Review of the Research Status of Practical Superconducting Materials and Their Current Carrying Performance

Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials. At present, practical superconducting materials include low-temperature superconductors such as NbTi and Nb 3 Sn, high-temperature superconductors such as Bi-2212, Bi-2223...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 41; no. 11; pp. 117402 - 142
Main Authors Zhang, Yifan, Zhang, Shengnan, Liu, Jixing, Yang, Fang, Li, Chengshan, Li, Jianfeng, Zhang, Pingxiang
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.12.2024
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/41/11/117402

Cover

Abstract Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials. At present, practical superconducting materials include low-temperature superconductors such as NbTi and Nb 3 Sn, high-temperature superconductors such as Bi-2212, Bi-2223, YBCO, iron-based superconductors and MgB 2 . The development of low-temperature superconducting wires started earlier and has now entered the stage of industrialized production, showing obvious advantages in mechanical properties and cost under low temperature and middle-low magnetic field. However, due to the insufficient intrinsic superconducting performance, low-temperature superconductors are unable to exhibit excellent performance at high temperature or high fields. Further improvement of supercurrent carrying performance mainly depends on the enhancement of pinning ability. High-temperature superconductors have greater advantages in high temperature and high field, but many of them are still in the stage of further performance improvement. Many high-temperature superconductors are limited by the deficiency in their polycrystalline structure, and further optimization of intergranular connectivity is required. In addition, it is also necessary to further enhance their pinning ability. The numerous successful application instances of high-temperature superconducting wires and tapes also prove their tremendous potential in electric power applications.
AbstractList Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials.At present,practical superconducting materials include low-temperature superconductors such as NbTi and Nb3Sn,high-temperature superconductors such as Bi-2212,Bi-2223,YBCO,iron-based super-conductors and MgB2.The development of low-temperature superconducting wires started earlier and has now entered the stage of industrialized production,showing obvious advantages in mechanical properties and cost under low temperature and middle-low magnetic field.However,due to the insufficient intrinsic superconducting performance,low-temperature superconductors are unable to exhibit excellent performance at high temperature or high fields.Further improvement of supercurrent carrying performance mainly depends on the enhancement of pinning ability.High-temperature superconductors have greater advantages in high temperature and high field,but many of them are still in the stage of further performance improvement.Many high-temperature supercon-ductors are limited by the deficiency in their polycrystalline structure,and further optimization of intergranular connectivity is required.In addition,it is also necessary to further enhance their pinning ability.The numerous successful application instances of high-temperature superconducting wires and tapes also prove their tremendous potential in electric power applications.
Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials. At present, practical superconducting materials include low-temperature superconductors such as NbTi and Nb 3 Sn, high-temperature superconductors such as Bi-2212, Bi-2223, YBCO, iron-based superconductors and MgB 2 . The development of low-temperature superconducting wires started earlier and has now entered the stage of industrialized production, showing obvious advantages in mechanical properties and cost under low temperature and middle-low magnetic field. However, due to the insufficient intrinsic superconducting performance, low-temperature superconductors are unable to exhibit excellent performance at high temperature or high fields. Further improvement of supercurrent carrying performance mainly depends on the enhancement of pinning ability. High-temperature superconductors have greater advantages in high temperature and high field, but many of them are still in the stage of further performance improvement. Many high-temperature superconductors are limited by the deficiency in their polycrystalline structure, and further optimization of intergranular connectivity is required. In addition, it is also necessary to further enhance their pinning ability. The numerous successful application instances of high-temperature superconducting wires and tapes also prove their tremendous potential in electric power applications.
Author Li, Chengshan
Li, Jianfeng
Zhang, Yifan
Zhang, Pingxiang
Zhang, Shengnan
Liu, Jixing
Yang, Fang
Author_xml – sequence: 1
  givenname: Yifan
  surname: Zhang
  fullname: Zhang, Yifan
  organization: Northwestern Polytechnical University School of Material Science and Engineering, Xi’an 710072, China
– sequence: 2
  givenname: Shengnan
  surname: Zhang
  fullname: Zhang, Shengnan
  organization: Northwest Institute for Nonferrous Metal Research Superconducting Materials Research Center, Xi’an 710016, China
– sequence: 3
  givenname: Jixing
  surname: Liu
  fullname: Liu, Jixing
  organization: Northwest Institute for Nonferrous Metal Research Superconducting Materials Research Center, Xi’an 710016, China
– sequence: 4
  givenname: Fang
  surname: Yang
  fullname: Yang, Fang
  organization: Northwestern Polytechnical University School of Material Science and Engineering, Xi’an 710072, China
– sequence: 5
  givenname: Chengshan
  surname: Li
  fullname: Li, Chengshan
  organization: Northwest Institute for Nonferrous Metal Research Superconducting Materials Research Center, Xi’an 710016, China
– sequence: 6
  givenname: Jianfeng
  surname: Li
  fullname: Li, Jianfeng
  organization: Northwest Institute for Nonferrous Metal Research Superconducting Materials Research Center, Xi’an 710016, China
– sequence: 7
  givenname: Pingxiang
  surname: Zhang
  fullname: Zhang, Pingxiang
  organization: Northwestern Polytechnical University School of Material Science and Engineering, Xi’an 710072, China
BookMark eNqFkFtLw0AQhRepYFv9C7KvPsTu5LLZPErwBhVLW8G3ZdzOtullUzaJpf56Eyr6KAwcGL5zDpwB67nSEWPXIG5BKDUSYSKDSKTvoxhG0F0ai_CM9VuFIEpi0WP9X-iCDapqLQSAAuizzZQ-Czrw0vJ6RXxKFaE3Kz6rsW6q7j3xaOrC4JbPmj15U7pF0z7ckr9gTb7AbcXRLfh8RYXneeM9uZrn6P2xgybkbel36AxdsnPb0nT1o0P29nA_z5-C8evjc343DkyYZnWgCBahEIoUKCsTlVEaJjahUEhCSISU1kiFCDHKNIJMGkyVjK1UaUYmVtGQ3ZxyD-gsuqVel413baP-Wh62mw_dRoUxgICoZeWJNb6sKk9W732xQ3_UIHQ3r-6W091yOgYN3XXztsbwZCzK_V_BP6Zv_nl-tg
Cites_doi 10.1109/tasc.2005.847648
10.1016/j.cryogenics.2017.11.006
10.1016/j.jallcom.2023.170148
10.1016/j.jallcom.2023.170438
10.1051/jphyscol:1984174
10.1016/j.jallcom.2022.168140
10.1109/tasc.2005.848955
10.1088/1361-6668/ab13e7
10.1016/0001-6160(87)90149-0
10.1109/77.620693
10.1063/1.117489
10.1007/s10948-018-4884-4
10.1016/j.ceramint.2021.05.244
10.1007/978-1-4757-9059-7_143
10.1109/tasc.2003.812341
10.1016/j.ijepes.2019.105729
10.1016/j.matlet.2023.134157
10.1109/tasc.2019.2899670
10.1109/tasc.2010.2041911
10.1143/jjap.51.010006
10.1016/j.cap.2007.04.014
10.1038/s41598-021-81559-z
10.1088/0953-2048/29/11/113004
10.1063/1.321816
10.1016/j.fusengdes.2007.01.024
10.1016/j.jallcom.2020.154543
10.3390/mi14050988
10.1103/physrevmaterials.5.074803
10.1088/1361-6668/ab4632
10.1016/j.cryogenics.2021.103353
10.1063/5.0053158
10.1088/1742-6596/2545/1/012013
10.1088/1361-6668/aa90d1
10.1007/s40843-023-2683-5
10.1088/0953-2048/23/5/055009
10.1103/physrevaccelbeams.25.122401
10.1088/1361-6668/abece7
10.1109/tasc.2005.864270
10.1093/nsr/nwae122
10.1109/tasc.2009.2018075
10.1088/2515-7639/abe662
10.1016/0011-2275(92)90371-g
10.1016/j.jallcom.2021.160887
10.1016/b978-0-12-815820-3.00010-1
10.1007/s10854-021-05417-4
10.1002/adfm.202401251
10.1557/mrs2004.159
10.1088/1361-6668/acdbed
10.1016/s0927-796x(97)00019-3
10.1109/tasc.2013.2240033
10.1109/tasc.2002.1018580
10.1111/ijac.13721
10.1007/bf03183707
10.1007/978-1-4757-9059-7_171
10.1088/0953-2048/19/8/r02
10.1016/j.matdes.2020.109285
10.1557/jmr.2008.0412
10.1109/77.920332
10.1088/1361-6668/ac30ea
10.1007/978-1-4757-9059-7_145
10.1088/1361-6668/ac45a0
10.1088/1361-6668/abd575
10.1038/srep08285
10.1088/1361-6668/ab714e
10.1016/j.cryogenics.2021.103370
10.1016/j.phpro.2012.06.239
10.1016/j.matpr.2020.04.503
10.1103/physrev.109.788
10.1038/nmat3887
10.1088/0953-2048/26/5/055008
10.1109/tasc.2012.2182972
10.1016/j.supcon.2023.100047
10.1007/s10948-023-06675-5
10.1088/1361-6668/ab9ef1
10.1109/tasc.2023.3247375
10.1088/1361-6668/abb11b
10.1063/1.103255
10.1016/j.physc.2004.02.205
10.1088/0953-2048/27/4/044002
10.1109/tasc.2015.2390149
10.1016/j.physc.2007.04.269
10.1007/s00339-022-05326-1
10.1109/tmag.1981.1061365
10.1007/s10854-024-12480-0
10.1088/1361-6668/aceab8
10.1016/j.isci.2021.102541
10.1088/1361-6668/30/3/035004
10.1063/1.362979
10.1088/1757-899x/756/1/012018
10.1007/bf01106819
10.1088/1361-6668/ace662
10.1007/bf01504252
10.1088/1361-6668/aa7976
10.1088/1361-6668/ac5339
10.1088/1361-6668/ac4aff
10.1007/s00339-023-07245-1
10.1088/0953-2048/20/12/010
10.1109/tasc.2014.2385962
10.1063/5.0191262
10.1016/0011-2275(71)90002-6
10.1109/tasc.2009.2039555
10.1016/j.ceramint.2024.03.259
10.1109/tasc.2014.2378377
10.1016/j.matchemphys.2023.128348
10.1088/0953-2048/21/10/105024
10.1016/j.physc.2011.09.003
10.1016/j.physc.2007.01.030
10.1016/j.ceramint.2022.05.271
10.1016/j.jallcom.2022.166304
10.1088/1361-6668/abe35f
10.1016/j.scriptamat.2015.09.031
10.1016/j.jeurceramsoc.2020.07.074
10.1016/j.physc.2021.1354000
10.1088/1361-6668/acba4c
10.1038/35065039
10.1103/revmodphys.36.216
10.1143/jjap.27.l361
10.1021/ja800073m
10.1088/1361-6668/acff25
10.1088/1361-6668/ad4a33
10.1557/jmr.2000.0123
10.1088/0953-2048/23/2/025009
10.1016/j.scriptamat.2020.05.043
10.1142/s0218625x21500207
10.1016/j.ceramint.2020.09.226
10.1088/0953-2048/28/11/114005
10.1109/tasc.2023.3332750
10.1007/s10948-009-0622-2
10.1016/j.ceramint.2023.06.047
10.1109/tasc.2019.2895197
10.1109/tasc.2023.3348435
10.1007/s10948-023-06531-6
10.1088/0953-2048/23/2/025027
10.1109/tasc.2021.3064543
10.1088/0953-2048/19/11/019
10.1088/1742-6596/1559/1/012051
10.1016/j.jallcom.2021.163201
10.1109/tasc.2019.2895215
10.1016/j.cryogenics.2008.05.005
10.1038/s41598-017-06881-x
10.1088/0256-307X/25/7/015
10.1016/s0921-4534(02)00898-5
10.1088/1361-6668/ac8ad5
10.1016/j.jallcom.2022.167674
10.1063/1.107698
10.1063/1.106514
10.1111/jace.17366
10.1016/j.supcon.2022.100010
10.1088/0953-2048/30/1/014007
10.1109/tasc.2014.2367024
10.1109/tasc.2020.3000229
10.1038/s41598-019-46629-3
10.1007/bf01303701
10.1109/tasc.2022.3147137
10.1016/j.mattod.2017.09.006
10.1016/j.jallcom.2020.158270
10.1016/j.intermet.2023.107848
10.1088/1367-2630/ac3682
10.1007/s13369-024-08720-4
10.1109/tmag.1981.1060900
10.1038/s41598-021-97353-w
10.1038/srep06944
10.1088/1361-6668/abd5f4
10.1063/1.4731204
10.1088/1361-6668/ad0b95
10.1007/s10854-023-11072-8
10.1016/j.physc.2012.09.015
10.1016/s0921-4534(03)01160-2
10.1088/1361-6668/ac7ae3
10.1007/s10948-022-06480-6
10.1109/tasc.2023.3345293
ContentType Journal Article
Copyright 2024 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/0256-307X/41/11/117402
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1741-3540
EndPage 142
ExternalDocumentID zgwlkb_e202411013
10_1088_0256_307X_41_11_117402
cpl_41_11_117402
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
U1G
U5K
UCJ
W28
XPP
~02
AAYXX
ADEQX
AEINN
CITATION
Q--
TGP
02O
042
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NS0
NT-
NT.
PSX
Q02
S3P
T37
TCJ
ID FETCH-LOGICAL-c279t-8e1d2008e818f6589e725f5e206ea15066fc68aa14a673196ca7864f6879ec483
IEDL.DBID IOP
ISSN 0256-307X
IngestDate Thu May 29 04:07:19 EDT 2025
Wed Oct 01 02:18:57 EDT 2025
Wed Dec 25 02:19:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c279t-8e1d2008e818f6589e725f5e206ea15066fc68aa14a673196ca7864f6879ec483
PageCount 15
ParticipantIDs iop_journals_10_1088_0256_307X_41_11_117402
crossref_primary_10_1088_0256_307X_41_11_117402
wanfang_journals_zgwlkb_e202411013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics letters
PublicationTitleAlternate Chinese Phys. Lett
PublicationTitle_FL Chinese Physics Letters
PublicationYear 2024
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Lee (cpl_41_11_117402bib16) 1999; 21
Vu (cpl_41_11_117402bib91) 2023; 49
Leoncino (cpl_41_11_117402bib67) 2019; 29
Wheatley (cpl_41_11_117402bib52) 2023; 36
Yoshio (cpl_41_11_117402bib59) 1988; 27
Liu (cpl_41_11_117402bib133) 2022; 592
Heussner (cpl_41_11_117402bib17) 1996; 80
Zhang (cpl_41_11_117402bib40) 2023; 155
Ambrosio (cpl_41_11_117402bib58) 2015; 25
Xu (cpl_41_11_117402bib76) 2024; 34
Shadab (cpl_41_11_117402bib151) 2023; 309
Aytekin (cpl_41_11_117402bib64) 2024; 130
Biswal (cpl_41_11_117402bib164) 2021; 35
Paranthaman (cpl_41_11_117402bib111) 2004; 29
Hayashi (cpl_41_11_117402bib104) 2020; 91
Matias (cpl_41_11_117402bib116) 2012; 36
Fallah-Arani (cpl_41_11_117402bib96) 2022; 48
Mujaini (cpl_41_11_117402bib99) 2023; 36
Guo (cpl_41_11_117402bib171) 2024; 67
Miao (cpl_41_11_117402bib60) 2005; 15
Yang (cpl_41_11_117402bib63) 2023; 34
Wu (cpl_41_11_117402bib119) 2022; 35
Li (cpl_41_11_117402bib65) 2017; 30
Lee (cpl_41_11_117402bib53) 2003; 13
Wan (cpl_41_11_117402bib146) 2020; 33
Liu (cpl_41_11_117402bib74) 2022; 922
Giannini (cpl_41_11_117402bib85) 2008; 8
Huang (cpl_41_11_117402bib122) 2024; 34
Búran (cpl_41_11_117402bib156) 2021; 120
Foussat (cpl_41_11_117402bib30) 2010; 20
Lee (cpl_41_11_117402bib25) 2024
Ren (cpl_41_11_117402bib162) 2008; 25
Oz (cpl_41_11_117402bib72) 2021; 5
Maeda (cpl_41_11_117402bib144) 2023; 954
Zheng (cpl_41_11_117402bib61) 2019; 33
Banno (cpl_41_11_117402bib7) 2023; 6
Fallah-Arani (cpl_41_11_117402bib92) 2022; 900
Dong (cpl_41_11_117402bib174) 2023; 932
Qu (cpl_41_11_117402bib51) 2023; 341
Mukoyama (cpl_41_11_117402bib108) 2009; 35
Machi (cpl_41_11_117402bib142) 2003; 392–396
Braccini (cpl_41_11_117402bib143) 2007; 456
Kammlott (cpl_41_11_117402bib106) 1990; 56
Stadel (cpl_41_11_117402bib115) 2002; 372–376
Kováč (cpl_41_11_117402bib155) 2021; 34
Kumar (cpl_41_11_117402bib71) 2010; 23
Kumar (cpl_41_11_117402bib89) 2021; 28
Lu (cpl_41_11_117402bib112) 2013; 485
Iijima (cpl_41_11_117402bib109) 1992; 60
Flükiger (cpl_41_11_117402bib9) 1984; 45
Larbalestier (cpl_41_11_117402bib27) 2014; 13
Ohya (cpl_41_11_117402bib101) 2013; 76
Zhang (cpl_41_11_117402bib148) 2023; 14
Li (cpl_41_11_117402bib178) 2024; 37
Koyanagi (cpl_41_11_117402bib139) 2015; 25
Chou (cpl_41_11_117402bib6) 1958; 109
Kováč (cpl_41_11_117402bib154) 2022; 35
Ichinose (cpl_41_11_117402bib127) 2007; 20
Dahiya (cpl_41_11_117402bib129) 2022; 128
Tamegai (cpl_41_11_117402bib170) 2021; 31
Kang (cpl_41_11_117402bib73) 2020; 30
Hao (cpl_41_11_117402bib75) 2024; 35
Lin (cpl_41_11_117402bib177) 2014; 4
Schauer (cpl_41_11_117402bib41) 1981; 17
Buta (cpl_41_11_117402bib49) 2021; 4
Feighan (cpl_41_11_117402bib128) 2017; 30
Lee (cpl_41_11_117402bib15) 1988; 23
Banno (cpl_41_11_117402bib39) 2019; 32
Chislett-McDonald (cpl_41_11_117402bib134) 2023; 36
Angrisani Armenio (cpl_41_11_117402bib66) 2022; 35
Nagamatsu (cpl_41_11_117402bib140) 2001; 410
Zhu (cpl_41_11_117402bib24) 2024; 34
Xu (cpl_41_11_117402bib46) 2021; 857
Oh (cpl_41_11_117402bib45) 2023; 957
Noudem (cpl_41_11_117402bib149) 2020; 103
Xu (cpl_41_11_117402bib37) 2017; 30
Dogruer (cpl_41_11_117402bib87) 2021; 32
Voccio (cpl_41_11_117402bib82) 2023; 2545
Yamade (cpl_41_11_117402bib84) 2007; 463–465
Wang (cpl_41_11_117402bib172) 2010; 23
Gu (cpl_41_11_117402bib132) 2021; 130
Dong (cpl_41_11_117402bib26) 2024; 11
Li (cpl_41_11_117402bib62) 2023; 36
Kamihara (cpl_41_11_117402bib161) 2008; 130
Zhang (cpl_41_11_117402bib179) 2021; 34
Zhang (cpl_41_11_117402bib12) 2019
Sandim (cpl_41_11_117402bib38) 2013; 26
Kiyoshi (cpl_41_11_117402bib54) 2001; 11
Wan (cpl_41_11_117402bib157) 2020; 756
Hannachi (cpl_41_11_117402bib124) 2021; 883
Masi (cpl_41_11_117402bib169) 2020; 1559
Shimoyama (cpl_41_11_117402bib163) 2014; 27
Braginski (cpl_41_11_117402bib2) 2019; 32
Zhang (cpl_41_11_117402bib166) 2022; 2
Sato (cpl_41_11_117402bib83) 2012; 51
Konstantopoulou (cpl_41_11_117402bib159) 2019; 32
Tarantini (cpl_41_11_117402bib47) 2021; 11
Yao (cpl_41_11_117402bib1) 2021; 24
Hong (cpl_41_11_117402bib55) 2006; 16
Motowidlo (cpl_41_11_117402bib22) 1992; 61
Wang (cpl_41_11_117402bib175) 2011; 471
Flükiger (cpl_41_11_117402bib32) 2008; 48
Goyal (cpl_41_11_117402bib110) 1996; 69
Kametani (cpl_41_11_117402bib90) 2015; 5
Cooley (cpl_41_11_117402bib10) 2003; 1
Aye (cpl_41_11_117402bib125) 2021; 23
Yang (cpl_41_11_117402bib121) 2024; 37
Fallah-Arani (cpl_41_11_117402bib97) 2021; 47
Heussner (cpl_41_11_117402bib19) 1997; 7
Volpini (cpl_41_11_117402bib29) 2015; 25
Parizh (cpl_41_11_117402bib28) 2017; 30
Majoros (cpl_41_11_117402bib158) 2022; 32
Shalaby (cpl_41_11_117402bib95) 2021; 47
Shadab (cpl_41_11_117402bib150) 2024; 50
Ortino (cpl_41_11_117402bib48) 2021; 34
Safaei (cpl_41_11_117402bib103) 2020; 118
Singh (cpl_41_11_117402bib114) 1998; 22
Kwon (cpl_41_11_117402bib147) 2023; 33
Lin (cpl_41_11_117402bib173) 2016; 112
Oloye (cpl_41_11_117402bib69) 2021; 34
Bednorz (cpl_41_11_117402bib105) 1986; 64
Lee (cpl_41_11_117402bib14) 1987; 35
Gao (cpl_41_11_117402bib167) 2008; 21
Majewski (cpl_41_11_117402bib86) 2000; 15
Kajikawa (cpl_41_11_117402bib160) 2013; 23
Pong (cpl_41_11_117402bib56) 2012; 22
Nurbaisyatul (cpl_41_11_117402bib88) 2021; 119
Larbalestier (cpl_41_11_117402bib8) 1981; 17
Liu (cpl_41_11_117402bib137) 2020; 33
Takahashi (cpl_41_11_117402bib117) 2004; 412–414
Ghosh (cpl_41_11_117402bib36) 2009; 19
Piao (cpl_41_11_117402bib100) 2019; 29
Ciazynski (cpl_41_11_117402bib57) 2007; 82
Huang (cpl_41_11_117402bib120) 2021; 34
Josephson (cpl_41_11_117402bib5) 1964; 36
Ağıl (cpl_41_11_117402bib98) 2021; 18
Shen (cpl_41_11_117402bib68) 2018; 89
Yang (cpl_41_11_117402bib80) 2022; 35
Otsuka (cpl_41_11_117402bib136) 2010; 20
Fang (cpl_41_11_117402bib176) 2012; 101
Jiang (cpl_41_11_117402bib78) 2019; 29
Pallecchi (cpl_41_11_117402bib180) 2015; 28
Xu (cpl_41_11_117402bib50) 2020; 186
Verma (cpl_41_11_117402bib94) 2024; 34
Gregory (cpl_41_11_117402bib34) 1996; 43
Molina (cpl_41_11_117402bib113) 2006; 19
Yetiş (cpl_41_11_117402bib145) 2022; 35
Godeke (cpl_41_11_117402bib43) 2006; 19
Xu (cpl_41_11_117402bib135) 2017; 7
Molodyk (cpl_41_11_117402bib123) 2021; 11
Onnes (cpl_41_11_117402bib3) 1911; 122
Shen (cpl_41_11_117402bib70) 2010; 23
Shujun (cpl_41_11_117402bib141) 2016; 29
Ballarino (cpl_41_11_117402bib35) 2015; 25
Ma (cpl_41_11_117402bib107) 2004; 49
Lee (cpl_41_11_117402bib11) 2003; 36
Wang (cpl_41_11_117402bib21) 1996; 42
Scanlan (cpl_41_11_117402bib42) 1975; 46
Vermeer (cpl_41_11_117402bib102) 2023; 36
Meissner (cpl_41_11_117402bib4) 1933; 21
Ali (cpl_41_11_117402bib93) 2024; 14
Kováč (cpl_41_11_117402bib153) 2020; 829
Iwaki (cpl_41_11_117402bib33) 2002; 12
Mousavi (cpl_41_11_117402bib23) 2021; 198
Haack (cpl_41_11_117402bib138) 2024
Critchlow (cpl_41_11_117402bib13) 1971; 11
Cooley (cpl_41_11_117402bib20) 1996; 42
Xu (cpl_41_11_117402bib131) 2021; 41
Hosono (cpl_41_11_117402bib165) 2018; 21
Shen (cpl_41_11_117402bib81) 2022; 25
Gao (cpl_41_11_117402bib152) 2023; 36
Verma (cpl_41_11_117402bib77) 2024; 37
Shen (cpl_41_11_117402bib79) 2019; 9
Miura (cpl_41_11_117402bib18) 1992; 32
Varanasi (cpl_41_11_117402bib126) 2008; 23
Peng (cpl_41_11_117402bib31) 2005; 15
Sharma (cpl_41_11_117402bib44) 2023; 935
Huang (cpl_41_11_117402bib118) 2023; 36
Qi (cpl_41_11_117402bib168) 2010; 23
Rijckaert (cpl_41_11_117402bib130) 2022; 35
References_xml – volume: 122
  start-page: 124
  year: 1911
  ident: cpl_41_11_117402bib3
  publication-title: Comm. Phys. Lab. Univ. Leiden
– volume: 15
  start-page: 2554
  year: 2005
  ident: cpl_41_11_117402bib60
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2005.847648
– volume: 89
  start-page: 95
  year: 2018
  ident: cpl_41_11_117402bib68
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2017.11.006
– volume: 954
  year: 2023
  ident: cpl_41_11_117402bib144
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.170148
– volume: 957
  year: 2023
  ident: cpl_41_11_117402bib45
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.170438
– volume: 45
  start-page: C1
  year: 1984
  ident: cpl_41_11_117402bib9
  publication-title: Le Journal de Physique Colloques
  doi: 10.1051/jphyscol:1984174
– volume: 935
  year: 2023
  ident: cpl_41_11_117402bib44
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.168140
– volume: 15
  start-page: 3426
  year: 2005
  ident: cpl_41_11_117402bib31
  publication-title: IEEE Trans. Appl. Superconduct.
  doi: 10.1109/tasc.2005.848955
– volume: 32
  year: 2019
  ident: cpl_41_11_117402bib159
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/ab13e7
– volume: 35
  start-page: 2523
  year: 1987
  ident: cpl_41_11_117402bib14
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(87)90149-0
– volume: 91
  start-page: 68
  year: 2020
  ident: cpl_41_11_117402bib104
  publication-title: SEI Tech. Rev.
– volume: 7
  start-page: 1142
  year: 1997
  ident: cpl_41_11_117402bib19
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/77.620693
– volume: 69
  start-page: 1795
  year: 1996
  ident: cpl_41_11_117402bib110
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.117489
– volume: 32
  start-page: 23
  year: 2019
  ident: cpl_41_11_117402bib2
  publication-title: J. Supercond. Novel Magn.
  doi: 10.1007/s10948-018-4884-4
– volume: 47
  year: 2021
  ident: cpl_41_11_117402bib95
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.05.244
– volume: 42
  start-page: 1095
  year: 1996
  ident: cpl_41_11_117402bib20
  publication-title: Adv. Cryogen. Eng. Mater.
  doi: 10.1007/978-1-4757-9059-7_143
– volume: 13
  start-page: 3422
  year: 2003
  ident: cpl_41_11_117402bib53
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2003.812341
– volume: 118
  year: 2020
  ident: cpl_41_11_117402bib103
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.105729
– volume: 341
  year: 2023
  ident: cpl_41_11_117402bib51
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2023.134157
– volume: 29
  year: 2019
  ident: cpl_41_11_117402bib100
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2019.2899670
– volume: 20
  start-page: 402
  year: 2010
  ident: cpl_41_11_117402bib30
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2010.2041911
– volume: 51
  year: 2012
  ident: cpl_41_11_117402bib83
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/jjap.51.010006
– volume: 8
  start-page: 115
  year: 2008
  ident: cpl_41_11_117402bib85
  publication-title: Curr. Appl Phys.
  doi: 10.1016/j.cap.2007.04.014
– volume: 11
  start-page: 2084
  year: 2021
  ident: cpl_41_11_117402bib123
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-81559-z
– volume: 29
  year: 2016
  ident: cpl_41_11_117402bib141
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/0953-2048/29/11/113004
– volume: 46
  start-page: 2244
  year: 1975
  ident: cpl_41_11_117402bib42
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.321816
– volume: 82
  start-page: 488
  year: 2007
  ident: cpl_41_11_117402bib57
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2007.01.024
– volume: 829
  year: 2020
  ident: cpl_41_11_117402bib153
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154543
– volume: 14
  start-page: 988
  year: 2023
  ident: cpl_41_11_117402bib148
  publication-title: Micromachines
  doi: 10.3390/mi14050988
– volume: 5
  year: 2021
  ident: cpl_41_11_117402bib72
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/physrevmaterials.5.074803
– volume: 32
  year: 2019
  ident: cpl_41_11_117402bib39
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/ab4632
– volume: 119
  year: 2021
  ident: cpl_41_11_117402bib88
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2021.103353
– volume: 130
  year: 2021
  ident: cpl_41_11_117402bib132
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0053158
– volume: 2545
  year: 2023
  ident: cpl_41_11_117402bib82
  publication-title: J. Phys: Conf. Ser.
  doi: 10.1088/1742-6596/2545/1/012013
– volume: 30
  year: 2017
  ident: cpl_41_11_117402bib128
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/aa90d1
– volume: 67
  start-page: 301
  year: 2024
  ident: cpl_41_11_117402bib171
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-023-2683-5
– volume: 23
  year: 2010
  ident: cpl_41_11_117402bib168
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/0953-2048/23/5/055009
– volume: 25
  year: 2022
  ident: cpl_41_11_117402bib81
  publication-title: Phys. Rev. Accelerat. Beams
  doi: 10.1103/physrevaccelbeams.25.122401
– volume: 34
  year: 2021
  ident: cpl_41_11_117402bib155
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/abece7
– volume: 16
  start-page: 1146
  year: 2006
  ident: cpl_41_11_117402bib55
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2005.864270
– volume: 11
  year: 2024
  ident: cpl_41_11_117402bib26
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwae122
– volume: 19
  start-page: 2580
  year: 2009
  ident: cpl_41_11_117402bib36
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2009.2018075
– volume: 4
  year: 2021
  ident: cpl_41_11_117402bib49
  publication-title: J. Phys.: Mater.
  doi: 10.1088/2515-7639/abe662
– volume: 32
  start-page: 315
  year: 1992
  ident: cpl_41_11_117402bib18
  publication-title: Cryogenics
  doi: 10.1016/0011-2275(92)90371-g
– volume: 883
  year: 2021
  ident: cpl_41_11_117402bib124
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.160887
– start-page: 279
  year: 2019
  ident: cpl_41_11_117402bib12
  doi: 10.1016/b978-0-12-815820-3.00010-1
– volume: 32
  start-page: 7073
  year: 2021
  ident: cpl_41_11_117402bib87
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-021-05417-4
– volume: 34
  year: 2024
  ident: cpl_41_11_117402bib122
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202401251
– volume: 29
  start-page: 533
  year: 2004
  ident: cpl_41_11_117402bib111
  publication-title: MRS Bull.
  doi: 10.1557/mrs2004.159
– volume: 36
  year: 2023
  ident: cpl_41_11_117402bib52
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/acdbed
– volume: 22
  start-page: 113
  year: 1998
  ident: cpl_41_11_117402bib114
  publication-title: Mater. Sci. Eng. R
  doi: 10.1016/s0927-796x(97)00019-3
– volume: 23
  year: 2013
  ident: cpl_41_11_117402bib160
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2013.2240033
– volume: 12
  start-page: 1045
  year: 2002
  ident: cpl_41_11_117402bib33
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2002.1018580
– volume: 36
  start-page: 61
  year: 2003
  ident: cpl_41_11_117402bib11
  publication-title: Wire J. Int.
– volume: 18
  start-page: 677
  year: 2021
  ident: cpl_41_11_117402bib98
  publication-title: Int. J. Appl. Ceram. Technol.
  doi: 10.1111/ijac.13721
– volume: 49
  start-page: 2435
  year: 2004
  ident: cpl_41_11_117402bib107
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/bf03183707
– volume: 43
  start-page: 1319
  year: 1996
  ident: cpl_41_11_117402bib34
  publication-title: Adv. Cryogen. Eng. Mater.
  doi: 10.1007/978-1-4757-9059-7_171
– volume: 19
  start-page: R68
  year: 2006
  ident: cpl_41_11_117402bib43
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/0953-2048/19/8/r02
– volume: 198
  year: 2021
  ident: cpl_41_11_117402bib23
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109285
– volume: 23
  start-page: 3363
  year: 2008
  ident: cpl_41_11_117402bib126
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2008.0412
– volume: 11
  start-page: 2347
  year: 2001
  ident: cpl_41_11_117402bib54
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/77.920332
– volume: 35
  year: 2022
  ident: cpl_41_11_117402bib80
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/ac30ea
– volume: 42
  start-page: 1109
  year: 1996
  ident: cpl_41_11_117402bib21
  publication-title: Adv. Cryogen. Eng. Mater.
  doi: 10.1007/978-1-4757-9059-7_145
– volume: 35
  year: 2022
  ident: cpl_41_11_117402bib66
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/ac45a0
– volume: 34
  year: 2021
  ident: cpl_41_11_117402bib69
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/abd575
– volume: 5
  start-page: 8285
  year: 2015
  ident: cpl_41_11_117402bib90
  publication-title: Sci. Rep.
  doi: 10.1038/srep08285
– volume: 33
  year: 2020
  ident: cpl_41_11_117402bib137
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/ab714e
– volume: 120
  year: 2021
  ident: cpl_41_11_117402bib156
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2021.103370
– volume: 36
  start-page: 1440
  year: 2012
  ident: cpl_41_11_117402bib116
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2012.06.239
– volume: 35
  start-page: 207
  year: 2021
  ident: cpl_41_11_117402bib164
  publication-title: Mater. Today: Proc.
  doi: 10.1016/j.matpr.2020.04.503
– volume: 109
  start-page: 788
  year: 1958
  ident: cpl_41_11_117402bib6
  publication-title: Phys. Rev.
  doi: 10.1103/physrev.109.788
– volume: 13
  start-page: 375
  year: 2014
  ident: cpl_41_11_117402bib27
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3887
– volume: 26
  year: 2013
  ident: cpl_41_11_117402bib38
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/0953-2048/26/5/055008
– volume: 22
  year: 2012
  ident: cpl_41_11_117402bib56
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2012.2182972
– volume: 6
  year: 2023
  ident: cpl_41_11_117402bib7
  publication-title: Superconductivity
  doi: 10.1016/j.supcon.2023.100047
– volume: 37
  start-page: 1
  year: 2024
  ident: cpl_41_11_117402bib77
  publication-title: J. Supercond. Novel Magn.
  doi: 10.1007/s10948-023-06675-5
– volume: 33
  year: 2020
  ident: cpl_41_11_117402bib146
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/ab9ef1
– volume: 33
  year: 2023
  ident: cpl_41_11_117402bib147
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2023.3247375
– volume: 34
  year: 2021
  ident: cpl_41_11_117402bib179
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/abb11b
– volume: 35
  start-page: 18
  year: 2009
  ident: cpl_41_11_117402bib108
  publication-title: Furukawa Rev.
– volume: 56
  start-page: 2459
  year: 1990
  ident: cpl_41_11_117402bib106
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.103255
– year: 2024
  ident: cpl_41_11_117402bib25
– volume: 412–414
  start-page: 905
  year: 2004
  ident: cpl_41_11_117402bib117
  publication-title: Physica C
  doi: 10.1016/j.physc.2004.02.205
– volume: 27
  year: 2014
  ident: cpl_41_11_117402bib163
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/0953-2048/27/4/044002
– volume: 25
  year: 2015
  ident: cpl_41_11_117402bib35
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2015.2390149
– volume: 463–465
  start-page: 821
  year: 2007
  ident: cpl_41_11_117402bib84
  publication-title: Physica C
  doi: 10.1016/j.physc.2007.04.269
– volume: 128
  start-page: 308
  year: 2022
  ident: cpl_41_11_117402bib129
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-022-05326-1
– volume: 17
  start-page: 1668
  year: 1981
  ident: cpl_41_11_117402bib8
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/tmag.1981.1061365
– volume: 35
  start-page: 746
  year: 2024
  ident: cpl_41_11_117402bib75
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-024-12480-0
– volume: 36
  year: 2023
  ident: cpl_41_11_117402bib134
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/aceab8
– volume: 76
  start-page: 45
  year: 2013
  ident: cpl_41_11_117402bib101
  publication-title: SEI Tech. Rev.
– volume: 24
  year: 2021
  ident: cpl_41_11_117402bib1
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102541
– volume: 30
  year: 2017
  ident: cpl_41_11_117402bib65
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/30/3/035004
– volume: 80
  start-page: 1640
  year: 1996
  ident: cpl_41_11_117402bib17
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.362979
– volume: 756
  year: 2020
  ident: cpl_41_11_117402bib157
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
  doi: 10.1088/1757-899x/756/1/012018
– volume: 23
  start-page: 3951
  year: 1988
  ident: cpl_41_11_117402bib15
  publication-title: J. Mater. Sci.
  doi: 10.1007/bf01106819
– volume: 36
  year: 2023
  ident: cpl_41_11_117402bib152
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/ace662
– volume: 21
  start-page: 787
  year: 1933
  ident: cpl_41_11_117402bib4
  publication-title: Naturwissenschaften
  doi: 10.1007/bf01504252
– volume: 30
  year: 2017
  ident: cpl_41_11_117402bib37
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/aa7976
– volume: 35
  year: 2022
  ident: cpl_41_11_117402bib145
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/ac5339
– volume: 35
  year: 2022
  ident: cpl_41_11_117402bib119
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/ac4aff
– volume: 130
  start-page: 78
  year: 2024
  ident: cpl_41_11_117402bib64
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-023-07245-1
– volume: 20
  start-page: 1144
  year: 2007
  ident: cpl_41_11_117402bib127
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/0953-2048/20/12/010
– volume: 25
  year: 2015
  ident: cpl_41_11_117402bib139
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2014.2385962
– volume: 14
  year: 2024
  ident: cpl_41_11_117402bib93
  publication-title: AIP Adv.
  doi: 10.1063/5.0191262
– volume: 11
  start-page: 3
  year: 1971
  ident: cpl_41_11_117402bib13
  publication-title: Cryogenics
  doi: 10.1016/0011-2275(71)90002-6
– volume: 20
  start-page: 596
  year: 2010
  ident: cpl_41_11_117402bib136
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2009.2039555
– volume: 50
  year: 2024
  ident: cpl_41_11_117402bib150
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2024.03.259
– volume: 25
  year: 2015
  ident: cpl_41_11_117402bib29
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2014.2378377
– volume: 309
  year: 2023
  ident: cpl_41_11_117402bib151
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2023.128348
– volume: 21
  year: 2008
  ident: cpl_41_11_117402bib167
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/0953-2048/21/10/105024
– volume: 471
  start-page: 1689
  year: 2011
  ident: cpl_41_11_117402bib175
  publication-title: Physica C
  doi: 10.1016/j.physc.2011.09.003
– volume: 456
  start-page: 209
  year: 2007
  ident: cpl_41_11_117402bib143
  publication-title: Physica C
  doi: 10.1016/j.physc.2007.01.030
– volume: 48
  year: 2022
  ident: cpl_41_11_117402bib96
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2022.05.271
– volume: 922
  year: 2022
  ident: cpl_41_11_117402bib74
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.166304
– volume: 34
  year: 2021
  ident: cpl_41_11_117402bib120
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/abe35f
– volume: 112
  start-page: 128
  year: 2016
  ident: cpl_41_11_117402bib173
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.09.031
– volume: 41
  start-page: 480
  year: 2021
  ident: cpl_41_11_117402bib131
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.07.074
– volume: 592
  year: 2022
  ident: cpl_41_11_117402bib133
  publication-title: Physica C
  doi: 10.1016/j.physc.2021.1354000
– volume: 36
  year: 2023
  ident: cpl_41_11_117402bib102
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/acba4c
– volume: 410
  start-page: 63
  year: 2001
  ident: cpl_41_11_117402bib140
  publication-title: Nature
  doi: 10.1038/35065039
– volume: 36
  start-page: 216
  year: 1964
  ident: cpl_41_11_117402bib5
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/revmodphys.36.216
– volume: 27
  start-page: L361
  year: 1988
  ident: cpl_41_11_117402bib59
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/jjap.27.l361
– volume: 130
  start-page: 3296
  year: 2008
  ident: cpl_41_11_117402bib161
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800073m
– volume: 36
  year: 2023
  ident: cpl_41_11_117402bib118
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/acff25
– volume: 37
  year: 2024
  ident: cpl_41_11_117402bib121
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/ad4a33
– volume: 1
  start-page: 603
  year: 2003
  ident: cpl_41_11_117402bib10
  publication-title: Handbook of Superconducting Materials
– volume: 15
  start-page: 854
  year: 2000
  ident: cpl_41_11_117402bib86
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2000.0123
– volume: 23
  year: 2010
  ident: cpl_41_11_117402bib70
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/0953-2048/23/2/025009
– volume: 186
  start-page: 317
  year: 2020
  ident: cpl_41_11_117402bib50
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.05.043
– volume: 28
  year: 2021
  ident: cpl_41_11_117402bib89
  publication-title: Surf. Rev. Lett.
  doi: 10.1142/s0218625x21500207
– volume: 47
  start-page: 3706
  year: 2021
  ident: cpl_41_11_117402bib97
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.09.226
– volume: 28
  year: 2015
  ident: cpl_41_11_117402bib180
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/0953-2048/28/11/114005
– volume: 34
  year: 2024
  ident: cpl_41_11_117402bib94
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2023.3332750
– volume: 23
  start-page: 493
  year: 2010
  ident: cpl_41_11_117402bib71
  publication-title: J. Supercond. Novel Magn.
  doi: 10.1007/s10948-009-0622-2
– volume: 49
  year: 2023
  ident: cpl_41_11_117402bib91
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2023.06.047
– volume: 29
  year: 2019
  ident: cpl_41_11_117402bib78
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2019.2895197
– volume: 34
  year: 2024
  ident: cpl_41_11_117402bib24
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2023.3348435
– volume: 36
  start-page: 843
  year: 2023
  ident: cpl_41_11_117402bib62
  publication-title: J. Supercond. Novel Magn.
  doi: 10.1007/s10948-023-06531-6
– volume: 21
  start-page: 75
  year: 1999
  ident: cpl_41_11_117402bib16
  publication-title: Wiley Encyclopedia of Electrical and Electronics Engineering
– volume: 23
  year: 2010
  ident: cpl_41_11_117402bib172
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/0953-2048/23/2/025027
– volume: 31
  year: 2021
  ident: cpl_41_11_117402bib170
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2021.3064543
– volume: 19
  start-page: 1200
  year: 2006
  ident: cpl_41_11_117402bib113
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/0953-2048/19/11/019
– volume: 1559
  year: 2020
  ident: cpl_41_11_117402bib169
  publication-title: J. Phys: Conf. Ser.
  doi: 10.1088/1742-6596/1559/1/012051
– volume: 900
  year: 2022
  ident: cpl_41_11_117402bib92
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.163201
– volume: 29
  year: 2019
  ident: cpl_41_11_117402bib67
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2019.2895215
– volume: 48
  start-page: 293
  year: 2008
  ident: cpl_41_11_117402bib32
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2008.05.005
– volume: 7
  start-page: 6853
  year: 2017
  ident: cpl_41_11_117402bib135
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06881-x
– volume: 25
  start-page: 2215
  year: 2008
  ident: cpl_41_11_117402bib162
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/25/7/015
– volume: 372–376
  start-page: 751
  year: 2002
  ident: cpl_41_11_117402bib115
  publication-title: Physica C
  doi: 10.1016/s0921-4534(02)00898-5
– volume: 35
  year: 2022
  ident: cpl_41_11_117402bib154
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/ac8ad5
– volume: 932
  year: 2023
  ident: cpl_41_11_117402bib174
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.167674
– volume: 61
  start-page: 991
  year: 1992
  ident: cpl_41_11_117402bib22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.107698
– volume: 60
  start-page: 769
  year: 1992
  ident: cpl_41_11_117402bib109
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.106514
– volume: 103
  start-page: 6169
  year: 2020
  ident: cpl_41_11_117402bib149
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.17366
– volume: 2
  year: 2022
  ident: cpl_41_11_117402bib166
  publication-title: Superconductivity
  doi: 10.1016/j.supcon.2022.100010
– volume: 30
  year: 2017
  ident: cpl_41_11_117402bib28
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/0953-2048/30/1/014007
– volume: 25
  year: 2015
  ident: cpl_41_11_117402bib58
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2014.2367024
– volume: 30
  year: 2020
  ident: cpl_41_11_117402bib73
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2020.3000229
– volume: 9
  year: 2019
  ident: cpl_41_11_117402bib79
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-46629-3
– volume: 64
  start-page: 189
  year: 1986
  ident: cpl_41_11_117402bib105
  publication-title: Z. Phys. B
  doi: 10.1007/bf01303701
– volume: 32
  year: 2022
  ident: cpl_41_11_117402bib158
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2022.3147137
– volume: 21
  start-page: 278
  year: 2018
  ident: cpl_41_11_117402bib165
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.09.006
– volume: 857
  year: 2021
  ident: cpl_41_11_117402bib46
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.158270
– volume: 155
  year: 2023
  ident: cpl_41_11_117402bib40
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2023.107848
– volume: 23
  year: 2021
  ident: cpl_41_11_117402bib125
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ac3682
– year: 2024
  ident: cpl_41_11_117402bib138
  doi: 10.1007/s13369-024-08720-4
– volume: 17
  start-page: 374
  year: 1981
  ident: cpl_41_11_117402bib41
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/tmag.1981.1060900
– volume: 33
  start-page: 318
  year: 2019
  ident: cpl_41_11_117402bib61
  publication-title: Mater. Rep.
– volume: 11
  year: 2021
  ident: cpl_41_11_117402bib47
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-97353-w
– volume: 4
  start-page: 6944
  year: 2014
  ident: cpl_41_11_117402bib177
  publication-title: Sci. Rep.
  doi: 10.1038/srep06944
– volume: 34
  year: 2021
  ident: cpl_41_11_117402bib48
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/abd5f4
– volume: 101
  year: 2012
  ident: cpl_41_11_117402bib176
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4731204
– volume: 37
  year: 2024
  ident: cpl_41_11_117402bib178
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/ad0b95
– volume: 34
  start-page: 1681
  year: 2023
  ident: cpl_41_11_117402bib63
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-023-11072-8
– volume: 485
  start-page: 15
  year: 2013
  ident: cpl_41_11_117402bib112
  publication-title: Physica C
  doi: 10.1016/j.physc.2012.09.015
– volume: 392–396
  start-page: 1039
  year: 2003
  ident: cpl_41_11_117402bib142
  publication-title: Physica C
  doi: 10.1016/s0921-4534(03)01160-2
– volume: 35
  year: 2022
  ident: cpl_41_11_117402bib130
  publication-title: Superconduct. Sci. Technol.
  doi: 10.1088/1361-6668/ac7ae3
– volume: 36
  start-page: 101
  year: 2023
  ident: cpl_41_11_117402bib99
  publication-title: J. Supercond. Novel Magn.
  doi: 10.1007/s10948-022-06480-6
– volume: 34
  year: 2024
  ident: cpl_41_11_117402bib76
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2023.3345293
SSID ssj0011811
Score 2.3908663
SecondaryResourceType review_article
Snippet Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials. At present, practical...
Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials.At present,practical...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 117402
Title Review of the Research Status of Practical Superconducting Materials and Their Current Carrying Performance
URI https://iopscience.iop.org/article/10.1088/0256-307X/41/11/117402
https://d.wanfangdata.com.cn/periodical/zgwlkb-e202411013
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Electronic Journals
  customDbUrl:
  eissn: 1741-3540
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011811
  issn: 0256-307X
  databaseCode: IOP
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60InjxLdYXi3iTNE2y2WyOUpQiVAu20FvYV3qopCVNEPrrnc0mVgUREXIIIbNkZx_zTWbmW4RuqC91VzPhECWpAzNEOSIUviMql5kCRK5Onhs80f6YPE7CJpuwqoWZL-qtvwO3lijYqrBOiGOusdLml8nEJZ7rmSsihk5yK2AAj00N3_PwI5AABqw6NK-RaYqEf2zni33ahG-oqnmylGfTT4bnYQ-J5pNtvsmsUxaiI1ff2Bz_1ad9tFvDUnxnBQ7Qhs4O0XaVHiqXR2hmQwh4nmIAjLhJ18MGqpZL89jyHsGA45dyoXPwsg2RLNhFPOCFneWYZwqPTGAC16xQuMfz3NRZ4eG6fuEYjR_uR72-Ux_T4Eg_iguHaU-ZLAoNtj8FQBPryA_TUPtdqrkhMKSppIxzj3AamRUvecQoSSmLYi0JC05QK5tn-hRhGXmapkqJqJsSHvBYKXDdAdQwFQgVem3kNoOTLCwbR1JF0RlLjAoTo8KEeODXJFaFbXQLOk_qhbn89e3reqzXEqvp2-tMJNAdADuwgQVnf2ryHO0YSZsBc4FaRV7qS8AxhbiqZuo7CCrjyQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5eUHzxLt4N4pt0Xbs2zR5FHd6mAxX2FnLdw6QbXYfgr_ck6eYFREToQylNaM5Jcr7Tc84XhE5ILHVdUxEkSpIAZogKRCriQDiXmQBEdifPte_J1XNy0027M-hyWgszGFZbfw1uPVGwF2GVEEdDa6XtL5NumERhZK8MnKBwqMwsmndsJbaO76EzDSaAEXMH503aTQqFf-zri42ahe9wFT254Xnvk_FprfgkkZHjLLQ5J_3auBQ1-faN0fHf41pFyxU8xWe-0Rqa0fk6WnBponK0gfo-lIAHBgNwxJO0PWwh63hkH3v-I1A8fhwPdQHetiWUBfuI27z0sx3zXOEnG6DAFTsUPudFYeutcOejjmETPbcun86vguq4hkDGWbMMqI6UzabQgAEMAJumzuLUpDquE80tkSExklDOo4STzK58yTNKEkNo1tQyoY0tNJcPcr2NsMwiTYxSIqubhDd4Uylw4QHcUNUQKo12UDhREBt6Vg7moumUMitGZsXIkgj8G-bFuINOQe6sWqCjX98-rvT90eKt9_rSFwyGA6AHNrLG7p-6PEKLnYsWu7u-v91DS7YTnxSzj-bKYqwPANqU4tBN3HdpZOkq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+the+Research+Status+of+Practical+Superconducting+Materials+and+Their+Current+Carrying+Performance&rft.jtitle=Chinese+physics+letters&rft.au=Zhang%2C+Yifan&rft.au=Zhang%2C+Shengnan&rft.au=Liu%2C+Jixing&rft.au=Yang%2C+Fang&rft.date=2024-12-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=0256-307X&rft.volume=41&rft.issue=11&rft_id=info:doi/10.1088%2F0256-307X%2F41%2F11%2F117402&rft.externalDocID=cpl_41_11_117402
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwlkb-e%2Fzgwlkb-e.jpg