Quantum Curves, Resurgence and Exact WKB
We study the non-perturbative quantum geometry of the open and closed topological string on the resolved conifold and its mirror. Our tools are finite difference equations in the open and closed string moduli and the resurgence analysis of their formal power series solutions. In the closed setting,...
Saved in:
| Published in | Symmetry, integrability and geometry, methods and applications |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
01.01.2023
|
| Online Access | Get full text |
| ISSN | 1815-0659 1815-0659 |
| DOI | 10.3842/SIGMA.2023.009 |
Cover
| Abstract | We study the non-perturbative quantum geometry of the open and closed topological string on the resolved conifold and its mirror. Our tools are finite difference equations in the open and closed string moduli and the resurgence analysis of their formal power series solutions. In the closed setting, we derive new finite difference equations for the refined partition function as well as its Nekrasov-Shatashvili (NS) limit. We write down a distinguished analytic solution for the refined difference equation that reproduces the expected non-perturbative content of the refined topological string. We compare this solution to the Borel analysis of the free energy in the NS limit. We find that the singularities of the Borel transform lie on infinitely many rays in the Borel plane and that the Stokes jumps across these rays encode the associated Donaldson-Thomas invariants of the underlying Calabi-Yau geometry. In the open setting, the finite difference equation corresponds to a canonical quantization of the mirror curve. We analyze this difference equation using Borel analysis and exact WKB techniques and identify the 5d BPS states in the corresponding exponential spectral networks. We furthermore relate the resurgence analysis in the open and closed setting. This guides us to a five-dimensional extension of the Nekrasov-Rosly-Shatashvili proposal, in which the NS free energy is computed as a generating function of q-difference opers in terms of a special set of spectral coordinates. Finally, we examine two spectral problems describing the corresponding quantum integrable system. |
|---|---|
| AbstractList | We study the non-perturbative quantum geometry of the open and closed topological string on the resolved conifold and its mirror. Our tools are finite difference equations in the open and closed string moduli and the resurgence analysis of their formal power series solutions. In the closed setting, we derive new finite difference equations for the refined partition function as well as its Nekrasov-Shatashvili (NS) limit. We write down a distinguished analytic solution for the refined difference equation that reproduces the expected non-perturbative content of the refined topological string. We compare this solution to the Borel analysis of the free energy in the NS limit. We find that the singularities of the Borel transform lie on infinitely many rays in the Borel plane and that the Stokes jumps across these rays encode the associated Donaldson-Thomas invariants of the underlying Calabi-Yau geometry. In the open setting, the finite difference equation corresponds to a canonical quantization of the mirror curve. We analyze this difference equation using Borel analysis and exact WKB techniques and identify the 5d BPS states in the corresponding exponential spectral networks. We furthermore relate the resurgence analysis in the open and closed setting. This guides us to a five-dimensional extension of the Nekrasov-Rosly-Shatashvili proposal, in which the NS free energy is computed as a generating function of q-difference opers in terms of a special set of spectral coordinates. Finally, we examine two spectral problems describing the corresponding quantum integrable system. |
| Author | Tulli, Iván Alim, Murad Hollands, Lotte |
| Author_xml | – sequence: 1 givenname: Murad surname: Alim fullname: Alim, Murad – sequence: 2 givenname: Lotte surname: Hollands fullname: Hollands, Lotte – sequence: 3 givenname: Iván surname: Tulli fullname: Tulli, Iván |
| BookMark | eNpd0E1PwzAMBuAIDYltcOXcIwfauUn6dRzTGBNDiC9xjLw0mYradEpaYP-ejiE09WQf_Nh6PSIDUxtFyGUIAUs5nbwsFw_TgAJlAUB2QoZhGkY-xFE2OOrPyMi5DwAe8xiG5OqpRdO0lTdr7ady196zcq3dKCOVhyb35t8oG-_9_uacnGosnbr4q2Pydjt_nd35q8fFcjZd-ZImWeNzyRVN8lzlVGkasYStI8y1BNAIdA2MdRMJxSjTuWbAQsAsTFOVUeBRGiMbk8lhb2u2uPvCshRbW1RodyIEsQ8qXLGpUOyDii5oJ_hBSFs7Z5UWsmiwKWrTWCzKf_b7n2MW9Fj_Tg_8APfcZr4 |
| CitedBy_id | crossref_primary_10_1007_s00220_024_05190_5 crossref_primary_10_21468_SciPostPhys_15_1_035 crossref_primary_10_21468_SciPostPhys_15_3_112 crossref_primary_10_1007_s11005_024_01873_1 crossref_primary_10_21468_SciPostPhys_15_4_179 crossref_primary_10_21468_SciPostPhys_16_3_079 |
| ContentType | Journal Article |
| CorporateAuthor | 228 Universit Heriot-Watt University, UK Universität Hamburg, Germany t Hamburg, Germany |
| CorporateAuthor_xml | – name: Universit – name: Universität Hamburg, Germany – name: t Hamburg, Germany – name: Heriot-Watt University, UK – name: 228 |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.3842/SIGMA.2023.009 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1815-0659 |
| ExternalDocumentID | 10.3842/sigma.2023.009 10_3842_SIGMA_2023_009 |
| GroupedDBID | -~9 29Q 2WC 5IG 5VS 8FE 8FG AAFWJ AAYXX ABJCF ABUWG ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ BYOGL CCPQU CITATION DWQXO E4X GNUQQ GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M7S M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS REM RNS TR2 ADTOC C1A IPNFZ LO0 PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c279t-4c4e27dded2ef25373b5adfc00fa02b0334c472a59fdf30310a9188e9204586a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1815-0659 |
| IngestDate | Mon Sep 15 10:15:13 EDT 2025 Wed Oct 29 21:24:55 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | cc-by-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c279t-4c4e27dded2ef25373b5adfc00fa02b0334c472a59fdf30310a9188e9204586a3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.emis.de/journals/SIGMA/2023/009/sigma23-009.pdf |
| ParticipantIDs | unpaywall_primary_10_3842_sigma_2023_009 crossref_citationtrail_10_3842_SIGMA_2023_009 crossref_primary_10_3842_SIGMA_2023_009 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Symmetry, integrability and geometry, methods and applications |
| PublicationYear | 2023 |
| SSID | ssj0046460 |
| Score | 2.41266 |
| Snippet | We study the non-perturbative quantum geometry of the open and closed topological string on the resolved conifold and its mirror. Our tools are finite... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| Title | Quantum Curves, Resurgence and Exact WKB |
| URI | https://www.emis.de/journals/SIGMA/2023/009/sigma23-009.pdf |
| UnpaywallVersion | publishedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1815-0659 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0046460 issn: 1815-0659 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1815-0659 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0046460 issn: 1815-0659 databaseCode: M~E dateStart: 20050101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: East Europe, Central Europe Database customDbUrl: eissn: 1815-0659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0046460 issn: 1815-0659 databaseCode: BYOGL dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/eastcentraleurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1815-0659 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0046460 issn: 1815-0659 databaseCode: 8FG dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Text complet a ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1815-0659 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0046460 issn: 1815-0659 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwFHwq7QEulFWUpcoBiR5wm8RZxamturCVtYJKSJGT2AjRhqpJ2L4eO0mrCoSEuOUwsZx5Tt44fh4D7PMUh11MKWKaTMQyo4kIz-LI133mW4pGTZoUyPaMbl87udfvc3A03QuTlFXyJxQFFhmbYe3muHNeF9N0XOOSoBY-PY6IipHwmhz7bAEKhs6FeB4K_d5lfSCmWJaiI7FimNo0YktT07uqopGqLMoP59LQYhyMyccbGQ7ncku7CA_TXqUlJc_VOHKr3uc3w8Z_dnsFljPNKdXTQbIKORqsQTHTn1L2dofrULmKOc_xSGrGk1caHkrXNIyTzZlUIoEvtd6JF0l3p40N6Ldbt80uyk5SQJ5q2hHSPI2qJv-S-Splqo55fHTiM0-WGZFVV8aYI0yV6DbzGRZuocRWLIvawqzeMgjehHzwEtAtkBhPXy7jMsywudSirmXrHpM9ohDFtqmplABNiXW8zGZcnHYxdPh0QwTCSWhxBC0Op6IEBzP8ODXY-BVZmcXpBzQhdwbd_jt0B5bEZfpXZRfy0SSme1xnRG4ZCo3BReesnI2rL-f2z8o |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGP2Y24O-OK84b_RBcA-ma5te8WmOzak4vA0VhJI2iYhbHWvr7debtN0YiiC-9eE0pOdL-500X04A9kSKwwFmDHFTI3KZ0UFEZHFELcqpq5vMYVmBbM_u9s3TO-uuBIeTvTBZWaV4QllgUbAZN65Pjs-bcpqOG0ISNOKnxyExMJJekyPK56BiW0KIl6HS71007-UUy9UtJFcMc5tG7JpGfpcqG1E1WX44k4bm02hEPt7IYDCTWzpVeJj0Ki8peVbTJFDDz2-Gjf_s9hIsFppTaeaDZBlKLFqBaqE_leLtjlehfpkKntOh0krHryw-UK5YnGabM5lCIqq030mYKLdnR2vQ77RvWl1UnKSAQsPxEmSGJjMc8SWjBuOGhUV8LEJ5qGmcaEagYSwQjkEsj1OOpVso8XTXZZ40q3dtgtehHL1EbAMULtJXwIUMsz0htVjgelbItZDoRPc85ug1QBNi_bCwGZenXQx8Md2QgfAzWnxJiy-oqMH-FD_KDTZ-RdancfoBzcidQjf_Dt2CBXmZ_1XZhnIyTtmO0BlJsFuMpy9xSc4q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Curves%2C+Resurgence+and+Exact+WKB&rft.jtitle=Symmetry%2C+integrability+and+geometry%2C+methods+and+applications&rft.au=Alim%2C+Murad&rft.au=Hollands%2C+Lotte&rft.au=Tulli%2C+Iv%C3%A1n&rft.date=2023-01-01&rft.issn=1815-0659&rft.eissn=1815-0659&rft_id=info:doi/10.3842%2FSIGMA.2023.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_3842_SIGMA_2023_009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1815-0659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1815-0659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1815-0659&client=summon |