivity is required. In addition, it is also necessary to further enhance their pinning ability. The numerous successful application instances of high-temperature superconducting wires and tapes also prove their tremendous potential in electric power applications. |
|---|---|
| AbstractList | Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials.At present,practical superconducting materials include low-temperature superconductors such as NbTi and Nb3Sn,high-temperature superconductors such as Bi-2212,Bi-2223,YBCO,iron-based super-conductors and MgB2.The development of low-temperature superconducting wires started earlier and has now entered the stage of industrialized production,showing obvious advantages in mechanical properties and cost under low temperature and middle-low magnetic field.However,due to the insufficient intrinsic superconducting performance,low-temperature superconductors are unable to exhibit excellent performance at high temperature or high fields.Further improvement of supercurrent carrying performance mainly depends on the enhancement of pinning ability.High-temperature superconductors have greater advantages in high temperature and high field,but many of them are still in the stage of further performance improvement.Many high-temperature supercon-ductors are limited by the deficiency in their polycrystalline structure,and further optimization of intergranular connectivity is required.In addition,it is also necessary to further enhance their pinning ability.The numerous successful application instances of high-temperature superconducting wires and tapes also prove their tremendous potential in electric power applications. Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials. At present, practical superconducting materials include low-temperature superconductors such as NbTi and Nb 3 Sn, high-temperature superconductors such as Bi-2212, Bi-2223, YBCO, iron-based superconductors and MgB 2 . The development of low-temperature superconducting wires started earlier and has now entered the stage of industrialized production, showing obvious advantages in mechanical properties and cost under low temperature and middle-low magnetic field. However, due to the insufficient intrinsic superconducting performance, low-temperature superconductors are unable to exhibit excellent performance at high temperature or high fields. Further improvement of supercurrent carrying performance mainly depends on the enhancement of pinning ability. High-temperature superconductors have greater advantages in high temperature and high field, but many of them are still in the stage of further performance improvement. Many high-temperature superconductors are limited by the deficiency in their polycrystalline structure, and further optimization of intergranular connectivity is required. In addition, it is also necessary to further enhance their pinning ability. The numerous successful application instances of high-temperature superconducting wires and tapes also prove their tremendous potential in electric power applications. |
| Author | Li, Chengshan Li, Jianfeng Zhang, Yifan Zhang, Pingxiang Zhang, Shengnan Liu, Jixing Yang, Fang |
| Author_xml | – sequence: 1 givenname: Yifan surname: Zhang fullname: Zhang, Yifan organization: Northwestern Polytechnical University School of Material Science and Engineering, Xi’an 710072, China – sequence: 2 givenname: Shengnan surname: Zhang fullname: Zhang, Shengnan organization: Northwest Institute for Nonferrous Metal Research Superconducting Materials Research Center, Xi’an 710016, China – sequence: 3 givenname: Jixing surname: Liu fullname: Liu, Jixing organization: Northwest Institute for Nonferrous Metal Research Superconducting Materials Research Center, Xi’an 710016, China – sequence: 4 givenname: Fang surname: Yang fullname: Yang, Fang organization: Northwestern Polytechnical University School of Material Science and Engineering, Xi’an 710072, China – sequence: 5 givenname: Chengshan surname: Li fullname: Li, Chengshan organization: Northwest Institute for Nonferrous Metal Research Superconducting Materials Research Center, Xi’an 710016, China – sequence: 6 givenname: Jianfeng surname: Li fullname: Li, Jianfeng organization: Northwest Institute for Nonferrous Metal Research Superconducting Materials Research Center, Xi’an 710016, China – sequence: 7 givenname: Pingxiang surname: Zhang fullname: Zhang, Pingxiang organization: Northwestern Polytechnical University School of Material Science and Engineering, Xi’an 710072, China |
| BookMark | eNqFkFtLw0AQhRepYFv9C7KvPsTu5LLZPErwBhVLW8G3ZdzOtullUzaJpf56Eyr6KAwcGL5zDpwB67nSEWPXIG5BKDUSYSKDSKTvoxhG0F0ai_CM9VuFIEpi0WP9X-iCDapqLQSAAuizzZQ-Czrw0vJ6RXxKFaE3Kz6rsW6q7j3xaOrC4JbPmj15U7pF0z7ckr9gTb7AbcXRLfh8RYXneeM9uZrn6P2xgybkbel36AxdsnPb0nT1o0P29nA_z5-C8evjc343DkyYZnWgCBahEIoUKCsTlVEaJjahUEhCSISU1kiFCDHKNIJMGkyVjK1UaUYmVtGQ3ZxyD-gsuqVel413baP-Wh62mw_dRoUxgICoZeWJNb6sKk9W732xQ3_UIHQ3r-6W091yOgYN3XXztsbwZCzK_V_BP6Zv_nl-tg |
| Cites_doi | 10.1109/tasc.2005.847648 10.1016/j.cryogenics.2017.11.006 10.1016/j.jallcom.2023.170148 10.1016/j.jallcom.2023.170438 10.1051/jphyscol:1984174 10.1016/j.jallcom.2022.168140 10.1109/tasc.2005.848955 10.1088/1361-6668/ab13e7 10.1016/0001-6160(87)90149-0 10.1109/77.620693 10.1063/1.117489 10.1007/s10948-018-4884-4 10.1016/j.ceramint.2021.05.244 10.1007/978-1-4757-9059-7_143 10.1109/tasc.2003.812341 10.1016/j.ijepes.2019.105729 10.1016/j.matlet.2023.134157 10.1109/tasc.2019.2899670 10.1109/tasc.2010.2041911 10.1143/jjap.51.010006 10.1016/j.cap.2007.04.014 10.1038/s41598-021-81559-z 10.1088/0953-2048/29/11/113004 10.1063/1.321816 10.1016/j.fusengdes.2007.01.024 10.1016/j.jallcom.2020.154543 10.3390/mi14050988 10.1103/physrevmaterials.5.074803 10.1088/1361-6668/ab4632 10.1016/j.cryogenics.2021.103353 10.1063/5.0053158 10.1088/1742-6596/2545/1/012013 10.1088/1361-6668/aa90d1 10.1007/s40843-023-2683-5 10.1088/0953-2048/23/5/055009 10.1103/physrevaccelbeams.25.122401 10.1088/1361-6668/abece7 10.1109/tasc.2005.864270 10.1093/nsr/nwae122 10.1109/tasc.2009.2018075 10.1088/2515-7639/abe662 10.1016/0011-2275(92)90371-g 10.1016/j.jallcom.2021.160887 10.1016/b978-0-12-815820-3.00010-1 10.1007/s10854-021-05417-4 10.1002/adfm.202401251 10.1557/mrs2004.159 10.1088/1361-6668/acdbed 10.1016/s0927-796x(97)00019-3 10.1109/tasc.2013.2240033 10.1109/tasc.2002.1018580 10.1111/ijac.13721 10.1007/bf03183707 10.1007/978-1-4757-9059-7_171 10.1088/0953-2048/19/8/r02 10.1016/j.matdes.2020.109285 10.1557/jmr.2008.0412 10.1109/77.920332 10.1088/1361-6668/ac30ea 10.1007/978-1-4757-9059-7_145 10.1088/1361-6668/ac45a0 10.1088/1361-6668/abd575 10.1038/srep08285 10.1088/1361-6668/ab714e 10.1016/j.cryogenics.2021.103370 10.1016/j.phpro.2012.06.239 10.1016/j.matpr.2020.04.503 10.1103/physrev.109.788 10.1038/nmat3887 10.1088/0953-2048/26/5/055008 10.1109/tasc.2012.2182972 10.1016/j.supcon.2023.100047 10.1007/s10948-023-06675-5 10.1088/1361-6668/ab9ef1 10.1109/tasc.2023.3247375 10.1088/1361-6668/abb11b 10.1063/1.103255 10.1016/j.physc.2004.02.205 10.1088/0953-2048/27/4/044002 10.1109/tasc.2015.2390149 10.1016/j.physc.2007.04.269 10.1007/s00339-022-05326-1 10.1109/tmag.1981.1061365 10.1007/s10854-024-12480-0 10.1088/1361-6668/aceab8 10.1016/j.isci.2021.102541 10.1088/1361-6668/30/3/035004 10.1063/1.362979 10.1088/1757-899x/756/1/012018 10.1007/bf01106819 10.1088/1361-6668/ace662 10.1007/bf01504252 10.1088/1361-6668/aa7976 10.1088/1361-6668/ac5339 10.1088/1361-6668/ac4aff 10.1007/s00339-023-07245-1 10.1088/0953-2048/20/12/010 10.1109/tasc.2014.2385962 10.1063/5.0191262 10.1016/0011-2275(71)90002-6 10.1109/tasc.2009.2039555 10.1016/j.ceramint.2024.03.259 10.1109/tasc.2014.2378377 10.1016/j.matchemphys.2023.128348 10.1088/0953-2048/21/10/105024 10.1016/j.physc.2011.09.003 10.1016/j.physc.2007.01.030 10.1016/j.ceramint.2022.05.271 10.1016/j.jallcom.2022.166304 10.1088/1361-6668/abe35f 10.1016/j.scriptamat.2015.09.031 10.1016/j.jeurceramsoc.2020.07.074 10.1016/j.physc.2021.1354000 10.1088/1361-6668/acba4c 10.1038/35065039 10.1103/revmodphys.36.216 10.1143/jjap.27.l361 10.1021/ja800073m 10.1088/1361-6668/acff25 10.1088/1361-6668/ad4a33 10.1557/jmr.2000.0123 10.1088/0953-2048/23/2/025009 10.1016/j.scriptamat.2020.05.043 10.1142/s0218625x21500207 10.1016/j.ceramint.2020.09.226 10.1088/0953-2048/28/11/114005 10.1109/tasc.2023.3332750 10.1007/s10948-009-0622-2 10.1016/j.ceramint.2023.06.047 10.1109/tasc.2019.2895197 10.1109/tasc.2023.3348435 10.1007/s10948-023-06531-6 10.1088/0953-2048/23/2/025027 10.1109/tasc.2021.3064543 10.1088/0953-2048/19/11/019 10.1088/1742-6596/1559/1/012051 10.1016/j.jallcom.2021.163201 10.1109/tasc.2019.2895215 10.1016/j.cryogenics.2008.05.005 10.1038/s41598-017-06881-x 10.1088/0256-307X/25/7/015 10.1016/s0921-4534(02)00898-5 10.1088/1361-6668/ac8ad5 10.1016/j.jallcom.2022.167674 10.1063/1.107698 10.1063/1.106514 10.1111/jace.17366 10.1016/j.supcon.2022.100010 10.1088/0953-2048/30/1/014007 10.1109/tasc.2014.2367024 10.1109/tasc.2020.3000229 10.1038/s41598-019-46629-3 10.1007/bf01303701 10.1109/tasc.2022.3147137 10.1016/j.mattod.2017.09.006 10.1016/j.jallcom.2020.158270 10.1016/j.intermet.2023.107848 10.1088/1367-2630/ac3682 10.1007/s13369-024-08720-4 10.1109/tmag.1981.1060900 10.1038/s41598-021-97353-w 10.1038/srep06944 10.1088/1361-6668/abd5f4 10.1063/1.4731204 10.1088/1361-6668/ad0b95 10.1007/s10854-023-11072-8 10.1016/j.physc.2012.09.015 10.1016/s0921-4534(03)01160-2 10.1088/1361-6668/ac7ae3 10.1007/s10948-022-06480-6 10.1109/tasc.2023.3345293 |
| ContentType | Journal Article |
| Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1088/0256-307X/41/11/117402 |
| DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1741-3540 |
| EndPage | 142 |
| ExternalDocumentID | zgwlkb_e202411013 10_1088_0256_307X_41_11_117402 cpl_41_11_117402 |
| GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 U1G U5K UCJ W28 XPP ~02 AAYXX ADEQX AEINN CITATION Q-- TGP 02O 042 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NS0 NT- NT. PSX Q02 S3P T37 TCJ |
| ID | FETCH-LOGICAL-c279t-8e1d2008e818f6589e725f5e206ea15066fc68aa14a673196ca7864f6879ec483 |
| IEDL.DBID | IOP |
| ISSN | 0256-307X |
| IngestDate | Thu May 29 04:07:19 EDT 2025 Wed Oct 01 02:18:57 EDT 2025 Wed Dec 25 02:19:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | This article is available under the terms of the IOP-Standard License. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c279t-8e1d2008e818f6589e725f5e206ea15066fc68aa14a673196ca7864f6879ec483 |
| PageCount | 15 |
| ParticipantIDs | iop_journals_10_1088_0256_307X_41_11_117402 crossref_primary_10_1088_0256_307X_41_11_117402 wanfang_journals_zgwlkb_e202411013 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese physics letters |
| PublicationTitleAlternate | Chinese Phys. Lett |
| PublicationTitle_FL | Chinese Physics Letters |
| PublicationYear | 2024 |
| Publisher | Chinese Physical Society and IOP Publishing Ltd |
| Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
| References | Lee (cpl_41_11_117402bib16) 1999; 21 Vu (cpl_41_11_117402bib91) 2023; 49 Leoncino (cpl_41_11_117402bib67) 2019; 29 Wheatley (cpl_41_11_117402bib52) 2023; 36 Yoshio (cpl_41_11_117402bib59) 1988; 27 Liu (cpl_41_11_117402bib133) 2022; 592 Heussner (cpl_41_11_117402bib17) 1996; 80 Zhang (cpl_41_11_117402bib40) 2023; 155 Ambrosio (cpl_41_11_117402bib58) 2015; 25 Xu (cpl_41_11_117402bib76) 2024; 34 Shadab (cpl_41_11_117402bib151) 2023; 309 Aytekin (cpl_41_11_117402bib64) 2024; 130 Biswal (cpl_41_11_117402bib164) 2021; 35 Paranthaman (cpl_41_11_117402bib111) 2004; 29 Hayashi (cpl_41_11_117402bib104) 2020; 91 Matias (cpl_41_11_117402bib116) 2012; 36 Fallah-Arani (cpl_41_11_117402bib96) 2022; 48 Mujaini (cpl_41_11_117402bib99) 2023; 36 Guo (cpl_41_11_117402bib171) 2024; 67 Miao (cpl_41_11_117402bib60) 2005; 15 Yang (cpl_41_11_117402bib63) 2023; 34 Wu (cpl_41_11_117402bib119) 2022; 35 Li (cpl_41_11_117402bib65) 2017; 30 Lee (cpl_41_11_117402bib53) 2003; 13 Wan (cpl_41_11_117402bib146) 2020; 33 Liu (cpl_41_11_117402bib74) 2022; 922 Giannini (cpl_41_11_117402bib85) 2008; 8 Huang (cpl_41_11_117402bib122) 2024; 34 Búran (cpl_41_11_117402bib156) 2021; 120 Foussat (cpl_41_11_117402bib30) 2010; 20 Lee (cpl_41_11_117402bib25) 2024 Ren (cpl_41_11_117402bib162) 2008; 25 Oz (cpl_41_11_117402bib72) 2021; 5 Maeda (cpl_41_11_117402bib144) 2023; 954 Zheng (cpl_41_11_117402bib61) 2019; 33 Banno (cpl_41_11_117402bib7) 2023; 6 Fallah-Arani (cpl_41_11_117402bib92) 2022; 900 Dong (cpl_41_11_117402bib174) 2023; 932 Qu (cpl_41_11_117402bib51) 2023; 341 Mukoyama (cpl_41_11_117402bib108) 2009; 35 Machi (cpl_41_11_117402bib142) 2003; 392–396 Braccini (cpl_41_11_117402bib143) 2007; 456 Kammlott (cpl_41_11_117402bib106) 1990; 56 Stadel (cpl_41_11_117402bib115) 2002; 372–376 Kováč (cpl_41_11_117402bib155) 2021; 34 Kumar (cpl_41_11_117402bib71) 2010; 23 Kumar (cpl_41_11_117402bib89) 2021; 28 Lu (cpl_41_11_117402bib112) 2013; 485 Iijima (cpl_41_11_117402bib109) 1992; 60 Flükiger (cpl_41_11_117402bib9) 1984; 45 Larbalestier (cpl_41_11_117402bib27) 2014; 13 Ohya (cpl_41_11_117402bib101) 2013; 76 Zhang (cpl_41_11_117402bib148) 2023; 14 Li (cpl_41_11_117402bib178) 2024; 37 Koyanagi (cpl_41_11_117402bib139) 2015; 25 Chou (cpl_41_11_117402bib6) 1958; 109 Kováč (cpl_41_11_117402bib154) 2022; 35 Ichinose (cpl_41_11_117402bib127) 2007; 20 Dahiya (cpl_41_11_117402bib129) 2022; 128 Tamegai (cpl_41_11_117402bib170) 2021; 31 Kang (cpl_41_11_117402bib73) 2020; 30 Hao (cpl_41_11_117402bib75) 2024; 35 Lin (cpl_41_11_117402bib177) 2014; 4 Schauer (cpl_41_11_117402bib41) 1981; 17 Buta (cpl_41_11_117402bib49) 2021; 4 Feighan (cpl_41_11_117402bib128) 2017; 30 Lee (cpl_41_11_117402bib15) 1988; 23 Banno (cpl_41_11_117402bib39) 2019; 32 Chislett-McDonald (cpl_41_11_117402bib134) 2023; 36 Angrisani Armenio (cpl_41_11_117402bib66) 2022; 35 Nagamatsu (cpl_41_11_117402bib140) 2001; 410 Zhu (cpl_41_11_117402bib24) 2024; 34 Xu (cpl_41_11_117402bib46) 2021; 857 Oh (cpl_41_11_117402bib45) 2023; 957 Noudem (cpl_41_11_117402bib149) 2020; 103 Xu (cpl_41_11_117402bib37) 2017; 30 Dogruer (cpl_41_11_117402bib87) 2021; 32 Voccio (cpl_41_11_117402bib82) 2023; 2545 Yamade (cpl_41_11_117402bib84) 2007; 463–465 Wang (cpl_41_11_117402bib172) 2010; 23 Gu (cpl_41_11_117402bib132) 2021; 130 Dong (cpl_41_11_117402bib26) 2024; 11 Li (cpl_41_11_117402bib62) 2023; 36 Kamihara (cpl_41_11_117402bib161) 2008; 130 Zhang (cpl_41_11_117402bib179) 2021; 34 Zhang (cpl_41_11_117402bib12) 2019 Sandim (cpl_41_11_117402bib38) 2013; 26 Kiyoshi (cpl_41_11_117402bib54) 2001; 11 Wan (cpl_41_11_117402bib157) 2020; 756 Hannachi (cpl_41_11_117402bib124) 2021; 883 Masi (cpl_41_11_117402bib169) 2020; 1559 Shimoyama (cpl_41_11_117402bib163) 2014; 27 Braginski (cpl_41_11_117402bib2) 2019; 32 Zhang (cpl_41_11_117402bib166) 2022; 2 Sato (cpl_41_11_117402bib83) 2012; 51 Konstantopoulou (cpl_41_11_117402bib159) 2019; 32 Tarantini (cpl_41_11_117402bib47) 2021; 11 Yao (cpl_41_11_117402bib1) 2021; 24 Hong (cpl_41_11_117402bib55) 2006; 16 Motowidlo (cpl_41_11_117402bib22) 1992; 61 Wang (cpl_41_11_117402bib175) 2011; 471 Flükiger (cpl_41_11_117402bib32) 2008; 48 Goyal (cpl_41_11_117402bib110) 1996; 69 Kametani (cpl_41_11_117402bib90) 2015; 5 Cooley (cpl_41_11_117402bib10) 2003; 1 Aye (cpl_41_11_117402bib125) 2021; 23 Yang (cpl_41_11_117402bib121) 2024; 37 Fallah-Arani (cpl_41_11_117402bib97) 2021; 47 Heussner (cpl_41_11_117402bib19) 1997; 7 Volpini (cpl_41_11_117402bib29) 2015; 25 Parizh (cpl_41_11_117402bib28) 2017; 30 Majoros (cpl_41_11_117402bib158) 2022; 32 Shalaby (cpl_41_11_117402bib95) 2021; 47 Shadab (cpl_41_11_117402bib150) 2024; 50 Ortino (cpl_41_11_117402bib48) 2021; 34 Safaei (cpl_41_11_117402bib103) 2020; 118 Singh (cpl_41_11_117402bib114) 1998; 22 Kwon (cpl_41_11_117402bib147) 2023; 33 Lin (cpl_41_11_117402bib173) 2016; 112 Oloye (cpl_41_11_117402bib69) 2021; 34 Bednorz (cpl_41_11_117402bib105) 1986; 64 Lee (cpl_41_11_117402bib14) 1987; 35 Gao (cpl_41_11_117402bib167) 2008; 21 Majewski (cpl_41_11_117402bib86) 2000; 15 Kajikawa (cpl_41_11_117402bib160) 2013; 23 Pong (cpl_41_11_117402bib56) 2012; 22 Nurbaisyatul (cpl_41_11_117402bib88) 2021; 119 Larbalestier (cpl_41_11_117402bib8) 1981; 17 Liu (cpl_41_11_117402bib137) 2020; 33 Takahashi (cpl_41_11_117402bib117) 2004; 412–414 Ghosh (cpl_41_11_117402bib36) 2009; 19 Piao (cpl_41_11_117402bib100) 2019; 29 Ciazynski (cpl_41_11_117402bib57) 2007; 82 Huang (cpl_41_11_117402bib120) 2021; 34 Josephson (cpl_41_11_117402bib5) 1964; 36 Ağıl (cpl_41_11_117402bib98) 2021; 18 Shen (cpl_41_11_117402bib68) 2018; 89 Yang (cpl_41_11_117402bib80) 2022; 35 Otsuka (cpl_41_11_117402bib136) 2010; 20 Fang (cpl_41_11_117402bib176) 2012; 101 Jiang (cpl_41_11_117402bib78) 2019; 29 Pallecchi (cpl_41_11_117402bib180) 2015; 28 Xu (cpl_41_11_117402bib50) 2020; 186 Verma (cpl_41_11_117402bib94) 2024; 34 Gregory (cpl_41_11_117402bib34) 1996; 43 Molina (cpl_41_11_117402bib113) 2006; 19 Yetiş (cpl_41_11_117402bib145) 2022; 35 Godeke (cpl_41_11_117402bib43) 2006; 19 Xu (cpl_41_11_117402bib135) 2017; 7 Molodyk (cpl_41_11_117402bib123) 2021; 11 Onnes (cpl_41_11_117402bib3) 1911; 122 Shen (cpl_41_11_117402bib70) 2010; 23 Shujun (cpl_41_11_117402bib141) 2016; 29 Ballarino (cpl_41_11_117402bib35) 2015; 25 Ma (cpl_41_11_117402bib107) 2004; 49 Lee (cpl_41_11_117402bib11) 2003; 36 Wang (cpl_41_11_117402bib21) 1996; 42 Scanlan (cpl_41_11_117402bib42) 1975; 46 Vermeer (cpl_41_11_117402bib102) 2023; 36 Meissner (cpl_41_11_117402bib4) 1933; 21 Ali (cpl_41_11_117402bib93) 2024; 14 Kováč (cpl_41_11_117402bib153) 2020; 829 Iwaki (cpl_41_11_117402bib33) 2002; 12 Mousavi (cpl_41_11_117402bib23) 2021; 198 Haack (cpl_41_11_117402bib138) 2024 Critchlow (cpl_41_11_117402bib13) 1971; 11 Cooley (cpl_41_11_117402bib20) 1996; 42 Xu (cpl_41_11_117402bib131) 2021; 41 Hosono (cpl_41_11_117402bib165) 2018; 21 Shen (cpl_41_11_117402bib81) 2022; 25 Gao (cpl_41_11_117402bib152) 2023; 36 Verma (cpl_41_11_117402bib77) 2024; 37 Shen (cpl_41_11_117402bib79) 2019; 9 Miura (cpl_41_11_117402bib18) 1992; 32 Varanasi (cpl_41_11_117402bib126) 2008; 23 Peng (cpl_41_11_117402bib31) 2005; 15 Sharma (cpl_41_11_117402bib44) 2023; 935 Huang (cpl_41_11_117402bib118) 2023; 36 Qi (cpl_41_11_117402bib168) 2010; 23 Rijckaert (cpl_41_11_117402bib130) 2022; 35 |
| References_xml | – volume: 122 start-page: 124 year: 1911 ident: cpl_41_11_117402bib3 publication-title: Comm. Phys. Lab. Univ. Leiden – volume: 15 start-page: 2554 year: 2005 ident: cpl_41_11_117402bib60 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2005.847648 – volume: 89 start-page: 95 year: 2018 ident: cpl_41_11_117402bib68 publication-title: Cryogenics doi: 10.1016/j.cryogenics.2017.11.006 – volume: 954 year: 2023 ident: cpl_41_11_117402bib144 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.170148 – volume: 957 year: 2023 ident: cpl_41_11_117402bib45 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.170438 – volume: 45 start-page: C1 year: 1984 ident: cpl_41_11_117402bib9 publication-title: Le Journal de Physique Colloques doi: 10.1051/jphyscol:1984174 – volume: 935 year: 2023 ident: cpl_41_11_117402bib44 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.168140 – volume: 15 start-page: 3426 year: 2005 ident: cpl_41_11_117402bib31 publication-title: IEEE Trans. Appl. Superconduct. doi: 10.1109/tasc.2005.848955 – volume: 32 year: 2019 ident: cpl_41_11_117402bib159 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/ab13e7 – volume: 35 start-page: 2523 year: 1987 ident: cpl_41_11_117402bib14 publication-title: Acta Metall. doi: 10.1016/0001-6160(87)90149-0 – volume: 91 start-page: 68 year: 2020 ident: cpl_41_11_117402bib104 publication-title: SEI Tech. Rev. – volume: 7 start-page: 1142 year: 1997 ident: cpl_41_11_117402bib19 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/77.620693 – volume: 69 start-page: 1795 year: 1996 ident: cpl_41_11_117402bib110 publication-title: Appl. Phys. Lett. doi: 10.1063/1.117489 – volume: 32 start-page: 23 year: 2019 ident: cpl_41_11_117402bib2 publication-title: J. Supercond. Novel Magn. doi: 10.1007/s10948-018-4884-4 – volume: 47 year: 2021 ident: cpl_41_11_117402bib95 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.05.244 – volume: 42 start-page: 1095 year: 1996 ident: cpl_41_11_117402bib20 publication-title: Adv. Cryogen. Eng. Mater. doi: 10.1007/978-1-4757-9059-7_143 – volume: 13 start-page: 3422 year: 2003 ident: cpl_41_11_117402bib53 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2003.812341 – volume: 118 year: 2020 ident: cpl_41_11_117402bib103 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.105729 – volume: 341 year: 2023 ident: cpl_41_11_117402bib51 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2023.134157 – volume: 29 year: 2019 ident: cpl_41_11_117402bib100 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2019.2899670 – volume: 20 start-page: 402 year: 2010 ident: cpl_41_11_117402bib30 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2010.2041911 – volume: 51 year: 2012 ident: cpl_41_11_117402bib83 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/jjap.51.010006 – volume: 8 start-page: 115 year: 2008 ident: cpl_41_11_117402bib85 publication-title: Curr. Appl Phys. doi: 10.1016/j.cap.2007.04.014 – volume: 11 start-page: 2084 year: 2021 ident: cpl_41_11_117402bib123 publication-title: Sci. Rep. doi: 10.1038/s41598-021-81559-z – volume: 29 year: 2016 ident: cpl_41_11_117402bib141 publication-title: Superconduct. Sci. Technol. doi: 10.1088/0953-2048/29/11/113004 – volume: 46 start-page: 2244 year: 1975 ident: cpl_41_11_117402bib42 publication-title: J. Appl. Phys. doi: 10.1063/1.321816 – volume: 82 start-page: 488 year: 2007 ident: cpl_41_11_117402bib57 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2007.01.024 – volume: 829 year: 2020 ident: cpl_41_11_117402bib153 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154543 – volume: 14 start-page: 988 year: 2023 ident: cpl_41_11_117402bib148 publication-title: Micromachines doi: 10.3390/mi14050988 – volume: 5 year: 2021 ident: cpl_41_11_117402bib72 publication-title: Phys. Rev. Mater. doi: 10.1103/physrevmaterials.5.074803 – volume: 32 year: 2019 ident: cpl_41_11_117402bib39 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/ab4632 – volume: 119 year: 2021 ident: cpl_41_11_117402bib88 publication-title: Cryogenics doi: 10.1016/j.cryogenics.2021.103353 – volume: 130 year: 2021 ident: cpl_41_11_117402bib132 publication-title: J. Appl. Phys. doi: 10.1063/5.0053158 – volume: 2545 year: 2023 ident: cpl_41_11_117402bib82 publication-title: J. Phys: Conf. Ser. doi: 10.1088/1742-6596/2545/1/012013 – volume: 30 year: 2017 ident: cpl_41_11_117402bib128 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/aa90d1 – volume: 67 start-page: 301 year: 2024 ident: cpl_41_11_117402bib171 publication-title: Sci. China Mater. doi: 10.1007/s40843-023-2683-5 – volume: 23 year: 2010 ident: cpl_41_11_117402bib168 publication-title: Superconduct. Sci. Technol. doi: 10.1088/0953-2048/23/5/055009 – volume: 25 year: 2022 ident: cpl_41_11_117402bib81 publication-title: Phys. Rev. Accelerat. Beams doi: 10.1103/physrevaccelbeams.25.122401 – volume: 34 year: 2021 ident: cpl_41_11_117402bib155 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/abece7 – volume: 16 start-page: 1146 year: 2006 ident: cpl_41_11_117402bib55 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2005.864270 – volume: 11 year: 2024 ident: cpl_41_11_117402bib26 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwae122 – volume: 19 start-page: 2580 year: 2009 ident: cpl_41_11_117402bib36 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2009.2018075 – volume: 4 year: 2021 ident: cpl_41_11_117402bib49 publication-title: J. Phys.: Mater. doi: 10.1088/2515-7639/abe662 – volume: 32 start-page: 315 year: 1992 ident: cpl_41_11_117402bib18 publication-title: Cryogenics doi: 10.1016/0011-2275(92)90371-g – volume: 883 year: 2021 ident: cpl_41_11_117402bib124 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.160887 – start-page: 279 year: 2019 ident: cpl_41_11_117402bib12 doi: 10.1016/b978-0-12-815820-3.00010-1 – volume: 32 start-page: 7073 year: 2021 ident: cpl_41_11_117402bib87 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-021-05417-4 – volume: 34 year: 2024 ident: cpl_41_11_117402bib122 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202401251 – volume: 29 start-page: 533 year: 2004 ident: cpl_41_11_117402bib111 publication-title: MRS Bull. doi: 10.1557/mrs2004.159 – volume: 36 year: 2023 ident: cpl_41_11_117402bib52 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/acdbed – volume: 22 start-page: 113 year: 1998 ident: cpl_41_11_117402bib114 publication-title: Mater. Sci. Eng. R doi: 10.1016/s0927-796x(97)00019-3 – volume: 23 year: 2013 ident: cpl_41_11_117402bib160 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2013.2240033 – volume: 12 start-page: 1045 year: 2002 ident: cpl_41_11_117402bib33 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2002.1018580 – volume: 36 start-page: 61 year: 2003 ident: cpl_41_11_117402bib11 publication-title: Wire J. Int. – volume: 18 start-page: 677 year: 2021 ident: cpl_41_11_117402bib98 publication-title: Int. J. Appl. Ceram. Technol. doi: 10.1111/ijac.13721 – volume: 49 start-page: 2435 year: 2004 ident: cpl_41_11_117402bib107 publication-title: Chin. Sci. Bull. doi: 10.1007/bf03183707 – volume: 43 start-page: 1319 year: 1996 ident: cpl_41_11_117402bib34 publication-title: Adv. Cryogen. Eng. Mater. doi: 10.1007/978-1-4757-9059-7_171 – volume: 19 start-page: R68 year: 2006 ident: cpl_41_11_117402bib43 publication-title: Superconduct. Sci. Technol. doi: 10.1088/0953-2048/19/8/r02 – volume: 198 year: 2021 ident: cpl_41_11_117402bib23 publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109285 – volume: 23 start-page: 3363 year: 2008 ident: cpl_41_11_117402bib126 publication-title: J. Mater. Res. doi: 10.1557/jmr.2008.0412 – volume: 11 start-page: 2347 year: 2001 ident: cpl_41_11_117402bib54 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/77.920332 – volume: 35 year: 2022 ident: cpl_41_11_117402bib80 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/ac30ea – volume: 42 start-page: 1109 year: 1996 ident: cpl_41_11_117402bib21 publication-title: Adv. Cryogen. Eng. Mater. doi: 10.1007/978-1-4757-9059-7_145 – volume: 35 year: 2022 ident: cpl_41_11_117402bib66 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/ac45a0 – volume: 34 year: 2021 ident: cpl_41_11_117402bib69 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/abd575 – volume: 5 start-page: 8285 year: 2015 ident: cpl_41_11_117402bib90 publication-title: Sci. Rep. doi: 10.1038/srep08285 – volume: 33 year: 2020 ident: cpl_41_11_117402bib137 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/ab714e – volume: 120 year: 2021 ident: cpl_41_11_117402bib156 publication-title: Cryogenics doi: 10.1016/j.cryogenics.2021.103370 – volume: 36 start-page: 1440 year: 2012 ident: cpl_41_11_117402bib116 publication-title: Phys. Procedia doi: 10.1016/j.phpro.2012.06.239 – volume: 35 start-page: 207 year: 2021 ident: cpl_41_11_117402bib164 publication-title: Mater. Today: Proc. doi: 10.1016/j.matpr.2020.04.503 – volume: 109 start-page: 788 year: 1958 ident: cpl_41_11_117402bib6 publication-title: Phys. Rev. doi: 10.1103/physrev.109.788 – volume: 13 start-page: 375 year: 2014 ident: cpl_41_11_117402bib27 publication-title: Nat. Mater. doi: 10.1038/nmat3887 – volume: 26 year: 2013 ident: cpl_41_11_117402bib38 publication-title: Superconduct. Sci. Technol. doi: 10.1088/0953-2048/26/5/055008 – volume: 22 year: 2012 ident: cpl_41_11_117402bib56 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2012.2182972 – volume: 6 year: 2023 ident: cpl_41_11_117402bib7 publication-title: Superconductivity doi: 10.1016/j.supcon.2023.100047 – volume: 37 start-page: 1 year: 2024 ident: cpl_41_11_117402bib77 publication-title: J. Supercond. Novel Magn. doi: 10.1007/s10948-023-06675-5 – volume: 33 year: 2020 ident: cpl_41_11_117402bib146 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/ab9ef1 – volume: 33 year: 2023 ident: cpl_41_11_117402bib147 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2023.3247375 – volume: 34 year: 2021 ident: cpl_41_11_117402bib179 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/abb11b – volume: 35 start-page: 18 year: 2009 ident: cpl_41_11_117402bib108 publication-title: Furukawa Rev. – volume: 56 start-page: 2459 year: 1990 ident: cpl_41_11_117402bib106 publication-title: Appl. Phys. Lett. doi: 10.1063/1.103255 – year: 2024 ident: cpl_41_11_117402bib25 – volume: 412–414 start-page: 905 year: 2004 ident: cpl_41_11_117402bib117 publication-title: Physica C doi: 10.1016/j.physc.2004.02.205 – volume: 27 year: 2014 ident: cpl_41_11_117402bib163 publication-title: Superconduct. Sci. Technol. doi: 10.1088/0953-2048/27/4/044002 – volume: 25 year: 2015 ident: cpl_41_11_117402bib35 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2015.2390149 – volume: 463–465 start-page: 821 year: 2007 ident: cpl_41_11_117402bib84 publication-title: Physica C doi: 10.1016/j.physc.2007.04.269 – volume: 128 start-page: 308 year: 2022 ident: cpl_41_11_117402bib129 publication-title: Appl. Phys. A doi: 10.1007/s00339-022-05326-1 – volume: 17 start-page: 1668 year: 1981 ident: cpl_41_11_117402bib8 publication-title: IEEE Trans. Magn. doi: 10.1109/tmag.1981.1061365 – volume: 35 start-page: 746 year: 2024 ident: cpl_41_11_117402bib75 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-024-12480-0 – volume: 36 year: 2023 ident: cpl_41_11_117402bib134 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/aceab8 – volume: 76 start-page: 45 year: 2013 ident: cpl_41_11_117402bib101 publication-title: SEI Tech. Rev. – volume: 24 year: 2021 ident: cpl_41_11_117402bib1 publication-title: iScience doi: 10.1016/j.isci.2021.102541 – volume: 30 year: 2017 ident: cpl_41_11_117402bib65 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/30/3/035004 – volume: 80 start-page: 1640 year: 1996 ident: cpl_41_11_117402bib17 publication-title: J. Appl. Phys. doi: 10.1063/1.362979 – volume: 756 year: 2020 ident: cpl_41_11_117402bib157 publication-title: IOP Conf. Ser.: Mater. Sci. Eng. doi: 10.1088/1757-899x/756/1/012018 – volume: 23 start-page: 3951 year: 1988 ident: cpl_41_11_117402bib15 publication-title: J. Mater. Sci. doi: 10.1007/bf01106819 – volume: 36 year: 2023 ident: cpl_41_11_117402bib152 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/ace662 – volume: 21 start-page: 787 year: 1933 ident: cpl_41_11_117402bib4 publication-title: Naturwissenschaften doi: 10.1007/bf01504252 – volume: 30 year: 2017 ident: cpl_41_11_117402bib37 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/aa7976 – volume: 35 year: 2022 ident: cpl_41_11_117402bib145 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/ac5339 – volume: 35 year: 2022 ident: cpl_41_11_117402bib119 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/ac4aff – volume: 130 start-page: 78 year: 2024 ident: cpl_41_11_117402bib64 publication-title: Appl. Phys. A doi: 10.1007/s00339-023-07245-1 – volume: 20 start-page: 1144 year: 2007 ident: cpl_41_11_117402bib127 publication-title: Superconduct. Sci. Technol. doi: 10.1088/0953-2048/20/12/010 – volume: 25 year: 2015 ident: cpl_41_11_117402bib139 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2014.2385962 – volume: 14 year: 2024 ident: cpl_41_11_117402bib93 publication-title: AIP Adv. doi: 10.1063/5.0191262 – volume: 11 start-page: 3 year: 1971 ident: cpl_41_11_117402bib13 publication-title: Cryogenics doi: 10.1016/0011-2275(71)90002-6 – volume: 20 start-page: 596 year: 2010 ident: cpl_41_11_117402bib136 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2009.2039555 – volume: 50 year: 2024 ident: cpl_41_11_117402bib150 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2024.03.259 – volume: 25 year: 2015 ident: cpl_41_11_117402bib29 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2014.2378377 – volume: 309 year: 2023 ident: cpl_41_11_117402bib151 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2023.128348 – volume: 21 year: 2008 ident: cpl_41_11_117402bib167 publication-title: Superconduct. Sci. Technol. doi: 10.1088/0953-2048/21/10/105024 – volume: 471 start-page: 1689 year: 2011 ident: cpl_41_11_117402bib175 publication-title: Physica C doi: 10.1016/j.physc.2011.09.003 – volume: 456 start-page: 209 year: 2007 ident: cpl_41_11_117402bib143 publication-title: Physica C doi: 10.1016/j.physc.2007.01.030 – volume: 48 year: 2022 ident: cpl_41_11_117402bib96 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.05.271 – volume: 922 year: 2022 ident: cpl_41_11_117402bib74 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.166304 – volume: 34 year: 2021 ident: cpl_41_11_117402bib120 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/abe35f – volume: 112 start-page: 128 year: 2016 ident: cpl_41_11_117402bib173 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.09.031 – volume: 41 start-page: 480 year: 2021 ident: cpl_41_11_117402bib131 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.07.074 – volume: 592 year: 2022 ident: cpl_41_11_117402bib133 publication-title: Physica C doi: 10.1016/j.physc.2021.1354000 – volume: 36 year: 2023 ident: cpl_41_11_117402bib102 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/acba4c – volume: 410 start-page: 63 year: 2001 ident: cpl_41_11_117402bib140 publication-title: Nature doi: 10.1038/35065039 – volume: 36 start-page: 216 year: 1964 ident: cpl_41_11_117402bib5 publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.36.216 – volume: 27 start-page: L361 year: 1988 ident: cpl_41_11_117402bib59 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/jjap.27.l361 – volume: 130 start-page: 3296 year: 2008 ident: cpl_41_11_117402bib161 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800073m – volume: 36 year: 2023 ident: cpl_41_11_117402bib118 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/acff25 – volume: 37 year: 2024 ident: cpl_41_11_117402bib121 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/ad4a33 – volume: 1 start-page: 603 year: 2003 ident: cpl_41_11_117402bib10 publication-title: Handbook of Superconducting Materials – volume: 15 start-page: 854 year: 2000 ident: cpl_41_11_117402bib86 publication-title: J. Mater. Res. doi: 10.1557/jmr.2000.0123 – volume: 23 year: 2010 ident: cpl_41_11_117402bib70 publication-title: Superconduct. Sci. Technol. doi: 10.1088/0953-2048/23/2/025009 – volume: 186 start-page: 317 year: 2020 ident: cpl_41_11_117402bib50 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.05.043 – volume: 28 year: 2021 ident: cpl_41_11_117402bib89 publication-title: Surf. Rev. Lett. doi: 10.1142/s0218625x21500207 – volume: 47 start-page: 3706 year: 2021 ident: cpl_41_11_117402bib97 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.09.226 – volume: 28 year: 2015 ident: cpl_41_11_117402bib180 publication-title: Superconduct. Sci. Technol. doi: 10.1088/0953-2048/28/11/114005 – volume: 34 year: 2024 ident: cpl_41_11_117402bib94 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2023.3332750 – volume: 23 start-page: 493 year: 2010 ident: cpl_41_11_117402bib71 publication-title: J. Supercond. Novel Magn. doi: 10.1007/s10948-009-0622-2 – volume: 49 year: 2023 ident: cpl_41_11_117402bib91 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2023.06.047 – volume: 29 year: 2019 ident: cpl_41_11_117402bib78 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2019.2895197 – volume: 34 year: 2024 ident: cpl_41_11_117402bib24 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2023.3348435 – volume: 36 start-page: 843 year: 2023 ident: cpl_41_11_117402bib62 publication-title: J. Supercond. Novel Magn. doi: 10.1007/s10948-023-06531-6 – volume: 21 start-page: 75 year: 1999 ident: cpl_41_11_117402bib16 publication-title: Wiley Encyclopedia of Electrical and Electronics Engineering – volume: 23 year: 2010 ident: cpl_41_11_117402bib172 publication-title: Superconduct. Sci. Technol. doi: 10.1088/0953-2048/23/2/025027 – volume: 31 year: 2021 ident: cpl_41_11_117402bib170 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2021.3064543 – volume: 19 start-page: 1200 year: 2006 ident: cpl_41_11_117402bib113 publication-title: Superconduct. Sci. Technol. doi: 10.1088/0953-2048/19/11/019 – volume: 1559 year: 2020 ident: cpl_41_11_117402bib169 publication-title: J. Phys: Conf. Ser. doi: 10.1088/1742-6596/1559/1/012051 – volume: 900 year: 2022 ident: cpl_41_11_117402bib92 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.163201 – volume: 29 year: 2019 ident: cpl_41_11_117402bib67 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2019.2895215 – volume: 48 start-page: 293 year: 2008 ident: cpl_41_11_117402bib32 publication-title: Cryogenics doi: 10.1016/j.cryogenics.2008.05.005 – volume: 7 start-page: 6853 year: 2017 ident: cpl_41_11_117402bib135 publication-title: Sci. Rep. doi: 10.1038/s41598-017-06881-x – volume: 25 start-page: 2215 year: 2008 ident: cpl_41_11_117402bib162 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/25/7/015 – volume: 372–376 start-page: 751 year: 2002 ident: cpl_41_11_117402bib115 publication-title: Physica C doi: 10.1016/s0921-4534(02)00898-5 – volume: 35 year: 2022 ident: cpl_41_11_117402bib154 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/ac8ad5 – volume: 932 year: 2023 ident: cpl_41_11_117402bib174 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.167674 – volume: 61 start-page: 991 year: 1992 ident: cpl_41_11_117402bib22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.107698 – volume: 60 start-page: 769 year: 1992 ident: cpl_41_11_117402bib109 publication-title: Appl. Phys. Lett. doi: 10.1063/1.106514 – volume: 103 start-page: 6169 year: 2020 ident: cpl_41_11_117402bib149 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.17366 – volume: 2 year: 2022 ident: cpl_41_11_117402bib166 publication-title: Superconductivity doi: 10.1016/j.supcon.2022.100010 – volume: 30 year: 2017 ident: cpl_41_11_117402bib28 publication-title: Superconduct. Sci. Technol. doi: 10.1088/0953-2048/30/1/014007 – volume: 25 year: 2015 ident: cpl_41_11_117402bib58 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2014.2367024 – volume: 30 year: 2020 ident: cpl_41_11_117402bib73 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2020.3000229 – volume: 9 year: 2019 ident: cpl_41_11_117402bib79 publication-title: Sci. Rep. doi: 10.1038/s41598-019-46629-3 – volume: 64 start-page: 189 year: 1986 ident: cpl_41_11_117402bib105 publication-title: Z. Phys. B doi: 10.1007/bf01303701 – volume: 32 year: 2022 ident: cpl_41_11_117402bib158 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2022.3147137 – volume: 21 start-page: 278 year: 2018 ident: cpl_41_11_117402bib165 publication-title: Mater. Today doi: 10.1016/j.mattod.2017.09.006 – volume: 857 year: 2021 ident: cpl_41_11_117402bib46 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.158270 – volume: 155 year: 2023 ident: cpl_41_11_117402bib40 publication-title: Intermetallics doi: 10.1016/j.intermet.2023.107848 – volume: 23 year: 2021 ident: cpl_41_11_117402bib125 publication-title: New J. Phys. doi: 10.1088/1367-2630/ac3682 – year: 2024 ident: cpl_41_11_117402bib138 doi: 10.1007/s13369-024-08720-4 – volume: 17 start-page: 374 year: 1981 ident: cpl_41_11_117402bib41 publication-title: IEEE Trans. Magn. doi: 10.1109/tmag.1981.1060900 – volume: 33 start-page: 318 year: 2019 ident: cpl_41_11_117402bib61 publication-title: Mater. Rep. – volume: 11 year: 2021 ident: cpl_41_11_117402bib47 publication-title: Sci. Rep. doi: 10.1038/s41598-021-97353-w – volume: 4 start-page: 6944 year: 2014 ident: cpl_41_11_117402bib177 publication-title: Sci. Rep. doi: 10.1038/srep06944 – volume: 34 year: 2021 ident: cpl_41_11_117402bib48 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/abd5f4 – volume: 101 year: 2012 ident: cpl_41_11_117402bib176 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4731204 – volume: 37 year: 2024 ident: cpl_41_11_117402bib178 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/ad0b95 – volume: 34 start-page: 1681 year: 2023 ident: cpl_41_11_117402bib63 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-023-11072-8 – volume: 485 start-page: 15 year: 2013 ident: cpl_41_11_117402bib112 publication-title: Physica C doi: 10.1016/j.physc.2012.09.015 – volume: 392–396 start-page: 1039 year: 2003 ident: cpl_41_11_117402bib142 publication-title: Physica C doi: 10.1016/s0921-4534(03)01160-2 – volume: 35 year: 2022 ident: cpl_41_11_117402bib130 publication-title: Superconduct. Sci. Technol. doi: 10.1088/1361-6668/ac7ae3 – volume: 36 start-page: 101 year: 2023 ident: cpl_41_11_117402bib99 publication-title: J. Supercond. Novel Magn. doi: 10.1007/s10948-022-06480-6 – volume: 34 year: 2024 ident: cpl_41_11_117402bib76 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2023.3345293 |
| SSID | ssj0011811 |
| Score | 2.3908663 |
| SecondaryResourceType | review_article |
| Snippet | Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials. At present, practical... Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials.At present,practical... |
| SourceID | wanfang crossref iop |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 117402 |
| Title | Review of the Research Status of Practical Superconducting Materials and Their Current Carrying Performance |
| URI | https://iopscience.iop.org/article/10.1088/0256-307X/41/11/117402 https://d.wanfangdata.com.cn/periodical/zgwlkb-e202411013 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Electronic Journals customDbUrl: eissn: 1741-3540 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011811 issn: 0256-307X databaseCode: IOP dateStart: 19840101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60InjxLdYXi3iTNE2y2WyOUpQiVAu20FvYV3qopCVNEPrrnc0mVgUREXIIIbNkZx_zTWbmW4RuqC91VzPhECWpAzNEOSIUviMql5kCRK5Onhs80f6YPE7CJpuwqoWZL-qtvwO3lijYqrBOiGOusdLml8nEJZ7rmSsihk5yK2AAj00N3_PwI5AABqw6NK-RaYqEf2zni33ahG-oqnmylGfTT4bnYQ-J5pNtvsmsUxaiI1ff2Bz_1ad9tFvDUnxnBQ7Qhs4O0XaVHiqXR2hmQwh4nmIAjLhJ18MGqpZL89jyHsGA45dyoXPwsg2RLNhFPOCFneWYZwqPTGAC16xQuMfz3NRZ4eG6fuEYjR_uR72-Ux_T4Eg_iguHaU-ZLAoNtj8FQBPryA_TUPtdqrkhMKSppIxzj3AamRUvecQoSSmLYi0JC05QK5tn-hRhGXmapkqJqJsSHvBYKXDdAdQwFQgVem3kNoOTLCwbR1JF0RlLjAoTo8KEeODXJFaFbXQLOk_qhbn89e3reqzXEqvp2-tMJNAdADuwgQVnf2ryHO0YSZsBc4FaRV7qS8AxhbiqZuo7CCrjyQ |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5eUHzxLt4N4pt0Xbs2zR5FHd6mAxX2FnLdw6QbXYfgr_ck6eYFREToQylNaM5Jcr7Tc84XhE5ILHVdUxEkSpIAZogKRCriQDiXmQBEdifPte_J1XNy0027M-hyWgszGFZbfw1uPVGwF2GVEEdDa6XtL5NumERhZK8MnKBwqMwsmndsJbaO76EzDSaAEXMH503aTQqFf-zri42ahe9wFT254Xnvk_FprfgkkZHjLLQ5J_3auBQ1-faN0fHf41pFyxU8xWe-0Rqa0fk6WnBponK0gfo-lIAHBgNwxJO0PWwh63hkH3v-I1A8fhwPdQHetiWUBfuI27z0sx3zXOEnG6DAFTsUPudFYeutcOejjmETPbcun86vguq4hkDGWbMMqI6UzabQgAEMAJumzuLUpDquE80tkSExklDOo4STzK58yTNKEkNo1tQyoY0tNJcPcr2NsMwiTYxSIqubhDd4Uylw4QHcUNUQKo12UDhREBt6Vg7moumUMitGZsXIkgj8G-bFuINOQe6sWqCjX98-rvT90eKt9_rSFwyGA6AHNrLG7p-6PEKLnYsWu7u-v91DS7YTnxSzj-bKYqwPANqU4tBN3HdpZOkq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+the+Research+Status+of+Practical+Superconducting+Materials+and+Their+Current+Carrying+Performance&rft.jtitle=Chinese+physics+letters&rft.au=Zhang%2C+Yifan&rft.au=Zhang%2C+Shengnan&rft.au=Liu%2C+Jixing&rft.au=Yang%2C+Fang&rft.date=2024-12-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=0256-307X&rft.volume=41&rft.issue=11&rft_id=info:doi/10.1088%2F0256-307X%2F41%2F11%2F117402&rft.externalDocID=cpl_41_11_117402 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwlkb-e%2Fzgwlkb-e.jpg |